1
|
Santos R, Mateus C, Oleastro M, Ferreira S. Exploring flagellar contributions to motility and virulence in Arcobacter butzleri. World J Microbiol Biotechnol 2024; 40:367. [PMID: 39455472 DOI: 10.1007/s11274-024-04175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Flagella is a well-known bacterial structure crucial for motility, which also plays pivotal roles in pathogenesis. Arcobacter butzleri, an enteropathogen, possesses a distinctive polar flagellum whose functional aspects remain largely unexplored. Upon investigating the factors influencing A. butzleri motility, we uncovered that environmental conditions like temperature, oxygen levels, and nutrient availability play a significant role. Furthermore, compounds that are found in human gut, such as short-chain fatty acids, mucins and bile salts, have a role in modulating the motility, and in turn, the pathogenicity of A. butzleri. Further investigation demonstrated that A. butzleri ΔflaA mutant showed a reduction in motility with a close to null average velocity, as well as a reduction on biofilm formation. In addition, compared with the wild-type, the ΔflaA mutant showed a decreased ability to invade Caco-2 cells and to adhere to mucins. Taken together, our findings support the role of environmental conditions and gut host associated compounds influencing key physiological aspects of the gastrointestinal pathogen A. butzleri, such as motility, and support the role of the flagellum on bacterial virulence.
Collapse
Affiliation(s)
- Raquel Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Cristiana Mateus
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Susana Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, Covilhã, 6200-506, Portugal.
| |
Collapse
|
2
|
Couto F, Martins I, Vale F, Domingues F, Oleastro M, Ferreira S. Insights into macrolide resistance in Arcobacter butzleri: potential resistance mechanisms and impact on bacterial fitness and virulence. J Antimicrob Chemother 2024; 79:2708-2717. [PMID: 39159041 DOI: 10.1093/jac/dkae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Macrolides are recommended for treating the emerging enteropathogen Arcobacter butzleri; nonetheless, this bacterium often exhibits highly variable resistance rates, and the mechanisms behind this resistance phenotype remain largely unexplored. OBJECTIVES To understand the phenotypic and genotypic consequences associated with the acquisition of erythromycin resistance in A. butzleri, as well as the effects on the fitness of this species. METHODS Resistant strains resulting from spontaneous mutations and adaptive laboratory evolution under increasing erythromycin concentrations were examined regarding their cross-resistance and collateral susceptibility profiles. Genetic causes of phenotypic antibiotic resistance were analysed by sequencing and bioinformatics, with functional correlation through ethidium bromide accumulation assays. Growth profiles in the presence and absence of erythromycin, motility and biofilm formation abilities were assessed to detect potential changes in fitness and virulence. RESULTS Clones from spontaneous mutation rate evolution demonstrated decreased susceptibility to erythromycin and other classes of antibiotics, associated with mutations in the transcriptional repressor areR, causing overexpression of the AreABC efflux pump. In turn, WGS analysis of the evolved strain showed additional mutations in the ribosomal proteins L4 and L22 and in the areR gene. Furthermore, the acquisition of macrolide resistance altered A. butzleri virulence and entailed a high biological cost. CONCLUSIONS The findings of this study have proved that efflux activity contributes synergistically with mutations in the ribosomal proteins L4 and L22 to A. butzleri's high-level macrolide resistance. The results further suggest an impact on the bacterial physiology and virulence, with the increased fitness cost justifying the low worldwide prevalence of high-level resistant circulating strains.
