1
|
Rosenberg EM, Harrison RES, Tsou LK, Drucker N, Humphries B, Rajasekaran D, Luker KE, Wu CH, Song JS, Wang CJ, Murphy JW, Cheng YC, Shia KS, Luker GD, Morikis D, Lolis EJ. Characterization, Dynamics, and Mechanism of CXCR4 Antagonists on a Constitutively Active Mutant. Cell Chem Biol 2019; 26:662-673.e7. [PMID: 30827936 PMCID: PMC6736600 DOI: 10.1016/j.chembiol.2019.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/21/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
The G protein-coupled receptor (GPCR) CXCR4 is a co-receptor for HIV and is involved in cancers and autoimmune diseases. We characterized five purine or quinazoline core polyamine pharmacophores used for targeting CXCR4 dysregulation in diseases. All were neutral antagonists for wild-type CXCR4 and two were biased antagonists with effects on β-arrestin-2 only at high concentrations. These compounds displayed various activities for a constitutively active mutant (CAM). We use the IT1t-CXCR4 crystal structure and molecular dynamics (MD) simulations to develop two hypotheses for the activation of the N1193.35A CAM. The N1193.35A mutation facilitates increased coupling of TM helices III and VI. IT1t deactivates the CAM by disrupting the coupling between TM helices III and VI, mediated primarily by residue F872.53. Mutants of F872.53 in N1193.35A CXCR4 precluded constitutive signaling and prevented inverse agonism. This work characterizes CXCR4 ligands and provides a mechanism for N1193.35A constitutive activation.
Collapse
Affiliation(s)
- Eric M Rosenberg
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Reed E S Harrison
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, CA 92507, USA
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Natalie Drucker
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brock Humphries
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI 48109, USA
| | - Deepa Rajasekaran
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kathryn E Luker
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI 48109, USA
| | - Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Chuan-Jen Wang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - James W Murphy
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan, R.O.C
| | - Gary D Luker
- University of Michigan Center for Molecular Imaging, Department of Radiology, University of Michigan Medical School and College of Engineering, Ann Arbor, MI 48109, USA
| | - Dimitrios Morikis
- Department of Bioengineering, Bourns College of Engineering, University of California, Riverside, CA 92507, USA
| | - Elias J Lolis
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
2
|
Wu CH, Wang CJ, Chang CP, Cheng YC, Song JS, Jan JJ, Chou MC, Ke YY, Ma J, Wong YC, Hsieh TC, Tien YC, Gullen EA, Lo CF, Cheng CY, Liu YW, Sadani AA, Tsai CH, Hsieh HP, Tsou LK, Shia KS. Function-oriented development of CXCR4 antagonists as selective human immunodeficiency virus (HIV)-1 entry inhibitors. J Med Chem 2015; 58:1452-65. [PMID: 25584630 DOI: 10.1021/jm501772w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Motivated by the pivotal role of CXCR4 as an HIV entry co-receptor, we herein report a de novo hit-to-lead effort on the identification of subnanomolar purine-based CXCR4 antagonists against HIV-1 infection. Compound 24, with an EC50 of 0.5 nM against HIV-1 entry into host cells and an IC50 of 16.4 nM for inhibition of radioligand stromal-derived factor-1α (SDF-1α) binding to CXCR4, was also found to be highly selective against closely related chemokine receptors. We rationalized that compound 24 complementarily interacted with the critical CXCR4 residues that are essential for binding to HIV-1 gp120 V3 loop and subsequent viral entry. Compound 24 showed a 130-fold increase in anti-HIV activity compared to that of the marketed CXCR4 antagonist, AMD3100 (Plerixafor), whereas both compounds exhibited similar potency in mobilization of CXCR4(+)/CD34(+) stem cells at a high dose. Our study offers insight into the design of anti-HIV therapeutics devoid of major interference with SDF-1α function.
