1
|
Han T, Jia T, Wang J. Diversity in Adaptive Evolution of Methicillin-Resistant Staphylococcus aureus Clinical Isolates Under Exposure to Continuous Linezolid Stress in vitro. Infect Drug Resist 2025; 18:819-834. [PMID: 39958981 PMCID: PMC11829590 DOI: 10.2147/idr.s493139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/30/2025] [Indexed: 02/18/2025] Open
Abstract
Background Linezolid resistance in methicillin-resistant Staphylococcus aureus (MRSA) was reported frequently in recent years, but the mechanism underlying this process was less reported, especially for clinical isolates with different genetic background. Thus, this study aims to explore the adaptive evolution characteristics underlying linezolid resistance in MRSA clinical isolates exposed to continuous induction stress of linezolid in vitro. Methods The in vitro susceptibility of 1032 MRSA clinical isolates to linezolid was detected using commercial VITEK-2 equipment via broth microdilution. MRSA isolates with different minimum inhibitory concentration (MIC) values for linezolid were randomly selected to perform the assay of adaptive laboratory evolution with sub-inhibitory concentrations of linezolid. Polymerase chain reaction assays and sequencing techniques were performed to detect well-known molecular determinants related to linezolid resistance, including the expression of optrA and cfr, mutations of 23S rRNA gene and ribosomal protein (L3, L4, L22) encoding genes (rplC, rplD, rplV). Results After induction with sequentially increasing concentrations of linezolid, all four MRSA strains (L914, L860, L1096, and L2875) evolved into linezolid-resistant strains over various induction times (480, 384, 288, and 240 h) and universally formed small colony variants. A new mutation in the domain V region of 23S rRNA gene (C2404T) and one mutation in amino acid sequences of ribosomal protein (Met208Thr) were firstly identified among linezolid-resistant strains. Except G2576T mutations in 23S rRNA gene, the distribution of other mutations (A2451T, T2504A, C2404T, T2500A, G2447T) exhibited obvious strain heterogeneity. Furthermore, as the MIC to linezolid increased, the copy numbers of point mutations in the V region of 23S rRNA gene increased correspondingly. Conclusion Strain-specific evolution of resistance to linezolid among MRSA clinical isolates was firstly identified in this study. MRSA isolates with higher MICs for linezolid evolved more easily into resistant ones, which calls for precise monitoring of linezolid resistance levels in patients receiving treatment for MRSA infections with linezolid.
Collapse
Affiliation(s)
- Tala Han
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, 010050, People’s Republic of China
| | - Ting Jia
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, 010050, People’s Republic of China
| | - Junrui Wang
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolian Medical University, Hohhot, 010050, People’s Republic of China
- Inner Mongolia Key Laboratory of Clinical Pathogenic Microorganism, The Affiliated Hospital of Inner Mongolian Medical University, Hohhot, 010050, People’s Republic of China
| |
Collapse
|
2
|
Shibata Y, Shiota A, Mori N, Asai N, Hagihara M, Mikamo H. Clinical efficacy and safety assessment of tedizolid using therapeutic drug monitoring. J Infect Chemother 2024; 31:102582. [PMID: 39667558 DOI: 10.1016/j.jiac.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Thrombocytopenia derived from tedizolid (TZD) has been reported but less frequently than that from linezolid. Only a few reports have investigated the relationship between the efficacy and safety of TZD administration. This study aimed to measure TZD concentration and investigate the relationship between efficacy and safety. The study was conducted at the Aichi Medical University Hospital. All patients administered TZD were included; the serum trough concentration (Cmin) of TZD was measured using LM1010 high-performance liquid chromatography. Efficacy was assessed as clinical and microbiological efficacy. Clinical efficacy was defined as no recurrence and no need for additional treatment until 2 weeks after the end of TZD therapy. Microbiological efficacy was defined as the absence of bacteria during and after TZD therapy. Safety was assessed using thrombocytopenia. Thrombocytopenia was defined as a decrease in platelet count of ≥25 % compared with baseline levels and a minimum count of <10 × 104/μL. Seventeen patients were included. The Cmin in 16 patients was <0.5 μg/mL; one patient had a Cmin of 1.01 μg/mL complicated by hepatic cirrhosis. Clinical and microbiological efficacy was found in >80 % of the patients. Thrombocytopenia occurred in 14.3 % (2/14) of the patients. The Cmin in two patients with thrombocytopenia were 0.14 and 0.28 μg/mL, respectively. The serum concentration of TZD might increase in patients with hepatic cirrhosis; therapeutic drug monitoring may be required. Thrombocytopenia due to TZD could occur regardless of its serum concentration, necessitating monitoring for platelet count.
Collapse
Affiliation(s)
- Yuichi Shibata
- Department of Infection Prevention and Control, Aichi Medical University Hospital, Nagakute, Aichi, Japan; Department of Pharmacy, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Arufumi Shiota
- Department of Infection Prevention and Control, Aichi Medical University Hospital, Nagakute, Aichi, Japan; Department of Pharmacy, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Nobuaki Mori
- Department of Infection Prevention and Control, Aichi Medical University Hospital, Nagakute, Aichi, Japan; Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Nobuhiro Asai
- Department of Infection Prevention and Control, Aichi Medical University Hospital, Nagakute, Aichi, Japan; Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Nagakute, Aichi, Japan
| | - Mao Hagihara
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hiroshige Mikamo
- Department of Infection Prevention and Control, Aichi Medical University Hospital, Nagakute, Aichi, Japan; Department of Clinical Infectious Diseases, Aichi Medical University Hospital, Nagakute, Aichi, Japan.
| |
Collapse
|
3
|
Milosevic TV, Vertenoeil G, Vainchenker W, Tulkens PM, Constantinescu SN, Van Bambeke F. Oxazolidinone antibiotics impair ex vivo megakaryocyte differentiation from hematopoietic progenitor cells and their maturation into platelets. Antimicrob Agents Chemother 2024; 68:e0053324. [PMID: 39297641 PMCID: PMC11460550 DOI: 10.1128/aac.00533-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Oxazolidinones (linezolid and tedizolid) adverse reactions include thrombocytopenia, the mechanism of which is still largely unknown. In cultured cells, oxazolidinones impair mitochondrial protein synthesis and oxidative metabolism. As mitochondrial activity is essential for megakaryocyte differentiation and maturation into platelets, we examined whether oxazolidinones impair these processes ex vivo and alter, in parallel, the activity of mitochondrial cytochrome c-oxidase (CYTOX; enzyme partly encoded by the mitochondrial genome) and cell morphology. Human CD34+ cells were isolated, incubated with cytokines (up to 14 days) and clinically relevant oxazolidinone concentrations or in control conditions, and used for (i) clonogenic assays [counting of megakaryocyte (CFU-Mk), granulocyte-monocyte (CFU-GM), burst-forming unit-erythroid (BFU-E) colonies]; (ii) the measure of the expression of megakaryocyte surface antigens (CD34 to CD41 and CD42); (iii) counting of proplatelets; (iv) the measurement of CYTOX activity; and (v) cell morphology (optic and electron microscopy). Oxazolidinones caused a significant decrease in BFU-E but not CFU-Mk or CFU-GM colonies. Yet, the megakaryocytic lineage was markedly affected, with a decreased differentiation of CD34+ into CD41+/CD42+ cells, an abolition of proplatelet formation and striking decrease in the numbers of large polylobulated nucleus megakaryocytes, with a complete loss of intracellular demarcation membrane system, disappearance of mitochondria, and suppression of CYTOX activity. These alterations were more marked in cells incubated with tedizolid than linezolid. These data suggest that oxazolidinones may induce thrombocytopenia by impairing megakaryocytic differentiation through mitochondrial dysfunction. Pharmacological interventions to prevent this toxicity might therefore be difficult as mitochondrial toxicity is most probably inherently linked to their antibacterial activity.
Collapse
Affiliation(s)
- Tamara V. Milosevic
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Gaëlle Vertenoeil
- Signal Transduction and Molecular Hematology Unit (SIGN), de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Ludwig Institute for Cancer Research, Brussels, Belgium
| | - William Vainchenker
- UMR 1170, Institut National de la Santé et de la Recherche Médicale, Université de Paris-Sud & Institut Gustave Roussy, Villejuif, France
| | - Paul M. Tulkens
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Stefan N. Constantinescu
- Signal Transduction and Molecular Hematology Unit (SIGN), de Duve Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Ludwig Institute for Cancer Research, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
4
|
Chen RH, Burke A, Cho JG, Alffenaar JW, Davies Forsman L. New Oxazolidinones for Tuberculosis: Are Novel Treatments on the Horizon? Pharmaceutics 2024; 16:818. [PMID: 38931939 PMCID: PMC11207443 DOI: 10.3390/pharmaceutics16060818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Multidrug-resistant tuberculosis (MDR-TB) is a global health concern. Standard treatment involves the use of linezolid, a repurposed oxazolidinone. It is associated with severe adverse effects, including myelosuppression and mitochondrial toxicity. As such, it is imperative to identify novel alternatives that are better tolerated but equally or more effective. Therefore, this review aims to identify and explore the novel alternative oxazolidinones to potentially replace linezolid in the management of TB. The keywords tuberculosis and oxazolidinones were searched in PubMed to identify eligible compounds. The individual drug compounds were then searched with the term tuberculosis to identify the relevant in vitro, in vivo and clinical studies. The search identified sutezolid, tedizolid, delpazolid, eperezolid, radezolid, contezolid, posizolid and TBI-223, in addition to linezolid. An additional search resulted in 32 preclinical and 21 clinical studies. All novel oxazolidinones except posizolid and eperezolid resulted in positive preclinical outcomes. Sutezolid and delpazolid completed early phase 2 clinical studies with better safety and equal or superior efficacy. Linezolid is expected to continue as the mainstay therapy, with renewed interest in drug monitoring. Sutezolid, tedizolid, delpazolid and TBI-223 displayed promising preliminary results. Further clinical studies would be required to assess the safety profiles and optimize the dosing regimens.