Collapse
Affiliation(s)
- Francisca Couto
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Inês Martins
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Filipa Vale
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
- Faculty of Sciences, BioISI-BioSystems and Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| | - Fernanda Domingues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Mónica Oleastro
- Department of Infectious Diseases, National Reference Laboratory for Gastrointestinal Infections, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Susana Ferreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
3
|
Basharat Z, Ahmed I, Alnasser SM, Meshal A, Waheed Y. Exploring Lead-Like Molecules of Traditional Chinese Medicine for Treatment Quest against Aliarcobacter butzleri: In Silico Toxicity Assessment, Dynamics Simulation, and Pharmacokinetic Profiling. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9377016. [PMID: 39282570 PMCID: PMC11401669 DOI: 10.1155/2024/9377016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 09/19/2024]
Abstract
Background Aliarcobacter butzleri is a Gram-negative, curved or spiral-shaped, microaerophilic bacterium and causes human infections, specifically diarrhea, fever, and sepsis. The research objective of this study was to employ computer-aided drug design techniques to identify potential natural product inhibitors of a vital enzyme in this bacterium. The pyrimidine biosynthesis pathway in its core genome fraction is crucial for its survival and presents a potential target for novel therapeutics. Hence, novel small molecule inhibitors were identified (from traditional Chinese medicinal (TCM) compound library) against it, which may be used for possible curbing of infection by A. butzleri. Methods. A comprehensive subtractive genomics approach was utilized to identify a key enzyme (orotidine-5'-phosphate decarboxylase) cluster conserved in the core genome fraction of A. butzleri. It was selected for inhibitor screening due to its vital role in pyrimidine biosynthesis. TCM library (n > 36,000 compounds) was screened against it using pharmacophore model based on orotidylic acid (control), and the obtained lead-like molecules were subjected to structural docking using AutoDock Vina. The top-scoring compounds, ZINC70454134, ZINC85632684, and ZINC85632721, underwent further scrutiny via a combination of physiological-based pharmacokinetics, toxicity assessment, and atomic-scale dynamics simulations (100 ns). Results Among the screened compounds, ZINC70454134 displayed the most favorable characteristics in terms of binding, stability, absorption, and safety parameters. Overall, traditional Chinese medicine (TCM) compounds exhibited high bioavailability, but in diseased states (cirrhosis, renal impairment, and steatosis), there was a significant decrease in absorption, Cmax, and AUC of the compounds compared to the healthy state. Furthermore, MD simulation demonstrated that the ODCase-ZINC70454134 complex had a superior overall binding affinity, supported by PCA proportion of variance and eigenvalue rank analysis. These favorable characteristics underscore its potential as a promising drug candidate. Conclusion The computer-aided drug design approach employed for this study helped expedite the discovery of antibacterial compounds against A. butzleri, offering a cost-effective and efficient approach to address infection by it. It is recommended that ZINC70454134 should be considered for further experimental analysis due to its indication as a potential therapeutic agent for combating A. butzleri infections. This study provides valuable insights into the molecular basis of biophysical inhibition of A. butzleri through TCM compounds.
Collapse
Affiliation(s)
| | - Ibrar Ahmed
- Alpha Genomics (Private) Limited, Islamabad 45710, Pakistan
- Group of Biometrology, The Korea Research Institute of Standards and Science (KRISS), Yuseong District, Daejeon 34113, Republic of Korea
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia
| | - Alotaibi Meshal
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafar Al Batin, Saudi Arabia
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
4
|
Liu W, Zhu C, Gao S, Ma K, Zhang S, Du Q, Sui K, Liu C, Chi Z. A biosensor encompassing fusarinine C-magnetic nanoparticles and aptamer-red/green carbon dots for dual-channel fluorescent and RGB discrimination of Campylobacter and Aliarcobacter. Talanta 2024; 266:125085. [PMID: 37619471 DOI: 10.1016/j.talanta.2023.125085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
The diarrhea pathogens Campylobacter and Aliarcobacter are similar in morphology and their leading symptoms, making them difficult to be differentially diagnosed. Herein, we report a biosensor with two modules to differentiate the genera-representative species of C. jejuni and A. butzleri. Module 1 was fusarinine C-decorated magnetic nanoparticles; module 2 consisted of C. jejuni-specific aptamer modified with red-emitting carbon dots (CDs) and A. butzleri-specific aptamer-modified green-emitting CDs, consisting non-interfering dual-fluorescence detection channels. Module 1 was used to selectively capture C. jejuni and A. butzleri from an un-cultured sample, and the specific CDs in module 2 would then recognize and bind to their counterpart bacteria when subjected to the collected module 1-bacteria complex. By measuring the fluorescence intensities from the CDs-bound bacteria, the abundance of each bacterium could be differentially indicated. This biosensor exhibited a wide detection range of up to 1 × 107 CFU/mL and the lowest limit of detection (LOD) of 1 CFU/mL, for each bacterium. Thus, the biosensor with dual-fluorescent channels facilitated a culture-independent, ultrasensitive and discriminative detection of C. jejuni and A. butzleri. Remarkably, this fluorescent detection could be transformed into RGB color indication to render the visual discrimination. After the biosensor was coupled with microfluidics, a biosensing platform was developed, which could render fluorescent and RGB differentiation of the two bacteria in human stool or chicken broilers, achieving a LOD of 5 CFU/mL and turnaround time of 65 min. This work established the first biosensor-based methodology for the discriminative detection of Campylobacter and Aliarcobacter in real samples.
