1
|
Wang X, Dai Y, Kong N, Cao M, Zhang L, Wei Q. Screening Key Sites of Class 2 Integron Integrase that Impact Recombination Efficiency. Curr Microbiol 2024; 81:163. [PMID: 38710822 DOI: 10.1007/s00284-024-03674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024]
Abstract
By capturing and expressing exogenous resistance gene cassettes through site-specific recombination, integrons play important roles in the horizontal transfer of antimicrobial resistant genes among bacteria. The characteristics of integron integrase make it to be a potential gene editing tool enzyme. In this study, a random mutation library using error-prone PCR was constructed, and amino acid residues mutants that impact on attI2 × attC or attC × attC recombination efficiency were screened and analyzed. Thirteen amino acid mutations were identified to be critical impacted on site-specific recombination of IntI2, including the predicted catalyzed site Y301. Nine of 13 mutated amino acid residues that have critically impacted on IntI2 activity were relative concentrated and near the predicted catalyzed site Y301 in the predicted three-dimensional structure indicated the importance of this area in maintain the activity of IntI2. No mutant with obviously increased recombination activity (more than four-fold as high as that of wild IntI2) was found in library screening, except P95S, R100K slightly increased (within two-fold) the excision activity of IntI2, and S243T slightly increased (within two-fold) both excision and integration activity of IntI2. These findings will provide clues for further specific modification of integron integrase to be a tool enzyme as well as establishing a new gene editing system and applied practically.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
- Clinical Laboratory, Songjiang Hospital Affiliated to Shanghai JiaoTong University School of Medicine, 748 Middle Zhongshan Road, Shanghai, 201602, China
| | - Yueru Dai
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Nana Kong
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Mei Cao
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Long Zhang
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Quhao Wei
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China.
| |
Collapse
|
2
|
Yang J, Zhang K, Ding C, Wang S, Wu W, Liu X. Exploring multidrug-resistant Klebsiella pneumoniae antimicrobial resistance mechanisms through whole genome sequencing analysis. BMC Microbiol 2023; 23:245. [PMID: 37660028 PMCID: PMC10474722 DOI: 10.1186/s12866-023-02974-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Antibiotic-resistant Klebsiella pneumoniae has emerged as a critical public health threat worldwide. Understanding the antimicrobial resistance mechanisms of multidrug-resistant K. pneumoniae (MDR-Kp) and its prevalence in time and space would provide clinical significance for managing pathogen infection. METHODS Eighteen clinical MDR-Kp strains were analyzed by whole genome sequencing (WGS), and the antimicrobial resistance genes and associated resistance mechanisms were compared with results obtained from the conventional microbiological test (CMT). The sequence homology across strains in our study and those previously collected over time from a wide geographical region was assessed by phylogenetic analysis. RESULTS MDR-Kp strains were collected from eighteen patients who had received empirical treatment before strain collection, with sputum (83.3%, 15/18) being the primary source of clinical samples. The commonly received treatments include β-lactamase inhibitors (55.6%, 10/18) and carbapenems (50%, 9/18). Using CMT, we found that all 18 strains were resistant to aztreonam and ciprofloxacin, while 14 (77.8%) showed resistance to carbapenem. Polymyxin B and tigecycline were the only antibiotics to which MDR-Kp strains were sensitive. A total of 42 antimicrobial resistance mechanisms were identified by WGS, surpassing the 40 detected by the conventional method, with 25 mechanisms shared between the two techniques. Despite a 100% accuracy rate of WGS in detecting penicillin-resistant strains, the accuracy in detecting cephalosporin-resistant strains was only at 60%. Among all resistance genes identified by WGS, Klebsiella pneumoniae carbapenemase-2 (KPC-2) was present in all 14 carbapenem-resistant strains. Phenotypic analysis indicated that sequence type (ST) 11 isolates were the primary cause of these MDR-Kp infections. Additionally, phylogenic clustering analysis, encompassing both the clinical and MDR-Kp strains previously reported in China, revealed four distinct subgroups. No significant difference was observed in the sequence homology between K. pneumoniae strains in our study and those previously collected in East China over time. CONCLUSION The application of WGS in identifying potential antimicrobial-resistant genes of MDR-Kp has demonstrated promising clinical significance. Comprehensive genomic information revealed by WGS holds the promise of guiding treatment decisions, enabling surveillance, and serving as a crucial asset in understanding antibiotic resistance.
Collapse
Affiliation(s)
- Jing Yang
- Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kai Zhang
- Clinical Laboratory, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, Daxue Road, Tongshan District, Xuzhou, 221002, Jiangsu, China
| | - Chen Ding
- Xuzhou Central Hospital, Xuzhou, 221009, Jiangsu, China
| | - Song Wang
- Dinfectome Inc, Nanjing, 210000, Jiangsu, China
| | - Weiwei Wu
- Dinfectome Inc, Nanjing, 210000, Jiangsu, China
| | - Xiangqun Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, Daxue Road, Tongshan District, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
3
|
Fadare FT, Fadare TO, Okoh AI. Prevalence, molecular characterization of integrons and its associated gene cassettes in Klebsiella pneumoniae and K. oxytoca recovered from diverse environmental matrices. Sci Rep 2023; 13:14373. [PMID: 37658232 PMCID: PMC10474106 DOI: 10.1038/s41598-023-41591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
The high prevalence of infections arising from Klebsiella species is related to their ability to acquire and disseminate exogenous genes associated with mobile genetic elements such as integrons. We assessed the prevalence, diversity, and associated gene cassettes (GCs) of integrons in Klebsiella species. The isolates recovered from wastewater and hospital effluents, rivers, and animal droppings were identified using the conventional Polymerase Chain Reaction (PCR) with primers targeting the gryA, pehX, and 16S-23S genes. The antimicrobial resistance profile and the Extended-Spectrum and Metallo β-lactamases production were carried out using standard microbiological techniques. PCR, DNA sequencing analyses, and Restriction Fragment Length Polymorphism were used to characterize the integrons and their associated GCs. Furthermore, the genotypic relationships between the different isolated K. pneumoniae were determined using Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR. About 98% (51/52) of the confirmed isolates harboured an integrase gene, with 80% intI1, while the remaining 20% concurrently harboured intI1 and intI2, with no intI3 observed. About 78% (40/51) of the bacterial strains were positive for a promoter, the P2R2, investigated, while 80% (41/51) harboured at least one of the qacEΔ1 and sul1. Three different GCs arrangements identified were aac(6')-Ib, aadA1-dfrA1, and dfrA1-sat2. At a similarity index of 60%, the ERIC-PCR fingerprints generated were categorized into nine clusters. Our study is the first to reveal the features of integrons in Klebsiella spp. recovered from environmental sources in the Eastern Cape Province, South Africa. We conclude that the organisms' sources are repositories of integrons harbouring various gene cassettes, which can be readily mobilized to other microorganisms in similar or varied niches.