Collapse
Affiliation(s)
- Ricky Hao Chen
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Department of Pharmacy, Westmead Hospital, Sydney, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2145, Australia;
| | - Andrew Burke
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia;
- The Prince Charles Hospital, Brisbane, QLD 4032, Australia
| | - Jin-Gun Cho
- Department of Respiratory and Sleep Medicine, Westmead Hospital, Sydney, NSW 2145, Australia;
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| | - Jan-Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Department of Pharmacy, Westmead Hospital, Sydney, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2145, Australia;
| | - Lina Davies Forsman
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW 2145, Australia;
- Department of Infectious Diseases, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, SE-171 76 Stockholm, Sweden
| |
Collapse
|
5
|
Ampomah-Wireko M, Chen S, Li R, Gao C, Wang M, Qu Y, Kong H, Nininahazwe L, Zhang E. Recent advances in the exploration of oxazolidinone scaffolds from compound development to antibacterial agents and other bioactivities. Eur J Med Chem 2024; 269:116326. [PMID: 38513340 DOI: 10.1016/j.ejmech.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Bacterial infections cause a variety of life-threatening diseases, and the continuous evolution of drug-resistant bacteria poses an increasing threat to current antimicrobial regimens. Gram-positive bacteria (GPB) have a wide range of genetic capabilities that allow them to adapt to and develop resistance to practically all existing antibiotics. Oxazolidinones, a class of potent bacterial protein synthesis inhibitors with a unique mechanism of action involving inhibition of bacterial ribosomal translation, has emerged as the antibiotics of choice for the treatment of drug-resistant GPB infections. In this review, we discussed the oxazolidinone antibiotics that are currently on the market and in clinical development, as well as an updated synopsis of current advances on their analogues, with an emphasis on innovative strategies for structural optimization of linezolid, structure-activity relationship (SAR), and safety properties. We also discussed recent efforts aimed at extending the activity of oxazolidinones to gram-negative bacteria (GNB), antitumor, and coagulation factor Xa. Oxazolidinone antibiotics can accumulate in GNB by a conjugation to siderophore-mediated β-lactamase-triggered release, making them effective against GNB.
Collapse
Affiliation(s)
- Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
6
|
Toyokawa M, Ohana N, Tanno D, Imai M, Takano Y, Ohashi K, Yamashita T, Saito K, Takahashi H, Shimura H. In vitro activity of tedizolid against 43 species of Nocardia species. Sci Rep 2024; 14:5342. [PMID: 38438563 PMCID: PMC10912709 DOI: 10.1038/s41598-024-55916-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2024] [Indexed: 03/06/2024] Open
Abstract
The purpose of the present study was to evaluate the in vitro activity of tedizolid against several clinically significant species of Nocardia by comparing with that of linezolid. A total of 286 isolates of Nocardia species, including 236 clinical isolates recovered from patients in Japan and 50 strains (43 species) purchased from NITE Biological Resource Center, were studied. Antimicrobial susceptibility testing was performed using the broth microdilution method. For the 286 Nocardia isolates, the minimal inhibitory concentration (MIC)50 and MIC90 values of tedizolid were 0.25 and 0.5 μg/ml, and those of linezolid were 2 and 2 μg/ml, respectively. The distribution of the linezolid/tedizolid ratios (MICs of linezolid/MICs of tedizolid) showed that tedizolid had four- to eight-fold higher activity than linezolid in 96.1% (275/286) of Nocardia isolates. Both the tedizolid and linezolid MIC90 values for Nocardia brasiliensis were two-fold higher than those for the other Nocardia species. Both tedizolid and linezolid had low MIC values, 0.25-1 μg/ml and 0.5-4 μg/ml, respectively, even against nine isolates (five species) that were resistant to trimethoprim/sulfamethoxazole. One Nocardia sputorum isolate showed reduced susceptibility to tedizolid (4 μg/ml). Bioinformatics analysis suggests different resistance mechanisms than the oxazolidinone resistance seen in enterococci and staphylococci.
Collapse
Affiliation(s)
- Masahiro Toyokawa
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, 10-6, Sakaemachi, Fukushima City, Fukushima, 960-8516, Japan.
- Department of Laboratory Medicine, Fukushima Medical University, 1 Hikariga-Oka, Fukushima City, Fukushima, 960-1295, Japan.
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital, 1 Hikariga-Oka, Fukushima City, Fukushima, 960-1295, Japan.
| | - Noboru Ohana
- Department of Laboratory Medicine, Fukushima Medical University, 1 Hikariga-Oka, Fukushima City, Fukushima, 960-1295, Japan
| | - Daiki Tanno
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, 10-6, Sakaemachi, Fukushima City, Fukushima, 960-8516, Japan
- Department of Laboratory Medicine, Fukushima Medical University, 1 Hikariga-Oka, Fukushima City, Fukushima, 960-1295, Japan
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital, 1 Hikariga-Oka, Fukushima City, Fukushima, 960-1295, Japan
| | - Minako Imai
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital, 1 Hikariga-Oka, Fukushima City, Fukushima, 960-1295, Japan
| | - Yukiko Takano
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital, 1 Hikariga-Oka, Fukushima City, Fukushima, 960-1295, Japan
| | - Kazutaka Ohashi
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital, 1 Hikariga-Oka, Fukushima City, Fukushima, 960-1295, Japan
| | - Tomonari Yamashita
- Clinical Testing Department, MicroSKY Lab, Inc., Center Building Kanamachi 2F, 6-6-5 Higashikanamachi, Katsushika-ku, Tokyo, 125-0041, Japan
| | - Kyoichi Saito
- Department of Laboratory Medicine, Fukushima Medical University, 1 Hikariga-Oka, Fukushima City, Fukushima, 960-1295, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Hiroki Shimura
- Department of Laboratory Medicine, Fukushima Medical University, 1 Hikariga-Oka, Fukushima City, Fukushima, 960-1295, Japan
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital, 1 Hikariga-Oka, Fukushima City, Fukushima, 960-1295, Japan
| |
Collapse
|
7
|
Corcione S, Vita D, De Nicolò A, Scabini S, Mornese Pinna S, Cusato J, Mangiapia M, D'Avolio A, De Rosa FG. Pharmacokinetics and pharmacogenetics of high-dosage tedizolid for disseminated nocardiosis in a lung transplant patient. J Antimicrob Chemother 2023; 78:3003-3004. [PMID: 37788983 DOI: 10.1093/jac/dkad299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Affiliation(s)
- Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy
- School of Medicine, Tufts University, Boston, MA, USA
| | - Davide Vita
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy
| | - Amedeo De Nicolò
- Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Silvia Scabini
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy
| | - Simone Mornese Pinna
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy
| | - Jessica Cusato
- Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Mauro Mangiapia
- Pneumology Unit, Department of Cardiovascular and Thoracic Diseases, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Torino, Italy
| | - Antonio D'Avolio
- Department of Medical Sciences, Laboratory of Clinical Pharmacology and Pharmacogenetics, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | | |
Collapse
|
8
|
Douglas EJ, Laabei M. Staph wars: the antibiotic pipeline strikes back. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001387. [PMID: 37656158 PMCID: PMC10569064 DOI: 10.1099/mic.0.001387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Antibiotic chemotherapy is widely regarded as one of the most significant medical advancements in history. However, the continued misuse of antibiotics has contributed to the rapid rise of antimicrobial resistance (AMR) globally. Staphylococcus aureus, a major human pathogen, has become synonymous with multidrug resistance and is a leading antimicrobial-resistant pathogen causing significant morbidity and mortality worldwide. This review focuses on (1) the targets of current anti-staphylococcal antibiotics and the specific mechanisms that confirm resistance; (2) an in-depth analysis of recently licensed antibiotics approved for the treatment of S. aureus infections; and (3) an examination of the pre-clinical pipeline of anti-staphylococcal compounds. In addition, we examine the molecular mechanism of action of novel antimicrobials and derivatives of existing classes of antibiotics, collate data on the emergence of resistance to new compounds and provide an overview of key data from clinical trials evaluating anti-staphylococcal compounds. We present several successful cases in the development of alternative forms of existing antibiotics that have activity against multidrug-resistant S. aureus. Pre-clinical antimicrobials show promise, but more focus and funding are required to develop novel classes of compounds that can curtail the spread of and sustainably control antimicrobial-resistant S. aureus infections.
Collapse
Affiliation(s)
| | - Maisem Laabei
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
9
|
Han N, Li J, Wan P, Pan Y, Xu T, Xiong W, Zeng Z. Co-Existence of Oxazolidinone Resistance Genes cfr(D) and optrA on Two Streptococcus parasuis Isolates from Swine. Antibiotics (Basel) 2023; 12:antibiotics12050825. [PMID: 37237728 DOI: 10.3390/antibiotics12050825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
This study was performed to investigate the presence and characteristics of the oxazolidinone resistance genes optrA and cfr(D) in Streptococcus parasuis. In total, 36 Streptococcus isolates (30 Streptococcus suis isolates, 6 Streptococcus parasuis isolates) were collected from pig farms in China in 2020-2021, using PCR to determine the presence of optrA and cfr. Then, 2 of the 36 Streptococcus isolates were further processed as follows. Whole-genome sequencing and de novo assembly were employed to analyze the genetic environment of the optrA and cfr(D) genes. Conjugation and inverse PCR were employed to verify the transferability of optrA and cfr(D). The optrA and cfr(D) genes were identified in two S. parasuis strains named SS17 and SS20, respectively. The optrA of the two isolates was located on chromosomes invariably associated with the araC gene and Tn554, which carry the resistance genes erm(A) and ant(9). The two plasmids that carry cfr(D), pSS17 (7550 bp) and pSS20-1 (7550 bp) have 100% nucleotide sequence identity. The cfr(D) was flanked by GMP synthase and IS1202. The findings of this study extend the current knowledge of the genetic background of optrA and cfr(D) and indicate that Tn554 and IS1202 may play an important role in the transmission of optrA and cfr(D), respectively.
Collapse
Affiliation(s)
- Ning Han
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Peng Wan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yu Pan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Jeremia L, Deprez BE, Dey D, Conn GL, Wuest WM. Ribosome-targeting antibiotics and resistance via ribosomal RNA methylation. RSC Med Chem 2023; 14:624-643. [PMID: 37122541 PMCID: PMC10131624 DOI: 10.1039/d2md00459c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
The rise of multidrug-resistant bacterial infections is a cause of global concern. There is an urgent need to both revitalize antibacterial agents that are ineffective due to resistance while concurrently developing new antibiotics with novel targets and mechanisms of action. Pathogen associated resistance-conferring ribosomal RNA (rRNA) methyltransferases are a growing threat that, as a group, collectively render a total of seven clinically-relevant ribosome-targeting antibiotic classes ineffective. Increasing frequency of identification and their growing prevalence relative to other resistance mechanisms suggests that these resistance determinants are rapidly spreading among human pathogens and could contribute significantly to the increased likelihood of a post-antibiotic era. Herein, with a view toward stimulating future studies to counter the effects of these rRNA methyltransferases, we summarize their prevalence, the fitness cost(s) to bacteria of their acquisition and expression, and current efforts toward targeting clinically relevant enzymes of this class.