Collapse
Affiliation(s)
- Chien-Huang Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kuhlmann AS, Steckbeck JD, Sturgeon TJ, Craigo JK, Montelaro RC. Unique functional properties of conserved arginine residues in the lentivirus lytic peptide domains of the C-terminal tail of HIV-1 gp41. J Biol Chem 2014; 289:7630-40. [PMID: 24497632 PMCID: PMC3953275 DOI: 10.1074/jbc.m113.529339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/20/2014] [Indexed: 11/06/2022] Open
Abstract
A previous study from our laboratory reported a preferential conservation of arginine relative to lysine in the C-terminal tail (CTT) of HIV-1 envelope (Env). Despite substantial overall sequence variation in the CTT, specific arginines are highly conserved in the lentivirus lytic peptide (LLP) motifs and are scarcely substituted by lysines, in contrast to gp120 and the ectodomain of gp41. However, to date, no explanation has been provided to explain the selective incorporation and conservation of arginines over lysines in these motifs. Herein, we address the functions in virus replication of the most conserved arginines by performing conservative mutations of arginine to lysine in the LLP1 and LLP2 motifs. The presence of lysine in place of arginine in the LLP1 motif resulted in significant impairment of Env expression and consequently virus replication kinetics, Env fusogenicity, and incorporation. By contrast, lysine exchanges in LLP2 only affected the level of Env incorporation and fusogenicity. Our findings demonstrate that the conservative lysine substitutions significantly affect Env functional properties indicating a unique functional role for the highly conserved arginines in the LLP motifs. These results provide for the first time a functional explanation to the preferred incorporation of arginine, relative to lysine, in the CTT of HIV-1 Env. We propose that these arginines may provide unique functions for Env interaction with viral or cellular cofactors that then influence overall Env functional properties.
Collapse
Affiliation(s)
- Anne-Sophie Kuhlmann
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Jonathan D. Steckbeck
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | | - Jodi K. Craigo
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Ronald C. Montelaro
- From the Center for Vaccine Research and
- the Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
4
|
Paintsil E, Cheng YC. Antiviral Agents☆. REFERENCE MODULE IN BIOMEDICAL SCIENCES 2014. [PMCID: PMC7150273 DOI: 10.1016/b978-0-12-801238-3.02387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Antiviral agents are drugs approved in the USA by the Food and Drug Administration (FDA) for the treatment or control of viral infections. Available antiviral agents mainly target stages in the viral life cycle. The target stages in the viral life cycle are; viral attachment to host cell, uncoating, synthesis of viral mRNA, translation of mRNA, replication of viral RNA and DNA, maturation of new viral proteins, budding, release of newly synthesized virus, and free virus in body fluids. Two important factors that can limit the utility of antiviral drugs are toxicity and the development of resistance to the antiviral agent by the virus. In addition, host phenotypic behaviors toward antiviral drugs because of either genomic or epigenetic factors could limit the efficacy of an antiviral agent in an individual. This article summarizes the most relevant pharmacologic and clinical properties of current antiviral agents, and targets for novel antiviral agents.
Collapse
|
5
|
Haraguchi K, Takeda S, Kubota Y, Kumamoto H, Tanaka H, Hamasaki T, Baba M, Paintsil E, Cheng YC. From the chemistry of epoxy-sugar nucleosides to the discovery of anti-HIV agent 4'-ethynylstavudine-Festinavir. Curr Pharm Des 2013; 19:1880-97. [PMID: 23092278 PMCID: PMC3711117 DOI: 10.2174/1381612811319100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/10/2012] [Indexed: 12/27/2022]
Abstract
Branched sugar nucleosides have attracted much attention due to their biological activities. We have demonstrated that epoxysugar nucleosides serve as versatile precursor for the stereo-defined synthesis of these nucleoside derivatives on the basis of its ring opening with organoaluminum or organosilicon reagents. In this review article, novel methods for the synthesis of nucleoside analogues branched at the 1' and 4'-position will be described. During this study, we could discover an anti-HIV agent, 4'-ethynylstavudine (Festinavir). Festinavir showed more potent anti-HIV activity than the parent compound stavudine (d4T). Other significant properties of Festinavir are as follows: 1) much less toxic to various cells and also to mitochondorial DNA synthesis than d4T, 2) better substrate for human thymidine kinase than d4T, 3) resistant not only to chemical glycosidic bond cleavage but also to catabolism by thymidine phosphorylase, 4) the activity improves in the presence of a major mutation, K103N, associated with resistance to non-nucleoside reverse transcriptase inhibitors. Detailed profile of the antiviral activities, biology and pharmacology of Festinavir are also described.
Collapse
|
6
|
Hurwitz SJ, Schinazi RF. Practical Considerations For Developing Nucleoside Reverse Transcriptase Inhibitors. DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e175-226. [PMID: 23554824 DOI: 10.1016/j.ddtec.2012.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nucleoside reverse transcriptase inhibitors (NRTI) remain a cornerstone of current antiretroviral regimens in combinations usually with a non-nucleoside reverse transcriptase inhibitor (NNRTI), a protease inhibitor (PI), or an integrase inhibitor (INI). The antiretroviral efficacy and relative safety of current NRTI results from a tight and relatively specific binding of their phosphorylated nucleoside triphosphates (NRTI-TP) with the HIV-1 reverse transcriptase which is essential for replication. The intracellular stability of NRTI-TP produces a sustained antiviral response, which makes convenient dosing feasible. Lessons learned regarding NRTI pharmacology screening, development, and use are discussed. NRTI and prodrugs currently under clinical development are outlined.