Collapse
Affiliation(s)
- Folake Temitope Fadare
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.
| | - Taiwo Olawole Fadare
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
4
|
Zhu Y, Wang T, Zhu W, Wei Q. Influence of class 2 integron integrase concentration on gene cassette insertion and excision in vivo. Braz J Microbiol 2023; 54:645-653. [PMID: 36808308 PMCID: PMC10235263 DOI: 10.1007/s42770-023-00926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Integron can capture and express antimicrobial resistance gene cassettes and plays important roles in horizontal gene transfer. The establishment of a complete in vitro reaction system will help to reveal integron integrase mediated site-specific recombination process and regulation mechanism. As an enzymatic reaction, the concentration of integrase is assumed to have a great influence on the reaction rate. To determine the influence of different concentrations of integrase on the reaction rate and to find the best range of enzyme concentration were essential to optimizing the in vitro reaction system. In this study, plasmids with gradient transcription levels of class 2 integron integrase gene intI2 under different promoters were constructed. Among plasmids pI2W16, pINTI2N, pI2W, and pI2NW, intI2 transcription levels ranged from about 0.61-fold to 49.65-fold of that in pINTI2N. And the frequencies of gene cassette sat2 integration and excision catalyzed by IntI2 were positively correlated with the transcription levels of intI2 within this range. Western blotting results indicated high expression of IntI2 partly existed in the form of an inclusion body. When compared with Pc of class 1 integron, the spacer sequence of PintI2 can increase the strength of PcW but decrease the strength of PcS. In conclusion, the frequencies of gene cassette integration and excision were positively correlated with the concentration of IntI2. intI2 driving by PcW with PintI2 spacer sequence can obtain the optimum IntI2 concentration required to achieve the maximum recombination efficiency in vivo in this study.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Tong Wang
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Wenwen Zhu
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Quhao Wei
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China.
| |
Collapse
|
5
|
Zhao CX, Su XX, Xu MR, An XL, Su JQ. Uncovering the diversity and contents of gene cassettes in class 1 integrons from the endophytes of raw vegetables. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114282. [PMID: 36371907 DOI: 10.1016/j.ecoenv.2022.114282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/22/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Rapid spread of antibiotic resistance genes (ARGs) in pathogens is threatening human health. Integrons allow bacteria to integrate and express foreign genes, facilitating horizontal transfer of ARGs in environments. Consumption of raw vegetables represents a pathway for human exposure to environmental ARGs. However, few studies have focused on integron-associated ARGs in the endophytes of raw vegetables. Here, based on the approach of qPCR and clone library, we quantified the abundance of integrase genes and analyzed the diversity and contents of resistance gene cassettes in class 1 integrons from the endophytes of six common raw vegetables. The results revealed that integrase genes for class 1 integron were most prevalent compared with class 2 and class 3 integron integrase genes (1-2 order magnitude, P < 0.05). The cucumber endophytes harbored a higher absolute abundance of integrase genes than other vegetables, while the highest bacterial abundance was detected in cabbage and cucumber endophytes. Thirty-two unique resistance gene cassettes were detected, the majority of which were associated with the genes encoding resistance to beta-lactam and aminoglycoside. Antibiotic resistance gene cassettes accounted for 52.5 % of the functionally annotated gene cassettes, and blaTEM-157 and aadA2 were the most frequently detected resistance cassettes. Additionally, carrot endophytes harbored the highest proportion of antibiotic resistance gene cassettes in the class 1 integrons. Collectively, these results provide an in-depth view of acquired resistance genes by integrons in the raw vegetable endophytes and highlight the potential health risk of the transmission of ARGs via the food chain.
Collapse
Affiliation(s)
- Cai-Xia Zhao
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Xuan Su
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, 400715 Chongqing, China
| | - Mei-Rong Xu
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Li An
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Qiang Su
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Ramatla T, Mileng K, Ndou R, Tawana M, Mofokeng L, Syakalima M, Lekota KE, Thekisoe O. Campylobacter jejuni from Slaughter Age Broiler Chickens: Genetic Characterization, Virulence, and Antimicrobial Resistance Genes. Int J Microbiol 2022; 2022:1713213. [PMID: 35634271 PMCID: PMC9135541 DOI: 10.1155/2022/1713213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni is a major cause of food-borne human gastroenteritis worldwide and is designated as a high priority antimicrobial-resistant pathogen by the World Health Organization (WHO). In this study, a total of 26 C. jejuni isolates from broiler chickens were screened for the presence of virulence and antimicrobial resistance genes by PCR. As a result, the study detected 11/26 (42.3%), 9/26 (34.6%), 8/26 (30.8%), 7/26 (26.9%), 6/26 (23.1%), and 6/26 (23.1%) of cdtC, pldA, cdtB, cdtA, cadF, and ciaB virulence genes, respectively, with seven of the isolates carrying more than two virulence genes. The majority of the isolates n = 25 (96.1%) were resistant to nalidixic acid, followed by n = 21 (80.7%), n = 22 (84.6%), and n = 5 (19.2%) for tetracycline, erythromycin, and ciprofloxacin, respectively. Most isolates were harboring catI (n = 16; 84.2%), catII (n = 15; 78.9%), catIII (n = 10; 52.6%), catIV (n = 2; 10.5%), floR (n = 10; 52.6%), ermB (n = 14; 73.7%), tetO (n = 13; 68.4%), tetA (n = 9; 47.4%), mcr-4 (n = 8; 42.1%), and ampC (n = 2; 10.5%). Meanwhile, mcr-1, mcr-2, mcr-3, mcr-5, tet(X), tet(P), and tet(W) genes were not detected in all isolates. Class I and Class II integrons were detected in 92.3% (n = 24) and 65.4% (n = 17) isolates, respectively. About 31% (8 of the 26 isolates) isolates were carrying more than two resistance genes. According to our knowledge, this is the first study to detect class II integrons in Campylobacter spp. (C. jejuni). The high prevalence of cdtA, cdtB, cdtC, cadF, pldA, and ciaB genes and antibiotic resistance genes in C. jejuni in this study indicates the pathogenic potential of these isolates. Majority of the isolates demonstrated resistance to nalidixic acid, tetracycline (tet), and erythromycin (ermB), which are the drugs of choice for treating Campylobacter infections. Therefore, these findings highlight the importance of implementing an efficient strategy to control Campylobacter in chickens and to reduce antimicrobial use in the poultry industry, which will help to prevent the spread of infections to humans.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Kealeboga Mileng
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Rendani Ndou
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mpho Tawana
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Lehlohonolo Mofokeng
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Michelo Syakalima
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- University of Zambia, School of Veterinary Medicine, Department of Disease Control, P.O. Box 32379, Lusaka, Zambia
| | - Kgaugelo E. Lekota
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| |
Collapse
|
7
|
Lu W, Qiu Q, Chen K, Zhao R, Li Q, Wu Q. Distribution and Molecular Characterization of Functional Class 2 Integrons in Clinical Proteus mirabilis Isolates. Infect Drug Resist 2022; 15:465-474. [PMID: 35210790 PMCID: PMC8858760 DOI: 10.2147/idr.s347119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Integrons are the main mode of horizontal transmission of drug-resistance genes and are closely related to drug resistance in clinical bacteria. In this study, the distributions of class 1, 2, and 3 integron gene cassettes were investigated in 150 Proteus mirabilis (P. mirabilis) isolates from patients, and molecular characterization of functional class 2 integrons was further analyzed. Methods Class 1, 2, and 3 integrons were screened by polymerase chain reaction (PCR) in 150 clinical P. mirabilis isolates. The variable regions of the integrons were determined by restriction analysis and sequencing. Internal stop codons mutations in class 2 integrons and their common promoters were also determined by sequencing. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) was used to analyze the phylogenetic relations of class 2 integron-positive isolates. Results Class 1 integrons were detected in 69 (46%) of 150 P. mirabilis isolates, and six different gene cassette arrays were detected, with the most prevalent being dfrA32-aadA2. Class 2 integrons were detected in 61 (40.7%) of 150 P. mirabilis isolates, and three different gene cassette arrays were detected, including sat2-aadA1, which was detected for the first time in a class 2 integron. Nearly similar ERIC-PCR fingerprinting patterns were detected in 45 (73.8%) of 61 class 2 integron-positive isolates. The functional class 2 integron was detected in three P. mirabilis isolates having the same gene cassette, dfrA1-sat2-aadA1, in the variable region and four novel open reading frames with unknown functions. Same PintI2 and Pc promoters were detected in these three functional class 2 integron isolates, as was found in other class 2 integron isolates. However, these three strains did not totally show identical homology and drug sensitivity. Conclusion Although functional class 2 integrons have low distribution and relatively conserved molecular characteristics, they can still form clinical dissemination and drug resistance expression.