Collapse
Affiliation(s)
- Learnmore Jeremia
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Benjamin E Deprez
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| | - William M Wuest
- Department of Chemistry, Emory University 1515 Dickey Dr. Atlanta GA 30322 USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine 1510 Clifton Rd. Atlanta GA 30322 USA
| |
Collapse
|
11
|
Yuan S, Shen DD, Bai YR, Zhang M, Zhou T, Sun C, Zhou L, Wang SQ, Liu HM. Oxazolidinone: A promising scaffold for the development of antibacterial drugs. Eur J Med Chem 2023; 250:115239. [PMID: 36893700 DOI: 10.1016/j.ejmech.2023.115239] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023]
Abstract
Due to the long-term and widespread use of antibiotics in clinic, the problem of bacterial resistance is increasingly serious, and the development of new drugs to treat drug-resistant bacteria has gradually become the mainstream direction of antibiotic research. The oxazolidinone-containing drugs linezolid, tedizolid phosphate and contezolid have been approved to the market, which are effective against a variety of Gram-positive bacterium infections. Moreover, there are also many antibiotics containing oxazolidinone fragment under clinical investigation that show good pharmacokinetic and pharmacodynamic properties with unique mechanism of action against resistant bacteria. In this review, we summarized the oxazolidinone-based antibiotics already on the market or in clinical trials and the representative bioactive molecules, and mainly focused on their structural optimizations, development strategies and structure-activity relationships in hope of insight into the reasonable design for medical chemists to develop new oxazolidinone antibiotics with highly potency and fewer side effects.
Collapse
Affiliation(s)
- Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China.
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi-Ru Bai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Miao Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Tian Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Chong Sun
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China
| | - Li Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Sai-Qi Wang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, 450008, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
12
|
Buckley ME, Ndukwe ARN, Nair PC, Rana S, Fairfull-Smith KE, Gandhi NS. Comparative Assessment of Docking Programs for Docking and Virtual Screening of Ribosomal Oxazolidinone Antibacterial Agents. Antibiotics (Basel) 2023; 12:463. [PMID: 36978331 PMCID: PMC10044086 DOI: 10.3390/antibiotics12030463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Oxazolidinones are a broad-spectrum class of synthetic antibiotics that bind to the 50S ribosomal subunit of Gram-positive and Gram-negative bacteria. Many crystal structures of the ribosomes with oxazolidinone ligands have been reported in the literature, facilitating structure-based design using methods such as molecular docking. It would be of great interest to know in advance how well docking methods can reproduce the correct ligand binding modes and rank these correctly. We examined the performance of five molecular docking programs (AutoDock 4, AutoDock Vina, DOCK 6, rDock, and RLDock) for their ability to model ribosomal-ligand interactions with oxazolidinones. Eleven ribosomal crystal structures with oxazolidinones as the ligands were docked. The accuracy was evaluated by calculating the docked complexes' root-mean-square deviation (RMSD) and the program's internal scoring function. The rankings for each program based on the median RMSD between the native and predicted were DOCK 6 > AD4 > Vina > RDOCK >> RLDOCK. Results demonstrate that the top-performing program, DOCK 6, could accurately replicate the ligand binding in only four of the eleven ribosomes due to the poor electron density of said ribosomal structures. In this study, we have further benchmarked the performance of the DOCK 6 docking algorithm and scoring in improving virtual screening (VS) enrichment using the dataset of 285 oxazolidinone derivatives against oxazolidinone binding sites in the S. aureus ribosome. However, there was no clear trend between the structure and activity of the oxazolidinones in VS. Overall, the docking performance indicates that the RNA pocket's high flexibility does not allow for accurate docking prediction, highlighting the need to validate VS. protocols for ligand-RNA before future use. Later, we developed a re-scoring method incorporating absolute docking scores and molecular descriptors, and the results indicate that the descriptors greatly improve the correlation of docking scores and pMIC values. Morgan fingerprint analysis was also used, suggesting that DOCK 6 underpredicted molecules with tail modifications with acetamide, n-methylacetamide, or n-ethylacetamide and over-predicted molecule derivatives with methylamino bits. Alternatively, a ligand-based approach similar to a field template was taken, indicating that each derivative's tail groups have strong positive and negative electrostatic potential contributing to microbial activity. These results indicate that one should perform VS. campaigns of ribosomal antibiotics with care and that more comprehensive strategies, including molecular dynamics simulations and relative free energy calculations, might be necessary in conjunction with VS. and docking.
Collapse
Affiliation(s)
- McKenna E. Buckley
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Audrey R. N. Ndukwe
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Pramod C. Nair
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
- Flinders Health and Medical Research Institute (FHMRI), Flinders University, Adelaide, SA 5042, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, SA 5000, Australia
- Discipline of Medicine, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Santu Rana
- Applied Artificial Intelligence Institute (A2I2), Deakin University, Geelong, VIC 3220, Australia
| | - Kathryn E. Fairfull-Smith
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Neha S. Gandhi
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
13
|
Vena A, Castaldo N, Magnasco L, Bavastro M, Limongelli A, Giacobbe DR, Bassetti M. Current and emerging drug treatment strategies to tackle invasive community-associated methicillin-resistant Staphylococcus aureus (MRSA) infection: what are the challenges? Expert Opin Pharmacother 2023; 24:331-346. [PMID: 36548447 DOI: 10.1080/14656566.2022.2161885] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infections represent a leading cause of purulent skin and soft tissue infections in some geographical regions. Traditionally, 'old antibiotics' such as trimethoprim-sulfamethoxazole, tetracyclines, clindamycin, chloramphenicol,vancomycin, and teicoplanin have been used to treat these infections, but these were often associated with low efficacy and excessive side effects and toxicity, especially nephrotoxicity. Along with the development of new compounds, the last decade has seen substantial improvements in the management of CA-MRSA infections. AREAS COVERED In this review, the authors discuss the current and emerging drug treatment strategies to tackle invasive CA-MRSA infections. Articles reported in this review were selected from through literature searches using the PubMed database. EXPERT OPINION The availability of new drugs showing a potent in vitro activity against CA-MRSA represents a unique opportunity to face the threat of resistance while potentially reducing toxicity. All these compounds represent promising options to enhance our antibiotic armamentarium. However, data regarding the use of these new drugs in real-life studies are limited and their best placement in therapy and in terms of optimization of medical resources and balance of cost-effectiveness requires further investigation.
Collapse
Affiliation(s)
- Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nadia Castaldo
- Department of Pulmonology, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Laura Magnasco
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Martina Bavastro
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Alessandro Limongelli
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
14
|
Gao T, Yao C, Shang Y, Su R, Zhang X, Ren W, Li S, Shu W, Pang Y, Li Q. Antimicrobial Effect of Oxazolidinones and Its Synergistic Effect with Bedaquiline Against Mycobacterium abscessus Complex. Infect Drug Resist 2023; 16:279-287. [PMID: 36683910 PMCID: PMC9850832 DOI: 10.2147/idr.s395750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Purpose Unsatisfactory efficacies of currently recommended anti-Mycobacterium abscessus complex (MABC) treatment regimens have led to development of novel drugs to combat MABC infections. In this study, we evaluated in vitro antimicrobial activities of bedaquiline (BDQ) and four oxazolidinones against MABC isolates. Methods The resazurin microplate assay was performed to determine minimum inhibitory concentrations (MICs) of BDQ and four oxazolidinones, including tedizolid (TZD), sutezolid (SZD), delpazolid (DZD), and linezolid (LZD), against 65 MABC isolates. A checkerboard method was used to investigate efficacies of various antimicrobial drug combinations. Results BDQ MICs for MABC isolates ranged from <0.031 to 1 µg/mL, while MIC50 and MIC90 values were 0.125 µg/mL and 0.25 µg/mL, respectively. TZD MIC50 and MIC90 values for MABC isolates were 1 µg/mL and 4 µg/mL, respectively, which were fourfold lower than corresponding LZD values (P < 0.001). DZD MIC90 values for MABC isolates was 8 µg/mL, which were 0.5-fold lower than corresponding LZD values (P < 0.01). MICs of BDQ, SZD, and LZD for M. abscessus subspecies massiliense isolates were significantly lower than corresponding MICs for M. abscessus subspecies abscessus isolates (P < 0.05). Notably, use of oxazolidinones (DZD, SZD, LZD, or TZD) with BDQ against MABC isolates led to reduction of the oxazolidinone median MIC range from 4 to 0.125 µg/mL to 1-0.031 µg/mL. Conclusion These results demonstrated excellent BDQ inhibitory activity against MABC isolates. TZD exhibited stronger antimicrobial efficacy against MABC isolates as compared to efficacies of DZD, SZD, and LZD. Importantly, MICs of oxazolidinones were markedly decreased when they were combined with BDQ, thus suggesting that combinations of BDQ and oxazolidinones may be effective treatments for MABC infections.
Collapse
Affiliation(s)
- Tianhui Gao
- Department of Bacteriology and Immunology, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Cong Yao
- Department of Bacteriology and Immunology, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Yuanyuan Shang
- Department of Bacteriology and Immunology, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Renchun Su
- Department of Bacteriology and Immunology, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Xuxia Zhang
- Department of Bacteriology and Immunology, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Weicong Ren
- Department of Bacteriology and Immunology, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Wei Shu
- Clinical Center on Tuberculosis Control, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China
| | - Qi Li
- Clinical Center on Tuberculosis Control, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, People’s Republic of China,Correspondence: Qi Li; Yu Pang, Beijing Chest Hospital, Capital Medical University, No. 97, Machang, Tongzhou District, Beijing, 101149, People’s Republic of China, Tel/Fax +86 010 6954 6690; +86 10 8950 9366, Email ;
| |
Collapse
|
15
|
Zhang H, Hua W, Lin S, Zhang Y, Chen X, Wang S, Chen J, Zhang W. In vitro Susceptibility of Nontuberculous Mycobacteria to Tedizolid. Infect Drug Resist 2022; 15:4845-4852. [PMID: 36045871 PMCID: PMC9422992 DOI: 10.2147/idr.s362583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Nontuberculous mycobacteria (NTM) can cause pulmonary and extrapulmonary diseases. Tedizolid (TZD) is a new oxazolidinone with in vitro activity against NTM such as Mycobacterium avium complex (MAC), Mycobacterium fortuitum, and Mycobacterium abscessus complex. The aim of this study was to evaluate the TZD susceptibility profiles of clinical isolates of NTM. Methods The microdilution method was used to identify the minimum inhibitory concentration (MIC) of TZD and linezolid (LZD) for 133 clinical NTM isolates. Broth microdilution chequerboard assays were used to investigate the synergistic effects of TZD and three antibiotics on two reference isolates and eleven clinical isolates of NTM. Results The TZD MIC50 and MIC90 for M. abscessus complex were 2 and 4 μg/mL, 16 and >32 μg/mL for MAC, respectively. TZD exhibited lower MICs than that of LZD for most NTM, which were positively correlated. Due to the high MIC values of TZD against MAC, it is necessary to conduct drug sensitivity tests before TZD administration. TZD-clarithromycin combination had synergistic response on M. abscessus complex in 3 of the 8 isolates, which lasted only 3-5 days. TZD-cefoxitin had synergistic effect against all five M. fortuitum isolates. Conclusion Our study demonstrates that TZD had greater in vitro potency than LZD, and synergy studies suggested that TZD may be an important component of multi-drug treatment regimen.