Collapse
Affiliation(s)
- Weixing Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China
| | - Chengrui Zhu
- Haide College, Ocean University of China, No. 238 Songling Road, 266100, Qingdao, China
| | - Shaoqian Gao
- Haide College, Ocean University of China, No. 238 Songling Road, 266100, Qingdao, China
| | - Keran Ma
- Haide College, Ocean University of China, No. 238 Songling Road, 266100, Qingdao, China
| | - Shangxian Zhang
- Haide College, Ocean University of China, No. 238 Songling Road, 266100, Qingdao, China
| | - Qingbao Du
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China; Qingdao Sinova-HK Biotechnology Co., Ltd, No. 5138 Haixi Middle Road, 266423, Qingdao, China
| | - Kangmin Sui
- Qingdao Municipal Hospital, University of Health and Rehabilitation Science, No. 5 Donghai Middle Road, 266071, Qingdao, China.
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China.
| |
Collapse
|
5
|
Mateus C, Maia CJ, Domingues F, Bücker R, Oleastro M, Ferreira S. Evaluation of Bile Salts on the Survival and Modulation of Virulence of Aliarcobacter butzleri. Antibiotics (Basel) 2023; 12:1387. [PMID: 37760684 PMCID: PMC10525121 DOI: 10.3390/antibiotics12091387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Aliarcobacter butzleri is a Gram-negative bacterium associated with infections of the gastrointestinal tract and widely distributed in various environments. For successful infection, A. butzleri should be able to tolerate various stresses during gastrointestinal passage, such as bile. Bile represents an antimicrobial host barrier that acts against external noxious agents and consists of a variety of bile salts. The intestinal bile salts act as detergents involved in the antimicrobial host defense; although, on the bacterial side, they could also serve as a signal to activate virulence mechanisms. The aim of this work was to understand the effects of bile salts on the survival and virulence of A. butzleri. In our study, A. butzleri was able to survive in the presence of human physiological concentrations of bile salts. Regarding the virulence features, an increase in cellular hydrophobicity, a decrease in motility and expression of flaA gene, as well as an increase in biofilm formation with a concomitant change in the type of biofilm structure were observed in the presence of sub-inhibitory concentration of bile salts. Concerning adhesion and invasion ability, no significant difference was observed. Overall, the results demonstrated that A. butzleri is able to survive in physiological concentrations of bile salts and that exposure to bile salts could change its virulence mechanisms.