Collapse
Affiliation(s)
- Wenjun Lu
- Intensive Care Units of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Quedan Qiu
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Keda Chen
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Rongqing Zhao
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Qingcao Li
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
- Correspondence: Qingcao Li; Qiaoping Wu, Tel +86-574-55835786, Fax +86-574-55835781, Email ;
| | - Qiaoping Wu
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| |
Collapse
|
8
|
Fonseca ÉL, Vicente AC. Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms 2022; 10:microorganisms10020224. [PMID: 35208680 PMCID: PMC8876359 DOI: 10.3390/microorganisms10020224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022] Open
Abstract
Integrons are considered hot spots for bacterial evolution, since these platforms allow one-step genomic innovation by capturing and expressing genes that provide advantageous novelties, such as antibiotic resistance. The acquisition and shuffling of gene cassettes featured by integrons enable the population to rapidly respond to changing selective pressures. However, in order to avoid deleterious effects and fitness burden, the integron activity must be tightly controlled, which happens in an elegant and elaborate fashion, as discussed in detail in the present review. Here, we aimed to provide an up-to-date overview of the complex regulatory networks that permeate the expression and functionality of integrons at both transcriptional and translational levels. It was possible to compile strong shreds of evidence clearly proving that these versatile platforms include functions other than acquiring and expressing gene cassettes. The well-balanced mechanism of integron expression is intricately related with environmental signals, host cell physiology, fitness, and survival, ultimately leading to adaptation on the demand.
Collapse
|
9
|
Chen X, Lei CW, Liu SY, Li TY, Chen Y, Wang YT, Li C, Wang Q, Yang X, Huang ZR, Gao YF, Wang HN. Characterization of novel Tn7-derivatives and Tn7-like transposon found in Proteus mirabilis of food-producing animal origin in China. J Glob Antimicrob Resist 2022; 28:233-237. [DOI: 10.1016/j.jgar.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022] Open
|
10
|
Rodríguez C, Cassini MH, Delgado GDV, Ramírez MS, Centrón D. Analysis of class 2 integrons as a marker for multidrug resistance among Gram negative bacilli. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.4.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractClass 1 and 2 integrons are considered the paradigm of multidrug resistant (MDR) integrons. Although class 1 integrons have been found statistically associated to Enterobacteriaceae MDR isolates, this type of study has not been conducted for class 2 integrons. Escherichia coli and 3 species that were found that harbored more than 20% of class 2 integrons in clinical isolates, were selected to determine the role of intI2 as MDR marker. A total of 234 MDR/191 susceptible non-epidemiologically related isolates were analyzed. Seventy-four intI2 genes were found by PCR and sequencing. An intI2 relationship with MDR phenotypes in Acinetobacter baumannii and Enterobacter cloacae was found. No statistical association was identified with MDR E. coli and Helicobacter pylori isolates. In other words, the likelihood of finding intI2 is the same in susceptible and in MDR E. coli and H. pylori strains, suggesting a particular affinity between the mobile element Tn7 and some species. The use of intI2 as MDR marker was species-dependent, with fluctuating epidemiology at geographical and temporal gradients. The use of intI2 as MDR marker is advisable in A. baumannii, a species that can reach high frequencies of this genetic element.
Collapse
Affiliation(s)
- Cecilia Rodríguez
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Marcelo H. Cassini
- Grupo GEMA, DCB, Universidad Nacional de Luján, Buenos Aires, Argentina y Laboratorio de Biología del Comportamiento, IBYME, Buenos Aires, Argentina
| | | | - María S. Ramírez
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California
| | - D Centrón
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
11
|
Comparison of Class 2 Integron Integrase Activities. Curr Microbiol 2021; 78:967-978. [PMID: 33543359 DOI: 10.1007/s00284-021-02352-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 01/10/2021] [Indexed: 01/21/2023]
Abstract
Integrons play important roles in the dissemination of antimicrobial resistant genes among bacteria. Class 2 integrons usually has an internal stop codon, TAA, in integrase genes (intI2), leading to a truncated integrase, IntI2*. However, a few class 2 integrons with a natural full-length integrase have been reported. In this study, the sequences of natural full-length intI2 were extracted from INTEGRALL database and analyzed. A total of 236 sequences of intI2 were retrieved from INTEGRALL database, only seven of which were natural full-length intI2 genes and could be divided into five types according to their coding amino acid sequence. Quantitative real-time PCR was used to detect gene cassette sat2 integration and excision efficiency catalyzed by different natural full-length IntI2s. The results showed that all five IntI2s could catalyze attI2 × attCsat2 integration and attCdfrA1/sat2 × attCsat2/aadA1 excision in Escherichia coli. Integration and excision frequency catalyzed by IntI2A176 was highest and was about twofold as high as those catalyzed by IntI2S175_A176. The secondary structure of the IntI2 was predicted by online software. Polymorphisms of these five IntI2s were limited within residues 172, 174, 175, 176 and 256, and these residues were all far away from the predicted DNA binding regions or catalyzed sites. Influence of amino acid sequence polymorphisms of these natural full-length IntI2s on their catalyzed activities is limited.
Collapse
|
12
|
Alcaraz E, Centrón D, Camicia G, Quiroga MP, Di Conza J, Passerini de Rossi B. Stenotrophomonas maltophilia phenotypic and genotypic features through 4-year cystic fibrosis lung colonization. J Med Microbiol 2020; 70. [PMID: 33258754 DOI: 10.1099/jmm.0.001281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Introduction. Stenotrophomonas maltophilia has emerged as one of the most common multi-drug-resistant pathogens isolated from people with cystic fibrosis (CF). However, its adaptation over time to CF lungs has not been fully established.Hypothesis. Sequential isolates of S. maltophilia from a Brazilian adult patient are clonally related and show a pattern of adaptation by loss of virulence factors.Aim. To investigate antimicrobial susceptibility, clonal relatedness, mutation frequency, quorum sensing (QS) and selected virulence factors in sequential S. maltophilia isolates from a Brazilian adult patient attending a CF referral centre in Buenos Aires, Argentina, between May 2014 and May 2018.Methodology. The antibiotic resistance of 11 S. maltophilia isolates recovered from expectorations of an adult female with CF was determined. Clonal relatedness, mutation frequency, QS variants (RpfC-RpfF), QS autoinducer (DSF) and virulence factors were investigated in eight viable isolates.Results. Seven S. maltophilia isolates were resistant to trimethoprim-sulfamethoxazole and five to levofloxacin. All isolates were susceptible to minocycline. Strong, weak and normomutators were detected, with a tendency to decreased mutation rate over time. XbaI PFGE revealed that seven isolates belong to two related clones. All isolates were RpfC-RpfF1 variants and DSF producers. Only two isolates produced weak biofilms, but none displayed swimming or twitching motility. Four isolates showed proteolytic activity and amplified stmPr1 and stmPr2 genes. Only the first three isolates were siderophore producers. Four isolates showed high resistance to oxidative stress, while the last four showed moderate resistance.Conclusion. The present study shows the long-time persistence of two related S. maltophilia clones in an adult female with CF. During the adaptation of the prevalent clones to the CF lungs over time, we identified a gradual loss of virulence factors that could be associated with the high amounts of DSF produced by the evolved isolates. Further, a decreased mutation rate was observed in the late isolates. The role of all these adaptations over time remains to be elucidated from a clinical perspective, probably focusing on the damage they can cause to CF lungs.