Collapse
Affiliation(s)
- Huiyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Wenya Hua
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Siran Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yu Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xinchang Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Shiyong Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jiazhen Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Marfil E, Ruiz P, Martínez-Martínez L, Causse M. Comparative study of in vitro activity of tedizolid and linezolid against Mycobacterium avium complex. J Glob Antimicrob Resist 2022; 30:395-398. [PMID: 35863729 DOI: 10.1016/j.jgar.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES The aim of this study is to compare the in vitro activity and minimal inhibitory concentration (MIC) distributions of tedizolid and linezolid against Mycobacterium avium complex (MAC) strains using a reference broth microdilution assay and a macrodilution assay with the Bactec-MGIT-960. METHODS A total of 37 clinical isolates of MAC were included in the study. Reference broth microdilution was performed according to CLSI guidelines in a range of concentrations from 64 to 0.064 mg/L. Macrodilution was performed with the Bactec-MGIT-960 system. The cut-off points defined by CLSI for linezolid (resistant: > 16 mg/L, intermediate: 16 mg/L, susceptible: <16 mg/L) were used to define clinical categories of this drug. Essential agreement for both linezolid and tedizolid and categorical agreement for linezolid were defined following FDA criteria. RESULTS The MIC50 (16mg/L) and MIC90 (32mg/L) values for linezolid were identical with both methods. However, the MIC50 and MIC90 of tedizolid by microdilution (4 mg/L and 8 mg/L, respectively) were one twofold dilution higher than by macrodilution (2 mg/L and 4 mg/L, respectively). Ninety-four percent and 2.7% of the strains had MICs of tedizolid ≤4 mg/L and ≤ 0.5 mg/L, respectively, by the reference method. The linezolid macrodilution assay showed a categorical agreement of 40.5%, a minor error rate of 56.7% and a major error rate of 2.7% with respect to the reference method. CONCLUSIONS Tedizolid showed higher in vitro activity than linezolid against the tested MAC isolates. Macrodilution using the BD Bactec-MGIT-960 system is a practical approach to determine the susceptibility of MAC strains to tedizolid.
Collapse
Affiliation(s)
- Eduardo Marfil
- Microbiology Unit, University Hospital Reina Sofía, Cordoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Pilar Ruiz
- Department of Agricultural Chemistry, Soil Science and Microbiology, University of Córdoba, Córdoba, Spain
| | - Luis Martínez-Martínez
- Microbiology Unit, University Hospital Reina Sofía, Cordoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain.
| | - Manuel Causse
- Microbiology Unit, University Hospital Reina Sofía, Cordoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| |
Collapse
|
17
|
Wang K, Chen Y, Wang S, Zhang Q. A convenient synthesis of linezolid through Buchwald-Hartwig amination. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Correction of thrombocytopenia caused by linezolid with scheduled sequential tedizolid use in patients with vertebral osteomyelitis by antibiotic resistant Gram-positive organisms. J Infect Chemother 2022; 28:1023-1028. [PMID: 35477667 DOI: 10.1016/j.jiac.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/16/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Because of thrombocytopenia, linezolid treatment tends to be stopped before the completion of therapy for complicated infections that require prolonged antimicrobial administration. In contrast, tedizolid shows a favorable hematologic profile. The primary end-point of this study was to evaluate the efficacy of switching treatment to tedizolid in patients who developed thrombocytopenia during linezolid therapy. METHODS This retrospective study was conducted in patients with vertebral osteomyelitis (VO) caused by antibiotic-resistant Gram-positive bacteria. Treatment failure was defined as the reappearance of infection signs within 2 weeks after stopping tedizolid and discontinuation of tedizolid because of continued thrombocytopenia or other adverse effects. RESULTS Eight patients with native VO (n = 3) and postoperative VO (n = 5) were included in the study. The causative organisms were MRSA in all patients except one. Platelet counts decreased from 35.2 ± 11.5 × 104/mm3 to 17.8 ± 6.2 × 104/mm3 during linezolid therapy and improved without washout period in all patients after switching to tedizolid on days 5-7 (28.6 ± 4.9 × 104/mm3, p = 0.002). Tedizolid therapy was completed and treatment failure was not observed in any patient. The duration of treatment was 20.0 ± 11.2 days for linezolid and 30.3 ± 9.5 days for tedizolid (total, 50.3 ± 10.7 days). One patient died because of underlying disease, and there was no recurrence in the remaining 7 patients (median follow-up 501 days). CONCLUSIONS Switching therapy to tedizolid improved thrombocytopenia that occurred during linezolid therapy, and it enabled the completion of therapy for VO patients.
Collapse
|
19
|
Aono A, Murase Y, Chikamatsu K, Igarashi Y, Shimomura Y, Hosoya M, Osugi A, Morishige Y, Takaki A, Yamada H, Mitarai S. In vitro activity of tedizolid and linezolid against multidrug-resistant Mycobacterium tuberculosis: a comparative study using microdilution broth assay and genomics. Diagn Microbiol Infect Dis 2022; 103:115714. [DOI: 10.1016/j.diagmicrobio.2022.115714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2022] [Accepted: 04/15/2022] [Indexed: 12/01/2022]
|
20
|
Sato Y, Takekuma Y, Daisho T, Kashiwagi H, Imai S, Sugawara M. Development of a Method of Liquid Chromatography Coupled with Tandem Mass Spectrometry for Simultaneous Determination of Linezolid and Tedizolid in Human Plasma. Biol Pharm Bull 2022; 45:421-428. [DOI: 10.1248/bpb.b21-00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuki Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Yoh Takekuma
- Department of Pharmacy, Hokkaido University Hospital
| | | | | | - Shungo Imai
- Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Mitsuru Sugawara
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University
| |
Collapse
|
21
|
Tsai K, Stojković V, Lee DJ, Young ID, Szal T, Klepacki D, Vázquez-Laslop N, Mankin AS, Fraser JS, Fujimori DG. Structural basis for context-specific inhibition of translation by oxazolidinone antibiotics. Nat Struct Mol Biol 2022; 29:162-171. [DOI: 10.1038/s41594-022-00723-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/05/2022] [Indexed: 01/02/2023]
|
22
|
Bokhtia RM, Girgis AS, Ibrahim TS, Rasslan F, Nossier ES, Barghash RF, Sakhuja R, Abdel-Aal EH, Panda SS, Al-Mahmoudy AMM. Synthesis, Antibacterial Evaluation, and Computational Studies of a Diverse Set of Linezolid Conjugates. Pharmaceuticals (Basel) 2022; 15:191. [PMID: 35215303 PMCID: PMC8880098 DOI: 10.3390/ph15020191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
The development of new antibiotics to treat multidrug-resistant (MDR) bacteria or possess broad-spectrum activity is one of the challenging tasks. Unfortunately, there are not many new antibiotics in clinical trials. So, the molecular hybridization approach could be an effective strategy to develop potential drug candidates using the known scaffolds. We synthesized a total of 31 diverse linezolid conjugates 3, 5, 7, 9, 11, 13, and 15 using our established benzotriazole chemistry with good yield and purity. Some of the synthesized conjugates exhibited promising antibacterial properties against different strains of bacteria. Among all the synthesized compounds, 5d is the most promising antibacterial agent with MIC 4.5 µM against S. aureus and 2.25 µM against B. subtilis. Using our experimental data pool, we developed a robust QSAR (R2 = 0.926, 0.935; R2cvOO = 0.898, 0.915; R2cvMO = 0.903, 0.916 for the S. aureus and B. subtilis models, respectively) and 3D-pharmacophore models. We have also determined the drug-like properties of the synthesized conjugates using computational tools. Our findings provide valuable insight into the possible linezolid-based antibiotic drug candidates.
Collapse
Affiliation(s)
- Riham M. Bokhtia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (E.H.A.-A.); (A.M.M.A.-M.)
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (A.S.G.); (R.F.B.)
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Fatma Rasslan
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al Azhar University, Cairo 11651, Egypt;
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Reham F. Barghash
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt; (A.S.G.); (R.F.B.)
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India;
| | - Eatedal H. Abdel-Aal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (E.H.A.-A.); (A.M.M.A.-M.)
| | - Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| | - Amany M. M. Al-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (R.M.B.); (E.H.A.-A.); (A.M.M.A.-M.)
| |
Collapse
|
23
|
Matsumoto K, Kitabayashi R, Fukuchi N, Suka N. Preparation of Optically Active Biphenyl Compounds via an Albumin-
Mediated Asymmetric Nitroaldol Reaction. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210531093928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Human serum albumin (HSA) was found to catalyze the asymmetric nitroaldol reaction
of biphenyl aldehydes with nitromethane to afford the corresponding optically active 2-nitro alcohols.
Careful optimization of the conditions for the reaction of 4-phenylbenzaldehyde with nitromethane
in water at a neutral pH improved both the reactivity and the enantioselectivity. Finally, the
reaction of 4-phenylbenzaldehyde (56 mg, 0.30 mmol) in nitromethane (2.8 mL) and water (1.1
mL) using HSA (68 mg) at 5 °C for 240 h gave (R)-1-([1,1'-biphenyl]-4-yl)-2-nitroethanol in 71%
yield (52 mg), with an ee up to 85% ee. Subsequent recrystallization improved the ee up to 95%.
The reaction was useful in a preparative-scale operation, and the biocatalyst could be reused several
times. The procedure was also applicable to other substrates with different substitution patterns.
Although the nitroaldol reaction of 2-phenylbenzaldehyde with nitromethane proceeded with low
enantioselectivity to afford the corresponding (R)-2-nitroalcohols (35% ee), the reactions of the
substrates bearing Br, Me, OMe, or CN group at the 4'-position of the benzene ring gave the corresponding
optically active compounds with high enantioselectivities (80-88% ee).