Collapse
Affiliation(s)
- Selwyn J Hurwitz
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA ; Veterans Affairs Medical Center, Decatur, Georgia 30033, USA
| | | |
Collapse
|
7
|
Sohl CD, Kasiviswanathan R, Kim J, Pradere U, Schinazi RF, Copeland WC, Mitsuya H, Baba M, Anderson KS. Balancing antiviral potency and host toxicity: identifying a nucleotide inhibitor with an optimal kinetic phenotype for HIV-1 reverse transcriptase. Mol Pharmacol 2012; 82:125-33. [PMID: 22513406 PMCID: PMC3382833 DOI: 10.1124/mol.112.078758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/09/2012] [Indexed: 11/22/2022] Open
Abstract
Two novel thymidine analogs, 3'-fluoro-3'-deoxythymidine (FLT) and 2',3'-didehydro-3'-deoxy-4'-ethynylthymidine (Ed4T), have been investigated as nucleoside reverse transcriptase inhibitors (NRTIs) for treatment of HIV infection. Ed4T seems very promising in phase II clinical trials, whereas toxicity halted FLT development during this phase. To understand these different molecular mechanisms of toxicity, pre-steady-state kinetic studies were used to examine the interactions of FLT and Ed4T with wild-type (WT) human mitochondrial DNA polymerase γ (pol γ), which is often associated with NRTI toxicity, as well as the viral target protein, WT HIV-1 reverse transcriptase (RT). We report that Ed4T-triphosphate (TP) is the first analog to be preferred over native nucleotides by RT but to experience negligible incorporation by WT pol γ, with an ideal balance between high antiretroviral efficacy and minimal host toxicity. WT pol γ could discriminate Ed4T-TP from dTTP 12,000-fold better than RT, with only an 8.3-fold difference in discrimination being seen for FLT-TP. A structurally related NRTI, 2',3'-didehydro-2',3'-dideoxythymidine, is the only other analog favored by RT over native nucleotides, but it exhibits only a 13-fold difference (compared with 12,000-fold for Ed4T) in discrimination between the two enzymes. We propose that the 4'-ethynyl group of Ed4T serves as an enzyme selectivity moiety, critical for discernment between RT and WT pol γ. We also show that the pol γ mutation R964C, which predisposes patients to mitochondrial toxicity when receiving 2',3'-didehydro-2',3'-dideoxythymidine to treat HIV, produced some loss of discrimination for FLT-TP and Ed4T-TP. These molecular mechanisms of analog incorporation, which are critical for understanding pol γ-related toxicity, shed light on the unique toxicity profiles observed during clinical trials.
Collapse
Affiliation(s)
- Christal D Sohl
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang W, Tan S, Paintsil E, Dutschman GE, Gullen EA, Chu E, Cheng YC. Analysis of deoxyribonucleotide pools in human cancer cell lines using a liquid chromatography coupled with tandem mass spectrometry technique. Biochem Pharmacol 2011; 82:411-7. [PMID: 21620803 DOI: 10.1016/j.bcp.2011.05.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
Endogenous ribonucleotides and deoxyribonucleotides play a critical role in cell function, and determination of their levels is of fundamental importance in understanding key cellular processes involved in energy metabolism and molecular and biochemical signaling pathways. In this study, we determined the respective ribonucleotide and deoxyribonucleotide pool sizes in different human cell lines using a simple sample preparation method and LC/MS/MS. This assay was used to determine alterations in deoxyribonucleotide pools in human pancreatic PANC1 cells in response to hypoxia and to treatment with either hydroxyurea or aphidicolin. The levels of all deoxyribonucleotide metabolites decreased with hypoxia treatment, except for dUMP, which increased by two-fold. This LC/MS/MS assay is simple, fast, and sensitive, and it represents a significant advance over previously published methodologies.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacology, Section of Medical Oncology, Yale School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Determinants of individual variation in intracellular accumulation of anti-HIV nucleoside analog metabolites. Antimicrob Agents Chemother 2010; 55:895-903. [PMID: 21078952 DOI: 10.1128/aac.01303-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Individual variation in response to antiretroviral therapy is well-known, but it is not clear if demographic characteristics such as gender, age, and ethnicity are responsible for the variation. To optimize anti-HIV therapy and guide antiretroviral drug discovery, determinants that cause variable responses to therapy need to be evaluated. We investigated the determinants of intracellular concentrations of nucleoside analogs using peripheral blood mononuclear cells from 40 healthy donors. We observed individual differences in the concentrations of the intracellular nucleoside analogs; the mean concentrations of the triphosphate metabolite of ethynylstavudine (4'-Ed4T), zidovudine (AZT), and lamivudine (3TC) were 0.71 pmol/10(6) cells (minimum and maximum, 0.10 and 3.00 pmol/10(6) cells, respectively), 0.88 