Collapse
Affiliation(s)
- Eliana Alcaraz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
| | - Daniela Centrón
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Gabriela Camicia
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - María Paula Quiroga
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - José Di Conza
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Facultad de Medicina, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Beatriz Passerini de Rossi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
| |
Collapse
|
13
|
Bonnin RA, Girlich D, Jousset AB, Gauthier L, Cuzon G, Bogaerts P, Haenni M, Madec JY, Couvé-Deacon E, Barraud O, Fortineau N, Glaser P, Glupczynski Y, Dortet L, Naas T. A single Proteus mirabilis lineage from human and animal sources: a hidden reservoir of OXA-23 or OXA-58 carbapenemases in Enterobacterales. Sci Rep 2020; 10:9160. [PMID: 32514057 PMCID: PMC7280188 DOI: 10.1038/s41598-020-66161-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
In Enterobacterales, the most common carbapenemases are Ambler's class A (KPC-like), class B (NDM-, VIM- or IMP-like) or class D (OXA-48-like) enzymes. This study describes the characterization of twenty-four OXA-23 or OXA-58 producing-Proteus mirabilis isolates recovered from human and veterinary samples from France and Belgium. Twenty-two P. mirabilis isolates producing either OXA-23 (n = 21) or OXA-58 (n = 1), collected between 2013 and 2018, as well as 2 reference strains isolated in 1996 and 2015 were fully sequenced. Phylogenetic analysis revealed that 22 of the 24 isolates, including the isolate from 1996, belonged to a single lineage that has disseminated in humans and animals over a long period of time. The blaOXA-23 gene was located on the chromosome and was part of a composite transposon, Tn6703, bracketed by two copies of IS15∆II. Sequencing using Pacbio long read technology of OXA-23-producing P. mirabilis VAC allowed the assembly of a 55.5-kb structure encompassing the blaOXA-23 gene in that isolate. By contrast to the blaOXA-23 genes, the blaOXA-58 gene of P. mirabilis CNR20130297 was identified on a 6-kb plasmid. The acquisition of the blaOXA-58 gene on this plasmid involved XerC-XerD recombinases. Our results suggest that a major clone of OXA-23-producing P. mirabilis is circulating in France and Belgium since 1996.
Collapse
Affiliation(s)
- Rémy A Bonnin
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Delphine Girlich
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Agnès B Jousset
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
- Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Lauraine Gauthier
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
- Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Gaëlle Cuzon
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
- Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Pierre Bogaerts
- Belgian National Reference Laboratory for Monitoring of Antimicrobial Resistance in Gram-Negative Bacteria, CHU UCL Namur, B-5530, Yvoir, Belgium
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon - ANSES Laboratoire de Lyon, 31 avenue Tony Garnier, 69364, Lyon, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon - ANSES Laboratoire de Lyon, 31 avenue Tony Garnier, 69364, Lyon, France
| | | | - Olivier Barraud
- Université de Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France
| | - Nicolas Fortineau
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
- Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Philippe Glaser
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Youri Glupczynski
- Belgian National Reference Laboratory for Monitoring of Antimicrobial Resistance in Gram-Negative Bacteria, CHU UCL Namur, B-5530, Yvoir, Belgium
| | - Laurent Dortet
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
- Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France.
- French National Reference Center for Antibiotic Resistance: Carbapenemase producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France.
- Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.
| |
Collapse
|
14
|
Mendes Moreira A, Couvé-Deacon E, Bousquet P, Chainier D, Jové T, Ploy MC, Barraud O. Proteae: a reservoir of class 2 integrons? J Antimicrob Chemother 2019; 74:1560-1562. [DOI: 10.1093/jac/dkz079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ana Mendes Moreira
- Université de Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000 Limoges, France
| | - Elodie Couvé-Deacon
- Université de Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000 Limoges, France
| | - Pauline Bousquet
- Université de Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000 Limoges, France
| | - Delphine Chainier
- Université de Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000 Limoges, France
| | - Thomas Jové
- Université de Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000 Limoges, France
| | - Marie-Cécile Ploy
- Université de Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000 Limoges, France
| | - Olivier Barraud
- Université de Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000 Limoges, France
| |
Collapse
|
15
|
Extended-Spectrum Beta-Lactamases Producing Pseudomonas aeruginosa Isolated From Patients With Ventilator Associated Nosocomial Infection. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2018. [DOI: 10.5812/archcid.13974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. Int J Antimicrob Agents 2017; 51:167-176. [PMID: 29038087 DOI: 10.1016/j.ijantimicag.2017.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/29/2017] [Accepted: 10/07/2017] [Indexed: 01/03/2023]
Abstract
Integrons are versatile gene acquisition systems that allow efficient capturing of exogenous genes and ensure their expression. Various classes of integrons possessing a wide variety of gene cassettes are ubiquitously distributed in enteric bacteria worldwide. The epidemiology of integrons associated multidrug resistance in Enterobacteriaceae is rapidly evolving. In the past two decades, the incidence of integrons in enteric bacteria has increased drastically with evolution of multiple gene cassettes, novel gene arrangements and complex chromosomal integrons such as Salmonella genomic islands. This review focuses on the distribution, versatility, spread and global trends of integrons among important members of the Enterobacteriaceae, including Escherichia coli, Klebsiella, Shigella and Salmonella, which are known to cause infections globally. Such a comprehensive understanding of integron-associated antibiotic resistance, their role in the spread of such resistance traits and their clinical relevance especially with regard to each genus individually is paramount to contain the global spread of antibiotic resistance.
Collapse
|
17
|
Jové T, Da Re S, Tabesse A, Gassama-Sow A, Ploy MC. Gene Expression in Class 2 Integrons Is SOS-Independent and Involves Two Pc Promoters. Front Microbiol 2017; 8:1499. [PMID: 28861047 PMCID: PMC5559693 DOI: 10.3389/fmicb.2017.01499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022] Open
Abstract
Integrons are powerful bacterial genetic elements that permit the expression and dissemination of antibiotic-resistance gene cassettes. They contain a promoter Pc that allows the expression of gene cassettes captured through site-specific recombination catalyzed by IntI, the integron-encoded integrase. Class 1 and 2 integrons are found in both clinical and environmental settings. The regulation of intI and of Pc promoters has been extensively studied in class 1 integrons and the regulatory role of the SOS response on intI expression has been shown. Here we investigated class 2 integrons. We characterized the PintI2 promoter and showed that intI2 expression is not regulated via the SOS response. We also showed that, unlike class 1 integrons, class 2 integrons possess not one but two active Pc promoters that are located within the attI2 region that seem to contribute equally to gene cassette expression. Class 2 integrons mostly encode an inactive truncated integrase, but the rare class 2 integrons that encode an active integrase are associated with less efficient Pc2 promoter variants. We propose an evolutionary model for class 2 integrons in which the absence of repression of the integrase gene expression led to mutations resulting in either inactive integrase or Pc variants of weaker activity, thereby reducing the potential fitness cost of these integrons.