Collapse
Affiliation(s)
- Kazutsugu Matsumoto
- Department of Chemistry and Life Science, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | - Ryota Kitabayashi
- Department of Chemistry and Life Science, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | - Naoki Fukuchi
- Department of Chemistry and Life Science, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| | - Noriyuki Suka
- Department of Chemistry and Life Science, Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
| |
Collapse
|
24
|
Bassetti M, Mularoni A, Giacobbe DR, Castaldo N, Vena A. New Antibiotics for Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia. Semin Respir Crit Care Med 2022; 43:280-294. [PMID: 35088403 DOI: 10.1055/s-0041-1740605] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) represent one of the most common hospital-acquired infections, carrying a significant morbidity and risk of mortality. Increasing antibiotic resistance among the common bacterial pathogens associated with HAP and VAP, especially Enterobacterales and nonfermenting gram-negative bacteria, has made the choice of empiric treatment of these infections increasingly challenging. Moreover, failure of initial empiric therapy to cover the causative agents associated with HAP and VAP has been associated with worse clinical outcomes. This review provides an overview of antibiotics newly approved or in development for the treatment of HAP and VAP. The approved antibiotics include ceftobiprole, ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, and cefiderocol. Their major advantages include their high activity against multidrug-resistant gram-negative pathogens.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Alessandra Mularoni
- Department of Infectious Diseases, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS), Palermo, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nadia Castaldo
- Division of Infectious Diseases, Department of Medicine, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy.,Department of Pulmonology, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
25
|
Qekwana DN, Odoi A, Oguttu JW. Efficacy Profiles of Antimicrobials Evaluated against Staphylococcus Species Isolated from Canine Clinical Specimens. Animals (Basel) 2021; 11:ani11113232. [PMID: 34827963 PMCID: PMC8614345 DOI: 10.3390/ani11113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Clinical cases associated with staphylococci infections are common among dogs and cats. There is evidence to suggest that staphylococci infections are increasingly becoming unresponsive to commonly used antimicrobials. This negatively impacts the ability of these infections to be treated successfully. Although resistance among these organisms has been linked to several factors, including sharing the same mechanism of action or belonging to the same group, there is evidence to suggest that cross resistance can occur between unrelated antimicrobials. The findings of this study not only confirm that antimicrobials that belong to the same group share the same mechanism of resistance and similar antimicrobial efficacy against staphylococcal infections, but also show that cross resistance occurs between unrelated antimicrobials. This should be taken into consideration when selecting antimicrobials for inclusion in the susceptibility testing panel as well as for the treatment of staphylococci infections. Abstract Cross-resistance occurs between antimicrobials with either similar mechanisms of action and/or similar chemical structures, or even between unrelated antimicrobials. This study employed a multivariate approach to investigate the associations between the efficacy profile of antimicrobials and the clustering of eleven different antimicrobial agents based on their efficacy profile. Records of the susceptibility of 382 confirmed Staphylococcus species isolates against 15 antimicrobials based on the disc diffusion method were included in this study. Tetrachoric correlation coefficients were computed to assess the correlations of antimicrobial efficacy profiles against Staphylococcus aureus. Principal components analysis and factor analysis were used to assess the clustering of antimicrobial susceptibility profiles. Strong correlations were observed among aminoglycosides, penicillins, fluroquinolones, and lincosamides. Three main factors were extracted, with Factor 1 dominated by the susceptibility profile of enrofloxacin (factor loading (FL) = 0.859), gentamicin (FL = 0.898), tylosin (FL = 0.801), and ampicillin (FL = −0.813). Factor 2, on the other hand, was dominated by the susceptibility profile of clindamycin (FL = 0.927) and lincomycin-spectinomycin (FL = 0.848) and co-trimazole (FL = −0.693). Lastly, Factor 3 was dominated by the susceptibility profile of amoxicillin-clavulanic acid (FL = 0.848) and cephalothin (FL = 0.824). Antimicrobials belonging to the same category or class of antimicrobial, tended to exhibit similar efficacy profiles, therefore, laboratories must choose only one of the antimicrobials in each group to help reduce the cost of antimicrobial susceptibility tests.
Collapse
Affiliation(s)
- Daniel Nenene Qekwana
- Section of Veterinary Public Health, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Correspondence:
| | - Agricola Odoi
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg 709, South Africa;
| |
Collapse
|
26
|
Zhao Q, Xin L, Liu Y, Liang C, Li J, Jian Y, Li H, Shi Z, Liu H, Cao W. Current Landscape and Future Perspective of Oxazolidinone Scaffolds Containing Antibacterial Drugs. J Med Chem 2021; 64:10557-10580. [PMID: 34260235 DOI: 10.1021/acs.jmedchem.1c00480] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The widespread use of antibiotics has made the problem of bacterial resistance increasingly serious, and the study of new drug-resistant bacteria has become the main direction of antibacterial drug research. Among antibiotics, the fully synthetic oxazolidinone antibacterial drugs linezolid and tedizolid have been successfully marketed and have achieved good clinical treatment effects. Oxazolidinone antibacterial drugs have good pharmacokinetic and pharmacodynamic characteristics and unique antibacterial mechanisms, and resistant bacteria are sensitive to them. This Perspective focuses on reviewing oxazolidinones based on the structural modification of linezolid and new potential oxazolidinone drugs in the past 10 years, mainly describing their structure, antibacterial activity, safety, druggability, and so on, and discusses their structure-activity relationships, providing insight into the reasonable design of safer and more potent oxazolidinone antibacterial drugs.
Collapse
Affiliation(s)
- Qianqian Zhao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Liang Xin
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Xi'an Xuri Shengchang Pharmaceutical Technology Co., Ltd., High-tech Zone, Xi'an 710075, P. R. China
| | - Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yanlin Jian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Zhenfeng Shi
- Department of Urology Surgery Center, Xinjiang Uyghur People's Hospital, Urumqi 830002, P. R. China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, P. R. China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, P. R. China
| |
Collapse
|
27
|
Roch M, Varela MC, Taglialegna A, Rosato AE. Tedizolid is a promising antimicrobial option for the treatment of Staphylococcus aureus infections in cystic fibrosis patients. J Antimicrob Chemother 2021; 75:126-134. [PMID: 31617901 DOI: 10.1093/jac/dkz418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tedizolid is a protein synthesis inhibitor in clinical use for the treatment of Gram-positive infections. Pulmonary MRSA infections are a growing problem in patients with cystic fibrosis (CF) and the efficacy of tedizolid-based therapy in CF pulmonary infections is unknown. OBJECTIVES To evaluate the in vitro and in vivo activity of tedizolid and predict the likelihood of tedizolid resistance selection in CF-background Staphylococcus aureus strains. METHODS A collection of 330 S. aureus strains (from adult and paediatric patients), either of normal or small colony variant (SCV) phenotypes, gathered at three CF centres in the USA was used. Tedizolid activity was assessed by broth microdilution, Etest and time-kill analysis. In vivo tedizolid efficacy was tested in a murine pneumonia model. Tedizolid in vitro mutants were obtained by 40 days of exposure and progressive passages. Whole genome sequencing of clinical S. aureus strains with reduced susceptibility to tedizolid was performed. RESULTS MRSA strain MIC90s were tedizolid 0.12-0.25 mg/L and linezolid 1-2 mg/L; for MSSA strains, MIC90s were tedizolid 0.12 mg/L and linezolid 1-2 mg/L. Two strains, WIS 441 and Seattle 106, with tedizolid MICs of 2 mg/L and 1 mg/L, respectively, had MICs above the FDA tedizolid breakpoint (0.5 mg/L). Tedizolid at free serum concentrations exhibited a bacteriostatic effect. Mean bacterial burdens in lungs (log10 cfu/g) for WIS 423-infected mice were: control, 11.2±0.5; tedizolid-treated (10 mg/kg), 3.40±1.87; linezolid-treated (40 mg/kg), 4.51±2.1; and vancomycin-treated (30 mg/kg), 5.21±1.93. For WIS 441-infected mice the (log10 cfu/g) values were: control, 9.66±0.8; tedizolid-treated, 3.18±1.35; linezolid-treated 5.94±2.19; and vancomycin-treated, 4.35±1.7. CONCLUSIONS These results suggest that tedizolid represents a promising therapeutic option for the treatment of CF-associated MRSA/MSSA infections, having potent in vivo activity and low resistance potential.
Collapse
Affiliation(s)
- Melanie Roch
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Maria Celeste Varela
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Agustina Taglialegna
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Adriana E Rosato
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
28
|
Makarov GI, Reshetnikova RV. Investigation of radezolid interaction with non-canonical chloramphenicol binding site by molecular dynamics simulations. J Mol Graph Model 2021; 105:107902. [PMID: 33798835 DOI: 10.1016/j.jmgm.2021.107902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Radezolid is a promising antibiotic of oxazolidinone family, which is able to overcome effect of some linezolid resistance mechanisms of bacterial ribosomes. The structure of the radezolid complex with ribosomes was never published but, by analogy with linezolid, it is considered to prevent the binding of aminoacyl-tRNA to the A-site of the ribosome large subunit. However, as with linezolid, it can be assumed that radezolid binds to the alternative binding site existing in the A,A/P,P-ribosome. In the present article we have investigated this issue by molecular dynamics simulations and proposed the structure of the radezolid complex with a E. coli ribosome, which is consistent with available data of biochemical investigations of radezolid action.
Collapse
Affiliation(s)
- G I Makarov
- South Ural State University, 454080, Chelyabinsk, Russia.
| | | |
Collapse
|
29
|
Pipaliya BV, Seth K, Chakraborti AK. Ruthenium (II) Catalyzed C(sp 2 )-H Bond Alkenylation of 2-Arylbenzo[d]oxazole and 2-Arylbenzo[d]thiazole with Unactivated Olefins. Chem Asian J 2021; 16:87-96. [PMID: 33230945 DOI: 10.1002/asia.202001304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Indexed: 01/10/2023]
Abstract
Functionalization of the bio-relevant heterocycles 2-arylbenzo[d]oxazole and 2-arylbenzo[d]thiazole has been achieved through Ru(II)-catalyzed alkenylation with unactivated olefins leading to selective formation of the mono-alkenylated products. This approach has a broad substrate scope with respect to the coupling partners, affords high yields, and works for gram scale synthesis using a readily available Ru-based catalyst. Mechanistic studies reveal a C-H activation pathway for the dehydrogenative coupling leading to the alkenylation. However, the results of the ESI-MS-guided deuterium kinetic isotope effect studies indicate that the C-H activation stage may not be the rate-determining step of the reaction. The use of a radical scavenging agent such as TEMPO did not show any detrimental effect on the reaction outcome, eliminating the possibility of the involvement of a free-radical pathway.
Collapse
Affiliation(s)
- Bhavin V Pipaliya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India
| | - Kapileswar Seth
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India
| | - Asit K Chakraborti
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S., Nagar, Punjab, 160062, India.,Department of Chemistry, S. S. Bhatnagar Building, Main Campus, Indian Institute of Technology (IIT), Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
30
|
Fostier CR, Monlezun L, Ousalem F, Singh S, Hunt JF, Boël G. ABC-F translation factors: from antibiotic resistance to immune response. FEBS Lett 2020; 595:675-706. [PMID: 33135152 DOI: 10.1002/1873-3468.13984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Energy-dependent translational throttle A (EttA) from Escherichia coli is a paradigmatic ABC-F protein that controls the first step in polypeptide elongation on the ribosome according to the cellular energy status. Biochemical and structural studies have established that ABC-F proteins generally function as translation factors that modulate the conformation of the peptidyl transferase center upon binding to the ribosomal tRNA exit site. These factors, present in both prokaryotes and eukaryotes but not in archaea, use related molecular mechanisms to modulate protein synthesis for heterogenous purposes, ranging from antibiotic resistance and rescue of stalled ribosomes to modulation of the mammalian immune response. Here, we review the canonical studies characterizing the phylogeny, regulation, ribosome interactions, and mechanisms of action of the bacterial ABC-F proteins, and discuss the implications of these studies for the molecular function of eukaryotic ABC-F proteins, including the three human family members.