pmol/10(6) cells (minimum and maximum, 0.10 and 15.18 pmol/10(6) cells, respectively), and 1.70 pmol/10(6) cells (minimum and maximum, 0.20 and 7.73 pmol/10(6) cells, respectively). Gender and ethnicity had no effect on the concentration of 4'-Ed4T and 3TC metabolites. There was a trend for moderation of the concentrations of AZT metabolites by gender (P = 0.17 for gender·metabolite concentration). We observed variability in the activity and expression of cellular kinases. There was no statistically significant correlation between thymidine kinase 1 (TK-1) activity or expression and thymidine analog metabolite concentrations. The correlation between the activity of deoxycytidine kinase (dCK) and the 3TC monophosphate metabolite concentration showed a trend toward significance (P = 0.1). We observed an inverse correlation between the multidrug-resistant protein 2 (MRP2) expression index and the concentrations of AZT monophosphate, AZT triphosphate, and total AZT metabolites. Our findings suggest that the observed variation in clinical response to nucleoside analogs may be due partly to the individual differences in the intracellular concentrations, which in turn may be affected by the cellular kinases involved in the phosphorylation pathway and ATP-binding cassette (ABC) transport proteins.
Collapse
|
10
|
Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Antiviral Res 2009; 85:39-58. [PMID: 19887088 DOI: 10.1016/j.antiviral.2009.09.014] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/19/2009] [Accepted: 09/23/2009] [Indexed: 12/29/2022]
Abstract
Twenty-five years ago, nucleoside analog 3'-azidothymidine (AZT) was shown to efficiently block the replication of HIV in cell culture. Subsequent studies demonstrated that AZT acts via the selective inhibition of HIV reverse transcriptase (RT) by its triphosphate metabolite. These discoveries have established the first class of antiretroviral agents: nucleoside and nucleotide reverse transcriptase inhibitors (NRTIs). Over the years that followed, NRTIs evolved into the main component of antiretroviral drug combinations that are now used for the treatment of all populations of HIV infected patients. A total of thirteen NRTI drug products are now available for clinical application: eight individual NRTIs, four fixed-dose combinations of two or three NRTIs, and one complete fixed-dose regimen containing two NRTIs and one non-nucleoside RT inhibitor. Multiple NRTIs or their prodrugs are in various stages of clinical development and new potent NRTIs are still being identified through drug discovery efforts. This article will review basic principles of the in vitro and in vivo pharmacology of NRTIs, discuss their clinical use including limitations associated with long-term NRTI therapy, and describe newly identified NRTIs with promising pharmacological profiles highlighting those in the development pipeline. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, volume 85, issue 1, 2010.
Collapse
|
11
|
Retention of metabolites of 2',3'-didehydro-3'-deoxy-4'-ethynylthymidine, a novel anti-human immunodeficiency virus type 1 thymidine analog, in cells. Antimicrob Agents Chemother 2009; 53:3317-24. [PMID: 19470503 DOI: 10.1128/aac.00302-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
2',3'-Didehydro-3'-deoxy-4'-ethynylthymidine (4'-Ed4T), a novel thymidine analog, has more potent anti-human immunodeficiency virus type 1 (HIV-1) activity than its progenitor, stavudine (d4T). The profile of the intracellular metabolites of 4'-Ed4T was qualitatively similar to that of zidovudine (AZT) but not to that of d4T, while after drug removal it showed more persistent anti-HIV activity than AZT or d4T in cell culture. When CEM cells were exposed to various concentrations of 4'-Ed4T, 4'-Ed4T was efficiently taken up by the cells and was readily phosphorylated to 4'-Ed4T monophosphate (4'-Ed4TMP), 4'-Ed4T diphosphate (4'-Ed4TDP), and 4'-Ed4T triphosphate (4'-Ed4TTP). Most importantly, 4'-Ed4TTP, the active metabolite of 4'-Ed4T, persisted significantly longer than 4'-Ed4TDP and 4'-Ed4TMP after drug removal. We further investigated the efflux profiles of 4'-Ed4T in the comparison with those of AZT in CEM cells. After drug removal, both 4'-Ed4T and AZT were effluxed from the cells in a time- and temperature-dependent manner. However, the efflux of 4'-Ed4T from cells was much less efficient than that of AZT. 4'-Ed4T was effluxed from cells only in its nucleoside form, while AZT was effluxed from cells in both its nucleoside and monophosphate forms. The mechanism-of-action study showed that the efflux of 4'-Ed4T or AZT nucleoside might be due to unknown nucleoside transporters which were not related to the equilibrative nucleoside transporters, while the efflux of AZT monophosphate might be due to multidrug resistance protein 4 (MRP4/ABCC4). The results demonstrated that no detectable 4'-Ed4TMP efflux and the less efficient efflux of 4'-Ed4T nucleoside from cells might be one of the biochemical determinants of its persistent antiviral activity in cell culture.