Collapse
Affiliation(s)
- Thomas Jové
- INSERM, CHU Limoges, UMR 1092, Université LimogesLimoges, France
| | - Sandra Da Re
- INSERM, CHU Limoges, UMR 1092, Université LimogesLimoges, France
| | - Aurore Tabesse
- INSERM, CHU Limoges, UMR 1092, Université LimogesLimoges, France
| | - Amy Gassama-Sow
- Unité de Bactériologie Expérimentale, Institut Pasteur de DakarDakar, Senegal
| | | |
Collapse
|
18
|
Centrón D, Integron Study Group A, del V. Delgado G, H. Cassini M, S. Ramírez M, Rodríguez C. Analysis of class 2 integrons as a marker for multidrug resistance among Gram negative bacilli. AIMS GENETICS 2016. [DOI: 10.3934/genet.2016.3.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Lavakhamseh H, Mohajeri P, Rouhi S, Shakib P, Ramazanzadeh R, Rasani A, Mansouri M. Multidrug-Resistant Escherichia coli Strains Isolated from Patients Are Associated with Class 1 and 2 Integrons. Chemotherapy 2015; 61:72-6. [DOI: 10.1159/000438666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022]
Abstract
Background:Escherichia coli isolates displaying multidrug-resistance (MDR) are a major health care problem that results in mortality and morbidity. Integrons are DNA elements in E.coli that are related to antibiotic resistance. The aim of this study was to determine class 1 and 2 integrons and MDR in E. coli isolates obtained from patients in two Sanandaj hospitals, located in Iran. Materials and Methods: 120 isolates of E. coli were obtained from clinical specimens (from November 2013 to April 2014), and the susceptibility of E. coli antimicrobial agents was determined using the Kirby-Bauer disk diffusion method according to the CLSI. PCR were applied for detection of class 1 and 2 integrons in E. coli isolates. SPSS software v16 and the χ2 test were used for statistical analysis in order to calculate the association between antibiotic resistance and the presence of integrons (p < 0.05). Results: In a total of 120 E. coli isolates, 42.5% had MDR. Integrons were found in 50.9% of the MDR isolates, and included 47.05% class 1 and 3.92% class 2 integrons. The strains did not have both classes of integrons simultaneously. An association between resistance to antibiotics and integrons was found. Conclusion: Our results showed that int1 and int2 genes present in E. coli isolates obtained from patients cause MDR in this isolates. Since such bacteria are a reservoir for the transmission of MDR bacteria, appropriate programs are necessary to reduce this problem.
Collapse
|
20
|
Abstract
ABSTRACT
Antimicrobial agents of various types have important bearing on the outcomes of microbial infections. These agents may be bacteriostatic or –cidal, exert their impact via various means, originate from a living organism or a laboratory, and appropriately be used in or on living tissue or not. Though the primary focus of this chapter is on resistance to the antimicrobial agents used to treat uropathogenic
Escherichia coli
(UPEC)-caused urinary tract infections (UTIs), some attention will be given to UPEC’s resistance to silver-containing antiseptics, which may be incorporated into catheters to prevent foreign body-associated UTIs.
Collapse
|
21
|
Abstract
Integrons are versatile gene acquisition systems commonly found in bacterial genomes. They are ancient elements that are a hot spot for genomic complexity, generating phenotypic diversity and shaping adaptive responses. In recent times, they have had a major role in the acquisition, expression, and dissemination of antibiotic resistance genes. Assessing the ongoing threats posed by integrons requires an understanding of their origins and evolutionary history. This review examines the functions and activities of integrons before the antibiotic era. It shows how antibiotic use selected particular integrons from among the environmental pool of these elements, such that integrons carrying resistance genes are now present in the majority of Gram-negative pathogens. Finally, it examines the potential consequences of widespread pollution with the novel integrons that have been assembled via the agency of human antibiotic use and speculates on the potential uses of integrons as platforms for biotechnology.
Collapse
|
22
|
Roy Chowdhury P, McKinnon J, Wyrsch E, Hammond JM, Charles IG, Djordjevic SP. Genomic interplay in bacterial communities: implications for growth promoting practices in animal husbandry. Front Microbiol 2014; 5:394. [PMID: 25161648 PMCID: PMC4129626 DOI: 10.3389/fmicb.2014.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022] Open
Abstract
The discovery of antibiotics heralded the start of a “Golden Age” in the history of medicine. Over the years, the use of antibiotics extended beyond medical practice into animal husbandry, aquaculture and agriculture. Now, however, we face the worldwide threat of diseases caused by pathogenic bacteria that are resistant to all existing major classes of antibiotic, reflecting the possibility of an end to the antibiotic era. The seriousness of the threat is underscored by the severely limited production of new classes of antibiotics. Evolution of bacteria resistant to multiple antibiotics results from the inherent genetic capability that bacteria have to adapt rapidly to changing environmental conditions. Consequently, under antibiotic selection pressures, bacteria have acquired resistance to all classes of antibiotics, sometimes very shortly after their introduction. Arguably, the evolution and rapid dissemination of multiple drug resistant genes en-masse across microbial pathogens is one of the most serious threats to human health. In this context, effective surveillance strategies to track the development of resistance to multiple antibiotics are vital to managing global infection control. These surveillance strategies are necessary for not only human health but also for animal health, aquaculture and plant production. Shortfalls in the present surveillance strategies need to be identified. Raising awareness of the genetic events that promote co-selection of resistance to multiple antimicrobials is an important prerequisite to the design and implementation of molecular surveillance strategies. In this review we will discuss how lateral gene transfer (LGT), driven by the use of low-dose antibiotics in animal husbandry, has likely played a significant role in the evolution of multiple drug resistance (MDR) in Gram-negative bacteria and has complicated molecular surveillance strategies adopted for predicting imminent resistance threats.
Collapse
Affiliation(s)
- Piklu Roy Chowdhury
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia ; NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute Camden, NSW, Australia
| | - Jessica McKinnon
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| | - Ethan Wyrsch
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| | - Jeffrey M Hammond
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute Camden, NSW, Australia
| | - Ian G Charles
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| | - Steven P Djordjevic
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| |
Collapse
|
23
|
Computational gene network study on antibiotic resistance genes of Acinetobacter baumannii. Comput Biol Med 2014; 48:17-27. [DOI: 10.1016/j.compbiomed.2014.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 12/27/2022]
|
24
|
Wei Q, Hu Q, Li S, Lu H, Chen G, Shen B, Zhang P, Zhou Y. A novel functional class 2 integron in clinical Proteus mirabilis isolates. J Antimicrob Chemother 2013; 69:973-6. [PMID: 24235093 DOI: 10.1093/jac/dkt456] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To describe a novel functional class 2 integron that was found in clinical Proteus mirabilis isolates. METHODS Class 1 and 2 integrons were screened by PCR in 153 clinical Proteus isolates. The variable regions of class 1 and 2 integrons were determined by restriction analysis and sequencing. The mutations of internal stop codons in class 2 integrons and their common promoters were also determined by sequencing. Enterobacterial repetitive intergenic consensus (ERIC)-PCR was used to analyse the phylogenetic relations of class 2 integron-positive P. mirabilis isolates. RESULTS Class 1 integrons were detected in 96 (63%) of 153 Proteus isolates: eight different gene cassette arrays were detected, including dfrA32-ereA1-aadA2, which was detected for the first time in P. mirabilis. Class 2 integrons were detected in 101 (66%) of 153 Proteus isolates: four different gene cassette arrays were detected, including dfrA1-catB2-sat2-aadA1, which was detected for the first time in a class 2 integron. A novel functional class 2 integron was detected in 38 P. mirabilis isolates with a common promoter (-35 TTTAAT|16 bp|-10 TAAAGT). The variable region of this functional class 2 integron contained dfrA14 and three novel open reading frames with unknown functions. Very similar ERIC-PCR fingerprinting patterns were detected in these 38 P. mirabilis isolates and were different from other class 2 integron-positive isolates. CONCLUSIONS A novel functional class 2 integron was found for the first time in P. mirabilis. These functional class 2 integron-harbouring P. mirabilis isolates were likely to be clonally spread in our hospital.