Collapse
Affiliation(s)
- Corentin R Fostier
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Laura Monlezun
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Farès Ousalem
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| | - Shikha Singh
- Department of Biological Sciences, 702A Sherman Fairchild Center, Columbia University, New York, NY, USA
| | - John F Hunt
- Department of Biological Sciences, 702A Sherman Fairchild Center, Columbia University, New York, NY, USA
| | - Grégory Boël
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
31
|
Michalska K, Widyńska W, Bus K, Bocian W, Tyski S. The solution and solid-state degradation study followed by identification of tedizolid related compounds in medicinal product by high performance liquid chromatography with diode array and tandem mass spectrometry detection. J Pharm Biomed Anal 2020; 194:113783. [PMID: 33280994 DOI: 10.1016/j.jpba.2020.113783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/27/2022]
Abstract
The aim of the study was to investigate the intrinsic stability and to identify potential degradation products of tedizolid disodium phosphate (TED-OPO3Na2), which belongs to the antimicrobial agents of the oxazolidinone class. Tedizolid, as disodium phosphate (prodrug), is registered under the trade name SIVEXTRO®, at a dose of 200 mg, in the form of powder for injection or infusion. The stability-indicating assay method was optimised using HPLC with diode array detection and with electrospray ionisation time-of-flight mass spectrometry. In solution-state studies, the forced decomposition of TED-OPO3Na2 carried out under acidic, basic, oxidative, photocatalytic, and thermal conditions revealed the lability of TED-OPO3Na2 to acidic, basic, and photocatalytic (UV) conditions, while it was relatively stable in oxidative conditions and during thermolysis processes. The kinetics of degradation and shelf-life values in solution-state studies were determined, and activation energies were calculated for alkaline and thermolytic degradation. In contrast, in the solid state degradation study, TED-OPO3Na2 was stable under thermal conditions at high humidity and in visible light, while moderate degradation was observed under thermal conditions of low humidity and ultraviolet light. The developed method enabled the identification of 12 new degradation products and 3 new by-products.
Collapse
Affiliation(s)
- Katarzyna Michalska
- Department of Synthetic Drugs, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland.
| | - Weronika Widyńska
- Department of Antibiotic and Microbiology, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Katarzyna Bus
- Spectrometric Methods Laboratory, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Wojciech Bocian
- Department of Counterfeit Medicinal Products and Drugs, National Medicines Institute, Chełmska 30/34, 00-725, Warsaw, Poland
| | - Stefan Tyski
- Department of Antibiotic and Microbiology, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; Department of Pharmaceutical Microbiology, Medical University of Warsaw, Oczki 3, 02-007 Warsaw, Poland
| |
Collapse
|
32
|
Mori M, Takase A. [Pharmacological action and clinical effect of tedizolid phosphate (SIVEXTRO ® Tablets 200 mg, for iv infusion 200 mg), a novel oxazolidinone-class antibacterial drug]. Nihon Yakurigaku Zasshi 2020; 155:332-339. [PMID: 32879176 DOI: 10.1254/fpj.20013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Tedizolid, a novel oxazolidinone antibacterial agent, is a protein synthesis inhibitor that acts on bacterial ribosomes to inhibit initiation of translation. Tedizolid phosphate, a prodrug of tedizolid, is rapidly converted to the active form of tedizolid by phosphatase after administration. Tedizolid has antimicrobial activity mainly against gram-positive pathogens, and generally shows 4-8 times stronger in vitro activity than linezolid, an oxazolidinone antibacterial agent. Tedizolid has antimicrobial activity against Staphylococcus aureus (S. aureus) regardless of being methicillin-resistant or susceptible, with 90% minimum inhibitory concentrations (MIC90) ranging from 0.25-0.5 μg/mL. Although antimicrobial activity of tedizolid against linezolid-resistant S. aureus (LRSA) is generally reduced, tedizolid is still active to LRSA whose linezolid resistance is caused by cfr gene. Structure-activity relationship analysis suggests that the C-5 hydroxymethyl group, the C-ring pyridine, and the D-ring tetrazole group of tedizolid are associated with enhanced antimicrobial activity of tedizolid and its antimicrobial activity against linezolid-resistant bacteria by the cfr gene. Frequency of spontaneous resistance mutation to tedizolid is low, and about 16-fold lower than that to linezolid. Pharmacokinetic/pharmacodynamic (PK/PD) parameter most related to the efficacy of tedizolid is the area under free drug concentration-time curve/minimum inhibitory concentration (fAUC/MIC), and fAUC/MIC value required for bacteriostasis under immunocompetent conditions was calculated to be three. Phase III studies of tedizolid phosphate were conducted in Japan and overseas countries and demonstrated its efficacy and safety in patients with skin and soft tissue infections caused by gram positive organisms including methicillin-resistant S. aureus (MRSA).
Collapse
Affiliation(s)
- Masahiko Mori
- Non-clinical Development, Regulatory Affairs, Japan Development, MSD K.K
| | - Akiko Takase
- Infectious Diseases, Clinical Research, Japan Development, MSD K.K
| |
Collapse
|
33
|
Carena AA, Stryjewski ME. Tedizolid (torezolid) for the treatment of complicated skin and skin structure infections. Expert Rev Clin Pharmacol 2020; 13:577-592. [PMID: 32449440 DOI: 10.1080/17512433.2020.1774362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Acute bacterial skin and skin structure infections (ABSSSI) are among the most frequent infectious diseases. Recently, several new antibiotics with activity against MRSA have been approved. Tedizolid, a second-generation oxazolidinone approved for ABSSSI offers theoretical advantages over first-generation oxazolidinones. AREAS COVERED A comprehensive online search of Medline, ClinicalTrials.gov, and conference presentations was made, selecting articles between January 2000 and April 2020. In this review, the authors discuss the chemical and microbiological properties of tedizolid, summarize its efficacy, safety, and potential role in the treatment of ABSSSI as well as the potential for future indications. EXPERT OPINION Tedizolid has proven to be non-inferior compared to linezolid for the treatment of ABSSSI in two registrational phase III clinical trials, being well tolerated. Tedizolid exhibits antibacterial activity against the most important ABSSSI pathogens (including multidrug-resistant strains of MRSA), as well as mycobacteria and Nocardia. It appears to have a safe profile, including decreased myelotoxicity and no significant drug interactions. Preliminary studies with longer duration of therapy seem to confirm these potential benefits. Overall, tedizolid expands the newly acquired armamentarium to treat ABSSSI. The role of tedizolid for other indications is under investigation and has yet to be determined.
Collapse
Affiliation(s)
- Alberto A Carena
- Division of Infectious Diseases, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC) , Buenos Aires, Argentina.,Department of Medicine, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC) , Buenos Aires, Argentina
| | - Martin E Stryjewski
- Division of Infectious Diseases, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC) , Buenos Aires, Argentina.,Department of Medicine, Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC) , Buenos Aires, Argentina
| |
Collapse
|
34
|
Antibiotic Resistance by Enzymatic Modification of Antibiotic Targets. Trends Mol Med 2020; 26:768-782. [PMID: 32493628 DOI: 10.1016/j.molmed.2020.05.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 11/21/2022]
Abstract
Antibiotic resistance remains a significant threat to modern medicine. Modification of the antibiotic target is a resistance strategy that is increasingly prevalent among pathogens. Examples include resistance to glycopeptide and polymyxin antibiotics that occurs via chemical modification of their molecular targets in the cell envelope. Similarly, many ribosome-targeting antibiotics are impaired by methylation of the rRNA. In these cases, the antibiotic target is subjected to enzymatic modification rather than genetic mutation, and in many instances the resistance enzymes are readily mobilized among pathogens. Understanding the enzymes responsible for these modifications is crucial to combat resistance. Here, we review our current understanding of enzymatic modification of antibiotic targets as well as discuss efforts to combat these resistance mechanisms.
Collapse
|
35
|
Abad L, Tafani V, Tasse J, Josse J, Chidiac C, Lustig S, Ferry T, Diot A, Laurent F, Valour F. Evaluation of the ability of linezolid and tedizolid to eradicate intraosteoblastic and biofilm-embedded Staphylococcus aureus in the bone and joint infection setting. J Antimicrob Chemother 2020; 74:625-632. [PMID: 30517641 DOI: 10.1093/jac/dky473] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Prolonged use of linezolid for bone and joint infection (BJI) is limited by its long-term toxicity. The better safety profile of tedizolid, a recently developed oxazolidinone, could offer an alternative. However, its efficacy against biofilm-embedded and intracellular Staphylococcus aureus, the two main bacterial reservoirs associated with BJI chronicity, is unknown. METHODS Using three S. aureus strains (6850 and two clinical BJI isolates), linezolid and tedizolid were compared regarding their ability: (i) to target the S. aureus intracellular reservoir in an in vitro model of osteoblast infection, using three concentrations increasing from the bone concentration reached with standard therapeutic doses (Cbone = 2.5 × MIC; Cplasm = 10 × MIC; Cmax = 40 × MIC); (ii) to eradicate mature biofilm [minimal biofilm eradication concentration (MBEC)]; and (iii) to prevent biofilm formation [biofilm MIC (bMIC) and confocal microscopy]. RESULTS Linezolid and tedizolid weakly reduced the intracellular inoculum of S. aureus in a strain-dependent manner despite the similar MICs for the tested strains, but improved cell viability even in the absence of an intracellular bactericidal effect. Conversely, linezolid and tedizolid were ineffective in eradicating mature biofilm formed in vitro, with MBEC >2000 and >675 mg/L, respectively. bMICs of tedizolid were 4-fold lower than those of linezolid for all strains. CONCLUSIONS Linezolid and tedizolid alone are not optimal candidates to target bacterial phenotypes associated with chronic forms of BJI. Despite weak intracellular activity, they both reduce infection-related cytotoxicity, suggesting a role in modulating intracellular expression of staphylococcal virulence factors. Although inactive against biofilm-embedded S. aureus, both-but particularly tedizolid-are able to prevent biofilm formation.