Collapse
|
12
|
Paintsil E, Grill SP, Dutschman GE, Cheng YC. Comparative study of the persistence of anti-HIV activity of deoxynucleoside HIV reverse transcriptase inhibitors after removal from culture. AIDS Res Ther 2009; 6:5. [PMID: 19386130 PMCID: PMC2684870 DOI: 10.1186/1742-6405-6-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 04/22/2009] [Indexed: 04/05/2023] Open
Abstract
Background Most in vitro assays of drug potency may not adequately predict the performance in vivo. Methods to assess the persistence of antiviral activity of deoxynucleoside analogs, which require intracellular activation to the active metabolites that can persist in cells, will be important for designing dosages, combination regimens, and assessing treatment compliance. Using an HIV-IIIB/TZM-bl indicator cell culture system, we assessed the ability of an inhibitor to protect cells from infection and to delay viral rebound after removal of inhibitor from culture. Results The order of protection of cells from HIV-infection was 4'-Ed4T > LFD4C > DDI > D4T > 3TC > AZT > FTC > NVP. The fold-increase in EC50 to delay viral rebound was DDI < 4'-Ed4T < LFD4C < FTC < D4T < 3TC < NVP < AZT. The ranking of persistence of anti-HIV activity of the inhibitors based on the two-component assay was DDI > 4'-Ed4T > LFD4C > FTC = D4T > 3TC > NVP > AZT. Conclusion The persistence ranking was derived from assays based on measures of single viral replication-cycle and cumulative inhibition at multiple time-points. Therefore, a better indicator of the pharmacodynamic property of an inhibitor. The persistence of anti-HIV activity assay may complement in vitro potency assays to better predict in vivo performance of nucleoside analogs.
Collapse
|
13
|
Paintsil E, Cheng YC. Antiviral Agents. ENCYCLOPEDIA OF MICROBIOLOGY 2009. [PMCID: PMC7149689 DOI: 10.1016/b978-012373944-5.00178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
|
15
|
Mechanism of inhibition of human immunodeficiency virus type 1 reverse transcriptase by a stavudine analogue, 4'-ethynyl stavudine triphosphate. Antimicrob Agents Chemother 2008; 52:2035-42. [PMID: 18391035 DOI: 10.1128/aac.00083-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2',3'-Didehydro-3'-deoxy-4'-ethynylthymidine (4'-Ed4T), a recently discovered nucleoside reverse transcriptase (RT) inhibitor, exhibits 5- to 10-fold-higher activity against human immunodeficiency virus type 1 (HIV-1) and less cytotoxicity than does its parental compound d4T (stavudine). Using steady-state kinetic approaches, we have previously shown that (i) 4'-ethynyl-d4T triphosphate (4'-Ed4TTP) inhibits HIV-1 RT more efficiently than d4TTP does and (ii) its inhibition efficiency toward the RT M184V mutant is threefold less than that toward wild-type (wt) RT. In this study we used pre-steady-state kinetic approaches in an attempt to understand its mechanism of inhibition. With wt and the M184V mutant RTs, 4'-Ed4TTP has three- to fivefold-lower K(d) (dissociation constant) values than d4TTP, while d4TTP has up to eightfold-higher K(d) values than dTTP. Inhibition is more effective in DNA replication with RNA template than with DNA template. In general, the M184V mutant exhibits poorer binding for all three nucleoside triphosphates than does wt RT. The structural basis for the lower binding affinity of d4TTP than of dTTP could be the lack of hydrogen bonds from the missing 3'-hydroxyl group in d4TTP to the backbone amide of Y115 and also to the side chain of Q151. The structural basis for the higher binding affinity of 4'-Ed4TTP than of d4TTP could be the additional binding of the 4'-ethynyl group in a preformed hydrophobic pocket by A114, Y115, M184, F160, and part of D185.
Collapse
|