Collapse
Affiliation(s)
- Quhao Wei
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou 310014, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Xia R, Ren Y, Guo X, Xu H. Molecular diversity of class 2 integrons in antibiotic-resistant gram-negative bacteria found in wastewater environments in China. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:402-14. [PMID: 23264021 DOI: 10.1007/s10646-012-1034-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2012] [Indexed: 05/14/2023]
Abstract
The molecular architecture of class 2 integrons among gram-negative bacteria from wastewater environments was investigated in Jinan, China. Out of the 391 antibiotic-resistant bacteria found, 38 isolates harboring class 2 integrons encoding potentially transferrable genes that could confer antibiotic resistance were found. These isolates were classified into 19 REP-PCR types. These strains were identified using 16S rRNA gene sequencing and found to be as follows: Proteus mirabilis (16), Escherichia coli (7), Providencia spp. (7), Proteus spp. (2), P. vulgaris (3), Shigella sp. (1), Citrobacter freundii (1), and Acinetobacter sp. (1). Their class 2 integron cassette arrays were amplified and then either analyzed using PCR-RFLP or sequenced. The typical array dfrA1-sat2-aadA1 was detected in 27 isolates. Six atypical arrays were observed, including three kinds of novel arrangements (linF2(∆attC1)-dfrA1(∆attC2)-aadA1-orf441 or linF2(∆attC1)-dfrA1(∆attC2)-aadA1, dfrA1-catB2-sat2-aadA1, and estX(Vr)-sat2-aadA1) and a hybrid with the 3'CS of class 1 integrons (dfrA1-sat2-aadA1-qacH), and dfrA1-sat1. Twenty-four isolates were also found to carry class 1 integrons with 10 types of gene cassette arrays. Several non-integron-associated antibiotic resistance genes were found, and their transferability was investigated. Results showed that water sources in the Jinan region harbored a diverse community of both typical and atypical class 2 integrons, raising concerns about the overuse of antibiotics and their careless disposal into the environment.
Collapse
Affiliation(s)
- Ruirui Xia
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | | | | | | |
Collapse
|
26
|
Stalder T, Barraud O, Casellas M, Dagot C, Ploy MC. Integron involvement in environmental spread of antibiotic resistance. Front Microbiol 2012; 3:119. [PMID: 22509175 PMCID: PMC3321497 DOI: 10.3389/fmicb.2012.00119] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/13/2012] [Indexed: 11/13/2022] Open
Abstract
The spread of antibiotic-resistant bacteria is a growing problem and a public health issue. In recent decades, various genetic mechanisms involved in the spread of resistance genes among bacteria have been identified. Integrons - genetic elements that acquire, exchange, and express genes embedded within gene cassettes (GC) - are one of these mechanisms. Integrons are widely distributed, especially in Gram-negative bacteria; they are carried by mobile genetic elements, plasmids, and transposons, which promote their spread within bacterial communities. Initially studied mainly in the clinical setting for their involvement in antibiotic resistance, their role in the environment is now an increasing focus of attention. The aim of this review is to provide an in-depth analysis of recent studies of antibiotic-resistance integrons in the environment, highlighting their potential involvement in antibiotic-resistance outside the clinical context. We will focus particularly on the impact of human activities (agriculture, industries, wastewater treatment, etc.).
Collapse
|
27
|
Moradian kouchaksaraei F, Ferdosi Shahandashti E, Molana Z, Moradian kouchaksaraei M, Asgharpour F, Mojtahedi A, Rajabnia R. Molecular detection of integron genes and pattern of antibiotic resistance in pseudomonas aeruginosa strains isolated from intensive care unit, shahid beheshti hospital, north of iran. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2012; 1:209-17. [PMID: 24551780 PMCID: PMC3920509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/11/2013] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa is one of the most important pathogens that causes nosocomial infections and shows high level of antibiotic resistance. Integrons are one of the transposable elements in bacteria and their role in antibiotic resistance has been well demonstrated. The aim of this study was a molecular characterization of the integron genes and the determination of the resistance or sensitivity pattern to ceftizoxime, cephizoxim. cephotaxim, amikacin, ofloxacin, imipenem, cefepime, ticarcillin, gentamicin, ciprofloxacin, cefazolin and ceftriaxone antibiotics in P. aeruginosa strains isolated from Intensive Care Units (ICU), Shahid Beheshti Hospital, North of Iran. This cross-sectional study was performed from 2011 to 2012. Totally, fifty four P. aeruginosa strains were isolated from ICU at Shahid-Beheshti hospital, Babol, North of Iran. The bacteria were diagnosed based on mobility, pigment production, growth in 42(0) C, oxidase and catalase tests. PCR analysis was carried out to detect integron genes using hep 35 and hep 36 primers. Also, disk diffusion method was performed to evaluate antibiotic susceptibility of the bacteria using ceftizoxime, ceftazidime, cephotaxime, amikacin, ofloxacin, imipenem, cefepime, ticarcillin, gentamicin, ciprofloxacin, cefazolin and ceftriaxone antibacterial reagents. This study revealed that 20 (37%) P. aeruginosa isolates had integron genes. The antibiotic susceptibility test showed that 53 (98.1%) of the isolates were multidrug-resistant. 12 out of 54 isolated bacteria were resistant to all antibiotics tested. All bacteria were resistant to cefepime and the highest resistance rate was seen to ceftizoxime 92.6% followed by cefazolin 92.3%. The lowest resistance rate was observed to ciprofloxacin 38.9%, ofloxacin 44.4%, amikacin 46.3% and ticarcillin 48.1%. According to this study, P. aeruginosa isolates showed high level of antibiotic resistance and the presence of integrons in these strains can explain the influence of these genes in resistance creation. There was a significant association between resistance to cefotaxime, amikacin, ofloxacin, imipenem, ticarcillin, gentamicin and the presence of integrons.
Collapse
Affiliation(s)
| | | | - Zahra Molana
- Faculty of Para-Medicine; Babol University of Medical Sciences, Babol, Iran.
| | | | - Fariba Asgharpour
- Faculty of Para-Medicine; Babol University of Medical Sciences, Babol, Iran.
| | - Ali Mojtahedi
- Department of Microbiology Science and Research Branch Islamic Azad University, Guilan, Iran.
| | - Ramazan Rajabnia
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran.,Corresponding author: Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran.
E-mail:
| |
Collapse
|
28
|
Gündoğdu A, Long YB, Vollmerhausen TL, Katouli M. Antimicrobial resistance and distribution of sul genes and integron-associated intI genes among uropathogenic Escherichia coli in Queensland, Australia. J Med Microbiol 2011; 60:1633-1642. [DOI: 10.1099/jmm.0.034140-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Aycan Gündoğdu
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Ysanne Beverley Long
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Tara Leigh Vollmerhausen
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Mohammad Katouli
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| |
Collapse
|
29
|
Transferable integrons of Gram-negative bacteria isolated from the gut of a wild boar in the buffer zone of a national park. ANN MICROBIOL 2011; 62:877-880. [PMID: 22661922 PMCID: PMC3351600 DOI: 10.1007/s13213-011-0369-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/29/2011] [Indexed: 11/10/2022] Open
Abstract
The aim of this study was to determine the presence of integron-bearing Gram-negative bacteria in the gut of a wild boar (Sus scrofa L.) shot in the buffer zone of a national park. Five Gram-negative strains of Escherichia coli, Serratia odorifera, Hafnia alvei and Pseudomonas sp. were isolated. Four of these strains had class 2 integrase (intI2), and one harbored class 1 integrase (intI1). The integron-positive strains were multiresistant, i.e., resistant to at least three unrelated antibiotics. All of the integrons were transferred to E. coli J-53 (RifR) in a conjugation assay. The results showed that a number of multiresistant, integron-containing bacterial strains of different genera may inhabit a single individual of a wild animal, allowing the possibility of transfer of antimicrobial resistance genes.