Collapse
Affiliation(s)
- Lélia Abad
- CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Regional Reference Centre for Complex Bone and Joint Infection (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Department of Bacteriology, Institute for Infectious Agents, Hospices Civils de Lyon, Lyon, France
| | - Virginie Tafani
- CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Jason Tasse
- CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Jérôme Josse
- CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Christian Chidiac
- CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Regional Reference Centre for Complex Bone and Joint Infection (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France
| | - Sébastien Lustig
- Regional Reference Centre for Complex Bone and Joint Infection (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Department of Orthopaedic Surgery, Hospices Civils de Lyon, Lyon, France
| | - Tristan Ferry
- CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Regional Reference Centre for Complex Bone and Joint Infection (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France
| | - Alan Diot
- CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Frédéric Laurent
- CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Regional Reference Centre for Complex Bone and Joint Infection (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Department of Bacteriology, Institute for Infectious Agents, Hospices Civils de Lyon, Lyon, France
| | - Florent Valour
- CIRI - Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Regional Reference Centre for Complex Bone and Joint Infection (CRIOAc Lyon), Hospices Civils de Lyon, Lyon, France.,Université Claude Bernard Lyon 1, Lyon, France.,Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
36
|
Kosecka-Strojek M, Sadowy E, Gawryszewska I, Klepacka J, Tomasik T, Michalik M, Hryniewicz W, Miedzobrodzki J. Emergence of linezolid-resistant Staphylococcus epidermidis in the tertiary children's hospital in Cracow, Poland. Eur J Clin Microbiol Infect Dis 2020; 39:1717-1725. [PMID: 32350737 PMCID: PMC7427702 DOI: 10.1007/s10096-020-03893-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 04/01/2020] [Indexed: 11/26/2022]
Abstract
Coagulase-negative staphylococci, ubiquitous commensals of human skin, and mucous membranes represent important pathogens for immunocompromised patients and neonates. The increasing antibiotic resistance among Staphylococcus epidermidis is an emerging problem worldwide. In particular, the linezolid-resistant S. epidermidis (LRSE) strains are observed in Europe since 2014. The aim of our study was to genetically characterize 11 LRSE isolates, recovered mostly from blood in the University Children’s Hospital in Krakow, Poland, between 2015 and 2017. For identification of the isolates at the species level, we used 16S rRNA sequencing and RFLP of the saoC gene. Isolates were characterized phenotypically by determining their antimicrobial resistance patterns and using molecular methods such as PFGE, MLST, SCCmec typing, detection of the ica operon, and analysis of antimicrobial resistance determinants. All isolates were multidrug-resistant, including resistance to methicillin, and exhibited so-called PhLOPSA phenotype. In PFGE, all isolates (excluding one from a catheter) represented identical patterns, were identified as ST2, and harbored the ica operon, responsible for biofilm formation. Linezolid resistance was associated with acquisition of A157R mutation in the ribosomal protein L3 and the presence of cfr gene. All isolates revealed new SCCmec cassette element composition. Recently, pediatric patients with serious staphylococcal infections are often treated with linezolid. The increasing linezolid resistance in bacterial strains becomes a real threat for patients, and monitoring such infections combined with surveillance and infection prevention programs is very important to decrease number of linezolid-resistant staphylococcal strains.
Collapse
Affiliation(s)
- Maja Kosecka-Strojek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Iwona Gawryszewska
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland
| | - Joanna Klepacka
- Department of Clinical Microbiology, Children's University Hospital, Jagiellonian University, Krakow, Poland
| | - Tomasz Tomasik
- Department of Clinical Microbiology, Children's University Hospital, Jagiellonian University, Krakow, Poland
| | | | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Jacek Miedzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
37
|
Zheng J, Chen Z, Lin Z, Sun X, Bai B, Xu G, Chen J, Yu Z, Qu D. Radezolid Is More Effective Than Linezolid Against Planktonic Cells and Inhibits Enterococcus faecalis Biofilm Formation. Front Microbiol 2020; 11:196. [PMID: 32117185 PMCID: PMC7033516 DOI: 10.3389/fmicb.2020.00196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/28/2020] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to compare the effects of radezolid and linezolid on planktonic and biofilm cells of Enterococcus faecalis. A total of 302 E. faecalis clinical isolates were collected, and the minimum inhibitory concentrations (MICs) of radezolid and linezolid were determined by the agar dilution method. Changes in the transcriptome of a high-level, in vitro-induced linezolid-resistant isolate were assessed by RNA sequencing and RT-qPCR, and the roles of efflux pump-related genes were confirmed by overexpression analysis. Biofilm biomass was evaluated by crystal violet staining and the adherent cells in the biofilms were quantified according to CFU numbers. The MIC50/MIC90 values of radezolid (0.25/0.50 mg/L) against the 302 E. faecalis clinical isolates were eightfold lower than those of linezolid (2/4 mg/L). The radezolid MICs against the high-level linezolid-resistant isolates (linezolid MICs ≥ 64 mg/L) increased to ≥ 4 mg/L with mutations in the four copies of the V domain of the 23S rRNA gene. The mRNA expression level of OG1RF_12220 (mdlB2, multidrug ABC superfamily ATP-binding cassette transporter) increased in the high-level linezolid-resistant isolates, and radezolid and linezolid MICs against the linezolid-sensitive isolate increased with overexpression of OG1RF_12220. Radezolid (at 1/4 or 1/8× the MIC) inhibited E. faecalis biofilm formation to a greater extent than linezolid, which was primarily achieved through the inhibition of ahrC, esp, relA, and relQ transcription in E. faecalis. In conclusion, radezolid is more effective than linezolid against planktonic E. faecalis cells and inhibits biofilm formation by this bacterium.
Collapse
Affiliation(s)
- Jinxin Zheng
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhong Chen
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhiwei Lin
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiang Sun
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Bing Bai
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Guangjian Xu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Junwen Chen
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
38
|
Othman AA, Kihel M, Amara S. 1,3,4-Oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole derivatives as potential antibacterial agents. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
Bassetti M, Carnelutti A, Castaldo N, Peghin M. Important new therapies for methicillin-resistant Staphylococcus aureus. Expert Opin Pharmacother 2019; 20:2317-2334. [PMID: 31622115 DOI: 10.1080/14656566.2019.1675637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction: Methicillin-resistant Staphylococcus aureus (MRSA) infections represent a leading cause of infection-related morbidity and mortality worldwide. There has been a welcome increase in the number of agents available for the treatment of MRSA infection over the last decade and several clinical trials are currently investigating the role of new experimental strategies.Areas covered: The purpose of this manuscript is to review the efficacy and safety of recently approved anti-MRSA molecules as well as some newer agents currently under investigation with a specific focus on the potential role of these drugs in everyday clinical practice.Expert opinion: Many new drugs with an activity against MRSA have been recently approved or are in an advanced stage of development. All these compounds represent promising options to enhance our antibiotic armamentarium. However, data regarding the use of these new compounds in real-life terms are limited and their best placement in therapy and in terms of optimization of medical resources and balance of cost-effectiveness requires further investigation.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences, Infectious Disease Clinic, University of Genoa and Hospital Policlinico San Martino-IRCCS, Genoa, Italy
| | - Alessia Carnelutti
- Department of Medicine, Infectious Disease Clinic, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Nadia Castaldo
- Department of Medicine, Infectious Disease Clinic, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Maddalena Peghin
- Department of Medicine, Infectious Disease Clinic, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| |
Collapse
|
40
|
Bassetti M, Castaldo N, Carnelutti A, Peghin M, Giacobbe DR. Tedizolid phosphate for the treatment of acute bacterial skin and skin-structure infections: an evidence-based review of its place in therapy. CORE EVIDENCE 2019; 14:31-40. [PMID: 31308835 PMCID: PMC6615724 DOI: 10.2147/ce.s187499] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
Introduction Tedizolid phosphate is an oxazolidinone approved for the treatment of acute bacterial skin and skin-structure infections (ABSSSIs) and active against methicillin-resistant Staphylococcus aureus. Aims The objective of this article was to review the evidence for the efficacy and safety of tedizolid phosphate for the treatment of ABSSSI. Evidence review Approval of tedizolid phosphate for the treatment of ABSSSI was based on the results of two phase III randomized controlled trials, ESTABLISH-1 (NCT01170221) and ESTABLISH-2 (NCT01421511), comparing 6-day once-daily tedizolid vs 10-day twice-daily linezolid. In ESTABLISH-1, noninferiority was met with early clinical response rates of 79.5% and 79.4% in tedizolid and linezolid groups, respectively (difference 0.1%, 95% CI –6.1% to 6.2%, with a 10% noninferiority margin). In ESTABLISH-2, noninferiority was met with 85% and 83% rates of early clinical response in tedizolid and linezolid groups, respectively (difference 2.6%, 95% CI –3.0% to 8.2%). Pooled data from ESTABLISH-1 and ESTABLISH-2 indicated a lower frequency of thrombocytopenia in tedizolid-treated than in linezolid-treated patients. Conclusion Tedizolid offers the option of an intravenous to oral switch, allows once-daily administration, and presents lower risk of myelotoxicity when a 6-day course is used for the treatment of ABSSSI. Greater economic cost associated with this antibiotic could be offset by its shorter treatment duration and possibility of oral administration in routine clinical practice, although either sponsored or nonsponsored postmarketing observational experience remains essential for ultimately confirming the effectiveness and tolerability of tedizolid outside clinical trials.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Nadia Castaldo
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Alessia Carnelutti
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Maddalena Peghin
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | | |
Collapse
|
41
|
Popova EA, Trifonov RE, Ostrovskii VA. Tetrazoles for biomedicine. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4864] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Structural basis of translation inhibition by cadazolid, a novel quinoxolidinone antibiotic. Sci Rep 2019; 9:5634. [PMID: 30948752 PMCID: PMC6449356 DOI: 10.1038/s41598-019-42155-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023] Open
Abstract
Oxazolidinones are synthetic antibiotics used for treatment of infections caused by Gram-positive bacteria. They target the bacterial protein synthesis machinery by binding to the peptidyl transferase centre (PTC) of the ribosome and interfering with the peptidyl transferase reaction. Cadazolid is the first member of quinoxolidinone antibiotics, which are characterized by combining the pharmacophores of oxazolidinones and fluoroquinolones, and it is evaluated for treatment of Clostridium difficile gastrointestinal infections that frequently occur in hospitalized patients. In vitro protein synthesis inhibition by cadazolid was shown in Escherichia coli and Staphylococcus aureus, including an isolate resistant against linezolid, the prototypical oxazolidinone antibiotic. To better understand the mechanism of inhibition, we determined a 3.0 Å cryo-electron microscopy structure of cadazolid bound to the E. coli ribosome in complex with mRNA and initiator tRNA. Here we show that cadazolid binds with its oxazolidinone moiety in a binding pocket in close vicinity of the PTC as observed previously for linezolid, and that it extends its unique fluoroquinolone moiety towards the A-site of the PTC. In this position, the drug inhibits protein synthesis by interfering with the binding of tRNA to the A-site, suggesting that its chemical features also can enable the inhibition of linezolid-resistant strains.
Collapse
|
43
|
Physicochemical Compatibility and Stability of Linezolid with Parenteral Nutrition. Molecules 2019; 24:molecules24071242. [PMID: 30934964 PMCID: PMC6480230 DOI: 10.3390/molecules24071242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Patients referred to intensive care units (ICU) require special care due to their life-threatening condition, diseases and, frequently, malnutrition. Critically ill patients manifest a range of typical physiological changes caused by predominantly catabolic reactions in the body. It is necessary to provide the patients with proper nutrition, for example by administering total parenteral nutrition (TPN). The addition of linezolid to TPN mixtures for patients treated for linezolid-sensitive infections may reduce the extent of vascular access handling, resulting in a diminished risk of unwanted catheter-related infections. The compatibility and stability studies were conducted of linezolid in parenteral nutrition mixtures of basic, high- and low-electrolytic, high- and low-energetic and immunomodulatory composition. Mixtures containing linezolid were stored at 4–6 °C and 25 °C with light protection and at 25 °C without light protection for 168 h. In order to evaluate changes in the concentration of linezolid a previously validated reversed-phase HPLC method with UV detection was used. It was found that linezolid was stable at 4–6 °C in the whole course of the study whereas at 25 °C it proved stable over a period of 24 h required for administration of parenteral nutrition mixtures. The TPN mixtures demonstrated compatibility with linezolid and suitable stability, which were not affected by time or storage conditions.
Collapse
|
44
|
Corey R, Moran G, Goering R, Bensaci M, Sandison T, De Anda C, Prokocimer P. Comparison of the microbiological efficacy of tedizolid and linezolid in acute bacterial skin and skin structure infections: pooled data from phase 3 clinical trials. Diagn Microbiol Infect Dis 2019; 94:277-286. [PMID: 30940414 DOI: 10.1016/j.diagmicrobio.2019.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/24/2018] [Accepted: 01/23/2019] [Indexed: 11/27/2022]
Abstract
We evaluated the microbiological efficacy of tedizolid compared with that of linezolid against common and emerging pathogens using pooled data from 2 phase 3 trials (NCT01170221 and NCT01421511) in patients with acute bacterial skin and skin structure infections. Patients received tedizolid 200 mg once daily for 6 days (n = 664) or linezolid 600 mg twice daily for 10 days (n = 669). Favorable microbiological outcome in both treatment groups, defined as eradication or presumed eradication at the end of treatment and at the posttherapy evaluation, exceeded 85% for most pathogens, including methicillin-resistant Staphylococcus aureus. Favorable microbiological response was observed for staphylococci and streptococci at tedizolid minimal inhibitory concentration values ≤0.5 mg/L and 0.25 mg/L, respectively. The studies demonstrated positive microbiological outcomes against common pathogens with a 6-day, once-daily regimen of tedizolid phosphate in patients with acute bacterial skin and skin structure infections.
Collapse
Affiliation(s)
- Ralph Corey
- Division of Infectious Diseases, Duke University Medical Center, 2301 Erwin Road, Durham, NC 27710, USA
| | - Gregory Moran
- Department of Emergency Medicine and Division of Infectious Diseases, Olive View-UCLA Medical Center, 14445 Olive View Drive, Sylmar, CA 91342, USA
| | - Richard Goering
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Mekki Bensaci
- Merck & Co, Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | - Taylor Sandison
- Merck & Co., Inc., 4747 Executive Drive, San Diego, CA 92121, USA
| | - Carisa De Anda
- Merck & Co., Inc., 4747 Executive Drive, San Diego, CA 92121, USA.
| | | |
Collapse
|
45
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
46
|
Molecules that Inhibit Bacterial Resistance Enzymes. Molecules 2018; 24:molecules24010043. [PMID: 30583527 PMCID: PMC6337270 DOI: 10.3390/molecules24010043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Antibiotic resistance mediated by bacterial enzymes constitutes an unmet clinical challenge for public health, particularly for those currently used antibiotics that are recognized as "last-resort" defense against multidrug-resistant (MDR) bacteria. Inhibitors of resistance enzymes offer an alternative strategy to counter this threat. The combination of inhibitors and antibiotics could effectively prolong the lifespan of clinically relevant antibiotics and minimize the impact and emergence of resistance. In this review, we first provide a brief overview of antibiotic resistance mechanism by bacterial secreted enzymes. Furthermore, we summarize the potential inhibitors that sabotage these resistance pathways and restore the bactericidal activity of inactive antibiotics. Finally, the faced challenges and an outlook for the development of more effective and safer resistance enzyme inhibitors are discussed.
Collapse
|
47
|
Dortet L, Glaser P, Kassis-Chikhani N, Girlich D, Ichai P, Boudon M, Samuel D, Creton E, Imanci D, Bonnin R, Fortineau N, Naas T. Long-lasting successful dissemination of resistance to oxazolidinones in MDR Staphylococcus epidermidis clinical isolates in a tertiary care hospital in France. J Antimicrob Chemother 2018; 73:41-51. [PMID: 29092052 PMCID: PMC5890688 DOI: 10.1093/jac/dkx370] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/10/2017] [Indexed: 01/16/2023] Open
Abstract
Objectives Patient- and procedure-related changes in modern medicine have turned CoNS into one of the major nosocomial pathogens. Treatments of CoNS infections are challenging owing to the large proportion of MDR strains and oxazolidinones often remain the last active antimicrobial molecules. Here, we have investigated a long-lasting outbreak (2010-13) due to methicillin- and linezolid-resistant (LR) CoNS (n = 168), involving 72 carriers and 49 infected patients. Methods Antimicrobial susceptibilities were tested by the disc diffusion method and MICs were determined by broth microdilution or Etest. The clonal relationship of LR Staphylococcus epidermidis (LRSE) was first determined using a semi-automated repetitive element palindromic PCR (rep-PCR) method. Then, WGS was performed on all cfr-positive LRSE (n = 30) and LRSE isolates representative of each rep-PCR-defined clone (n = 17). Self-transferability of cfr-carrying plasmids was analysed by filter-mating experiments. Results This outbreak was caused by the dissemination of three clones (ST2, ST5 and ST22) of LRSE. In these clones, linezolid resistance was caused by (i) mutations in the chromosome-located genes encoding the 23S RNA and L3 and L4 ribosomal proteins, but also by (ii) the dissemination of two different self-conjugative plasmids carrying the cfr gene encoding a 23S RNA methylase. By monitoring linezolid prescriptions in two neighbouring hospitals, we highlighted that the spread of LR-CoNS was strongly associated with linezolid use. Conclusions Physicians should be aware that plasmid-encoded linezolid resistance has started to disseminate among CoNS and that rational use of oxazolidinones is critical to preserve these molecules as efficient treatment options for MDR Gram-positive pathogens.
Collapse
Affiliation(s)
- Laurent Dortet
- Department of Bacteriology-Parasitology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Joint Research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Philippe Glaser
- Joint Research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France.,UMR 3525, CNRS, 75015 Paris, France
| | - Najiby Kassis-Chikhani
- Department of Hygiene, Paul Brousse Hospital, Assistance Publique - Hôpitaux de Paris, Villejuif, France
| | - Delphine Girlich
- EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Joint Research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Philippe Ichai
- Intensive Care Unit, Hepatobiliary Center, Paul Brousse Hospital, Assistance Publique - Hôpitaux de Paris, Villejuif, France
| | - Marc Boudon
- Intensive Care Unit, Hepatobiliary Center, Paul Brousse Hospital, Assistance Publique - Hôpitaux de Paris, Villejuif, France
| | - Didier Samuel
- Intensive Care Unit, Hepatobiliary Center, Paul Brousse Hospital, Assistance Publique - Hôpitaux de Paris, Villejuif, France
| | - Elodie Creton
- EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Joint Research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Dilek Imanci
- Department of Molecular Genetics and Hormonology, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Rémy Bonnin
- EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Joint Research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Nicolas Fortineau
- Department of Bacteriology-Parasitology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Joint Research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Thierry Naas
- Department of Bacteriology-Parasitology-Hygiene, Bicêtre Hospital, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France.,EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Paris-Sud University, LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance, Le Kremlin-Bicêtre, France.,Joint Research Unit EERA 'Evolution and Ecology of Resistance to Antibiotics', Institut Pasteur-APHP-University Paris Sud, Paris, France
| |
Collapse
|
48
|
Mikamo H, Takesue Y, Iwamoto Y, Tanigawa T, Kato M, Tanimura Y, Kohno S. Efficacy, safety and pharmacokinetics of tedizolid versus linezolid in patients with skin and soft tissue infections in Japan – Results of a randomised, multicentre phase 3 study. J Infect Chemother 2018. [DOI: 10.1016/j.jiac.2018.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Brahma U, Kothari R, Sharma P, Bhandari V. Antimicrobial and anti-biofilm activity of hexadentated macrocyclic complex of copper (II) derived from thiosemicarbazide against Staphylococcus aureus. Sci Rep 2018; 8:8050. [PMID: 29795120 PMCID: PMC5966380 DOI: 10.1038/s41598-018-26483-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/30/2018] [Indexed: 12/11/2022] Open
Abstract
Multidrug-resistant pathogens causing nosocomial and community acquired infections delineate a significant threat to public health. It had urged to identify new antimicrobials and thus, generated interest in studying macrocyclic metal complex, which has been studied in the past for their antimicrobial activity. Hence, in the present study, we have evaluated the antimicrobial activity of the hexadentated macrocyclic complex of copper (II) (Cu Complex) derived from thiosemicarbazide against Gram-positive and Gram-negative bacteria. We observed increased susceptibility against standard isolates of Staphylococcus aureus with a minimum inhibitory concentration (MIC) range of 6.25 to 12.5 μg/mL. Similar activity was also observed towards methicillin resistant and sensitive clinical isolates of S. aureus from human (n = 20) and animal (n = 20) infections. The compound has rapid bactericidal activity, and we did not observe any resistant mutant of S. aureus. The compound also exhibited antibiofilm activity and was able to disrupt pre-formed biofilms. Cu complex showed increased susceptibility towards intracellular S. aureus and was able to reduce more than 95% of the bacterial load at 10 μg/mL. Overall, our results suggest that Cu complex with its potent anti-microbial and anti-biofilm activity can be used to treat MRSA infections and evaluated further clinically.
Collapse
Affiliation(s)
- Umarani Brahma
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | | | - Paresh Sharma
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Vasundhra Bhandari
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India.
| |
Collapse
|
50
|
Delpech P, ALeryan M, Jones B, Gemmell C, Lang S. An in vitro evaluation of the efficacy of tedizolid: implications for the treatment of skin and soft tissue infections. Diagn Microbiol Infect Dis 2018; 91:93-97. [DOI: 10.1016/j.diagmicrobio.2018.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/26/2017] [Accepted: 01/04/2018] [Indexed: 12/19/2022]
|