Collapse
|
30
|
|
31
|
Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 2011; 35:790-819. [PMID: 21517914 DOI: 10.1111/j.1574-6976.2011.00273.x] [Citation(s) in RCA: 376] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antibiotics were one of the great discoveries of the 20th century. However, resistance appeared even in the earliest years of the antibiotic era. Antibiotic resistance continues to become worse, despite the ever-increasing resources devoted to combat the problem. One of the most important factors in the development of resistance to antibiotics is the remarkable ability of bacteria to share genetic resources via Lateral Gene Transfer (LGT). LGT occurs on a global scale, such that in theory, any gene in any organism anywhere in the microbial biosphere might be mobilized and spread. With sufficiently strong selection, any gene may spread to a point where it establishes a global presence. From an antibiotic resistance perspective, this means that a resistance phenotype can appear in a diverse range of infections around the globe nearly simultaneously. We discuss the forces and agents that make this LGT possible and argue that the problem of resistance can ultimately only be managed by understanding the problem from a broad ecological and evolutionary perspective. We also argue that human activities are exacerbating the problem by increasing the tempo of LGT and bacterial evolution for many traits that are important to humans.
Collapse
Affiliation(s)
- Hatch W Stokes
- The i3 Institute, University of Technology, Broadway 2007, Sydney, NSW, Australia.
| | | |
Collapse
|
32
|
Larouche A, Roy PH. Effect of attC structure on cassette excision by integron integrases. Mob DNA 2011; 2:3. [PMID: 21332975 PMCID: PMC3053210 DOI: 10.1186/1759-8753-2-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 02/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background Integrons are genetic elements able to integrate and disseminate genes as cassettes by a site-specific recombination mechanism. These elements contain a gene coding for an integrase that carries out recombination by interacting with two different target sites; the attI site in cis with the integrase and the palindromic attC site of a gene cassette. Integron integrases (IntIs) bind specifically to the bottom strand of attC sites. The extrahelical bases resulting from folding of attC bottom strands are important for the recognition by integrases. These enzymes are directly involved in the accumulation and formation of new cassette arrangements in the variable region of integrons. Thus, it is important to better understand interactions between IntIs and their substrates. Results We compared the ability of five IntIs to carry out excision of several cassettes flanked by different attC sites. The results showed that for most cassettes, IntI1 was the most active integrase. However, IntI2*179E and SonIntIA could easily excise cassettes containing the attCdfrA1 site located upstream, whereas IntI1 and IntI3 had only a weak excision activity for these cassettes. Analysis of the secondary structure adopted by the bottom strand of attCdfrA1 has shown that the identity of the extrahelical bases and the distance between them (A-N7-8-C) differ from those of attCs contained in the cassettes most easily excisable by IntI1 (T-N6-G). We used the attCdfrA1 site upstream of the sat2 gene cassette as a template and varied the identity and spacing between the extrahelical bases in order to determine how these modifications influence the ability of IntI1, IntI2*179E, IntI3 and SonIntIA to excise cassettes. Our results show that IntI1 is more efficient in cassette excision using T-N6-G or T-N6-C attCs while IntI3 recognizes only a limited range of attCs. IntI2*179E and SonIntIA are more tolerant of changes to the identity and spacing of extrahelical bases. Conclusions This study provides new insights into the factors that influence the efficiency of cassette excision by integron integrases. It also suggests that IntI2 and SonIntIA have an evolutionary path that is different from IntI1 and IntI3, in their ability to recognize and excise cassettes.
Collapse
Affiliation(s)
- André Larouche
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Québec, Canada.
| | | |
Collapse
|
33
|
Affiliation(s)
- Guillaume Cambray,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Anne-Marie Guerout,
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| | - Didier Mazel
- Institut Pasteur, Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, F-75015 Paris, France;
- CNRS, URA2171, F-75015 Paris, France
| |
Collapse
|
34
|
Detection of class 1 and 2 integrons, extended-spectrum β-lactamases and qnr alleles in enterobacterial isolates from the digestive tract of Intensive Care Unit inpatients. Int J Antimicrob Agents 2010; 36:453-8. [DOI: 10.1016/j.ijantimicag.2010.06.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/14/2010] [Accepted: 06/21/2010] [Indexed: 11/21/2022]
|
35
|
Šeputienė V, Povilonis J, Ružauskas M, Pavilonis A, Sužiedėlienė E. Prevalence of trimethoprim resistance genes in Escherichia coli isolates of human and animal origin in Lithuania. J Med Microbiol 2009; 59:315-322. [PMID: 20007760 DOI: 10.1099/jmm.0.015008-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A total of 456 non-repetitive Escherichia coli isolates from human clinical specimens (urinary, n=134; cervix, vagina and prostate, n=52; blood, pus and wounds, n=45), healthy animals (cattle, n=45; poultry, n=20) and diseased animals (cattle, n=53; swine, n=64; poultry, n=43) obtained in Lithuania during the period 2005-2008 were studied for trimethoprim (TMP) resistance and the prevalence of dfr genes. A TMP resistance rate in the range of 18-26 % respective to the origin was found in clinical isolates, 23-40 % in isolates from diseased animals and 9-20 % in isolates from healthy animals. Of 112 TMP-resistant isolates, 103 carried at least one of the six dfrA genes (dfrA1, dfrA5, dfrA8, dfrA12, dfrA14 and dfrA17) as determined by multiplex PCR and RFLP. The dfrA1 and dfrA17 genes were found most frequently in clinical isolates (17 and 19 isolates, respectively), whilst dfrA1 and dfrA14 genes dominated in isolates of animal origin (25 and 13 isolates, respectively). The dfrA5, dfrA12 and dfrA8 genes were detected at lower frequencies. The association with class 1/class 2 integrons was confirmed for 73-100 % of dfr genes found in most groups of isolates, except for the isolates from diseased swine. In this group, the majority of dfr-positive isolates (67 %, 8/12) carried dfrA8 (6/12) or dfrA14 genes (2/12) that were not associated with integrons. Non-integron location was also confirmed for the remaining dfrA8 genes (six clinical isolates and one isolate from diseased cattle) and for dfrA14 genes (two isolates from diseased cattle and swine each). All cassette-independent dfrA14 genes were found to be located within the strA gene. This study on the prevalence and distribution of TMP resistance genes among E. coli isolates of human and animal origin in Lithuania demonstrates that dfr genes are carried most frequently as gene cassettes within class 1 and/or class 2 integrons. However, TMP resistance in some of the isolates was found to be mediated by non-integron-associated dfrA8 and dfrA14 genes, indicating the existence of alternative sources for the spread of resistance.
Collapse
Affiliation(s)
- Vaida Šeputienė
- Department of Biochemistry and Biophysics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21, LT-03101 Vilnius, Lithuania
| | - Justas Povilonis
- Department of Biochemistry and Biophysics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21, LT-03101 Vilnius, Lithuania
| | - Modestas Ružauskas
- Veterinary Institute of Lithuania Veterinary Academy, Instituto 2, LT-56115 Kaišiadorys, Lithuania
| | - Alvydas Pavilonis
- Department of Microbiology, Kaunas University of Medicine, A. Mickevičiaus 9, LT-44307 Kaunas, Lithuania
| | - Edita Sužiedėlienė
- Department of Biochemistry and Biophysics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionio 21, LT-03101 Vilnius, Lithuania
| |
Collapse
|
36
|
Novel insights about class 2 integrons from experimental and genomic epidemiology. Antimicrob Agents Chemother 2009; 54:699-706. [PMID: 19917745 DOI: 10.1128/aac.01392-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In order to contribute to the knowledge of the architecture and epidemiology of class 2 integrons, we performed a class 2 integron molecular survey in which we analyzed 726 isolates in two bacterial populations from environmental and nonepidemiologically related clinical samples, respectively, collected from 1982 to 2007. We recovered the intI2 gene from 130 of 726 isolates, most of which were clinical isolates, and only 1 (a psychrophilic Pseudomonas sp.) was from a water sample. Unlike the widespread distribution of class 1 integrons within Gram-negative bacilli, only Acinetobacter baumannii and Enterobacter cloacae harbored class 2 integrons at a high frequency in our collection. Class 2 integrons with six novel cassette arrays were documented. Characterization of the transposition module of Tn7, the genetic platform in which class 2 integrons have always been reported, showed tns modules with a mosaic genetic structure. A bioinformatic analysis performed with the tns genes present in sequence databases, the finding of intI2 not associated with tns genes, and the genetic examination of novel tns-like genes found in three isolates indicated the possibility of the independent evolution of the two components related to horizontal gene transfer, the class 2 integrons and the Tn7 transposons.
Collapse
|
37
|
Soufi L, Abbassi MS, Sáenz Y, Vinué L, Somalo S, Zarazaga M, Abbas A, Dbaya R, Khanfir L, Ben Hassen A, Hammami S, Torres C. Prevalence and Diversity of Integrons and Associated Resistance Genes inEscherichia coliIsolates from Poultry Meat in Tunisia. Foodborne Pathog Dis 2009; 6:1067-73. [DOI: 10.1089/fpd.2009.0284] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Leila Soufi
- Institute of Veterinary Research of Tunisia, Tunis, Tunisia
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | | | - Yolanda Sáenz
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
- Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Laura Vinué
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Sergio Somalo
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
- Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| | - Asad Abbas
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Rafika Dbaya
- Institute of Veterinary Research of Tunisia, Tunis, Tunisia
| | - Latifa Khanfir
- Institute of Veterinary Research of Tunisia, Tunis, Tunisia
| | - Assia Ben Hassen
- Laboratory of National Bone Marrow Transplantation Centre, Tunis, Tunisia
| | - Salah Hammami
- Institute of Veterinary Research of Tunisia, Tunis, Tunisia
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
- Centro de Investigación Biomédica de La Rioja, Logroño, Spain
| |
Collapse
|
38
|
Worldwide prevalence of class 2 integrases outside the clinical setting is associated with human impact. Appl Environ Microbiol 2009; 75:5100-10. [PMID: 19502434 DOI: 10.1128/aem.00133-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An intI-targeted PCR assay was optimized to evaluate the frequency of partial class 2-like integrases relative to putative, environmental IntI elements in clone libraries generated from 17 samples that included various terrestrial, marine, and deep-sea habitats with different exposures to human influence. We identified 169 unique IntI phylotypes (< or =98% amino acid identity) relative to themselves and with respect to those previously described. Among these, six variants showed an undescribed, extended, IntI-specific additional domain. A connection between human influence and the dominance of IntI-2-like variants was also observed. IntI phylotypes 80 to 99% identical to class 2 integrases comprised approximately 70 to 100% (n = 65 to 87) of the IntI elements detected in samples with a high input of fecal waste, whereas IntI2-like sequences were undetected in undisturbed settings and poorly represented (1 to 10%; n = 40 to 79) in environments with moderate or no recent fecal or anthropogenic impact. Eleven partial IntI2-like sequences lacking the signature ochre 179 codon were found among samples of biosolids and agricultural soil supplemented with swine manure, indicating a wider distribution of potentially functional IntI2 variants than previously reported. To evaluate IntI2 distribution patterns beyond the usual hosts, namely, the Enterobacteriaceae, we coupled PCR assays targeted at intI and 16S rRNA loci to G+C fractionation of total DNA extracted from manured cropland. IntI2-like sequences and 16S rRNA phylotypes related to Firmicutes (Clostridium and Bacillus) and Bacteroidetes (Chitinophaga and Sphingobacterium) dominated a low-G+C fraction ( approximately 40 to 45%), suggesting that these groups could be important IntI2 hosts in manured soil. Moreover, G+G fractionation uncovered an additional set of 36 novel IntI phylotypes (< or =98% amino acid identity) undetected in bulk DNA and revealed the prevalence of potentially functional IntI2 variants in the low-G+C fraction.
Collapse
|
39
|
Partridge SR, Tsafnat G, Coiera E, Iredell JR. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 2009; 33:757-84. [PMID: 19416365 DOI: 10.1111/j.1574-6976.2009.00175.x] [Citation(s) in RCA: 447] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Gene cassettes are small mobile elements, consisting of little more than a single gene and recombination site, which are captured by larger elements called integrons. Several cassettes may be inserted into the same integron forming a tandem array. The discovery of integrons in the chromosome of many species has led to the identification of thousands of gene cassettes, mostly of unknown function, while integrons associated with transposons and plasmids carry mainly antibiotic resistance genes and constitute an important means of spreading resistance. An updated compilation of gene cassettes found in sequences of such 'mobile resistance integrons' in GenBank was facilitated by a specially developed automated annotation system. At least 130 different (<98% identical) cassettes that carry known or predicted antibiotic resistance genes were identified, along with many cassettes of unknown function. We list exemplar GenBank accession numbers for each and address some nomenclature issues. Various modifications to cassettes, some of which may be useful in tracking cassette epidemiology, are also described. Despite potential biases in the GenBank dataset, preliminary analysis of cassette distribution suggests interesting differences between cassettes and may provide useful information to direct more systematic studies.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
40
|
Analysis by mutagenesis of a chromosomal integron integrase from Shewanella amazonensis SB2BT. J Bacteriol 2009; 191:1933-40. [PMID: 19136589 DOI: 10.1128/jb.01537-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrons are mobile genetic elements that can integrate and disseminate genes as cassettes by a site-specific recombination mechanism. Integrons contain an integrase gene (intI) that carries out recombination by interacting with two different target sites; the attI site in cis with the integrase and the palindromic attC site of a cassette. The plasmid-specified IntI1 excises a greater variety of cassettes (principally antibiotic resistance genes), and has greater activity, than chromosomal integrases. The aim of this study was to analyze the capacity of the chromosomal integron integrase SamIntIA of the environmental bacterium Shewanella amazonensis SB2BT to excise various cassettes and to compare the properties of the wild type with those of mutants that substitute consensus residues of active integron integrases. We show that the SamIntIA integrase is very weakly active in the excision of various cassettes but that the V206R, V206K, and V206H substitutions increase its efficiency for the excision of cassettes. Our results also suggest that the cysteine residue in the beta-5 strand is essential to the activity of Shewanella-type integrases, while the cysteine in the beta-4 strand is less important for the excision activity.
Collapse
|