Collapse
Affiliation(s)
- Cristiana Mateus
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| | - Cláudio J. Maia
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| | - Fernanda Domingues
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| | - Roland Bücker
- Clinical Physiology/Nutritional Medicine, Medical Department of Gastroenterology, Infectiology, Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany;
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Susana Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| |
Collapse
|
6
|
Martins I, Mateus C, Domingues F, Oleastro M, Ferreira S. Putative Role of an ABC Efflux System in Aliarcobacter butzleri Resistance and Virulence. Antibiotics (Basel) 2023; 12:antibiotics12020339. [PMID: 36830250 PMCID: PMC9951867 DOI: 10.3390/antibiotics12020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/22/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Aliarcobacter butzleri is considered a ubiquitous microorganism and emergent pathogen, for which increasing rates of multidrug resistance have been described. In line with this, the present work aimed to evaluate for the first time the contribution of an ABC efflux system, the YbhFSR, in the resistance and virulence of this bacterium. Following the in silico characterization of the YbhFSR transporter, a mutant strain was constructed by inactivating the gene responsible for ATP-binding. After ensuring that the mutation did not have an impact on bacterial growth, the resistance profile of parental and mutant strains to different antimicrobial agents was evaluated. The results suggest that the efflux pump may influence the resistance to benzalkonium chloride, ethidium bromide, and cadmium, and several other compounds were identified as potential substrates. Regarding the evaluation of the accumulation of ethidium bromide, a slight increase was observed for the mutant strain, demonstrating a potential role of the YbhFSR efflux pump in the extrusion of toxic compounds from A. butzleri. Subsequently, the role of this efflux pump on the A. butzleri known virulence properties was evaluated, but no difference was seen among mutant and parental strains for the motility, biofilm formation ability, susceptibility to oxidative stress, or the ability to adhere and invade Caco-2 cells. However, in contrast to the parental strain, the mutant strain showed a resistance to human serum. Overall, the results support the role of efflux pumps in A. butzleri resistance to antimicrobials, highlighting the particular role of the YbhFSR system.
Collapse
Affiliation(s)
- Inês Martins
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Cristiana Mateus
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Fernanda Domingues
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Susana Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
- Correspondence:
| |
Collapse
|
7
|
Bonifácio M, Mateus C, Alves AR, Maldonado E, Duarte AP, Domingues F, Oleastro M, Ferreira S. Natural Transformation as a Mechanism of Horizontal Gene Transfer in Aliarcobacter butzleri. Pathogens 2021; 10:pathogens10070909. [PMID: 34358059 PMCID: PMC8308473 DOI: 10.3390/pathogens10070909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022] Open
Abstract
Aliarcobacter butzleri is an emergent enteropathogen, showing high genetic diversity, which likely contributes to its adaptive capacity to different environments. Whether natural transformation can be a mechanism that generates genetic diversity in A. butzleri is still unknown. In the present study, we aimed to establish if A. butzleri is naturally competent for transformation and to investigate the factors influencing this process. Two different transformation procedures were tested using exogenous and isogenic DNA containing antibiotic resistance markers, and different external conditions influencing the process were evaluated. The highest number of transformable A. butzleri strains were obtained with the agar transformation method when compared to the biphasic system (65% versus 47%). A. butzleri was able to uptake isogenic chromosomal DNA at different growth phases, and the competence state was maintained from the exponential to the stationary phases. Overall, the optimal conditions for transformation with the biphasic system were the use of 1 μg of isogenic DNA and incubation at 30 °C under a microaerobic atmosphere, resulting in a transformation frequency ~8 × 10−6 transformants/CFU. We also observed that A. butzleri favored the transformation with the genetic material of its own strain/species, with the DNA incorporation process occurring promptly after the addition of genomic material. In addition, we observed that A. butzleri strains could exchange genetic material in co-culture assays. The presence of homologs of well-known genes involved in the competence in the A. butzleri genome corroborates the natural competence of this species. In conclusion, our results show that A. butzleri is a naturally transformable species, suggesting that horizontal gene transfer mediated by natural transformation is one of the processes contributing to its genetic diversity. In addition, natural transformation can be used as a tool for genetic studies of this species.
Collapse
Affiliation(s)
- Marina Bonifácio
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
| | - Cristiana Mateus
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
| | - Ana R. Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
| | - Emanuel Maldonado
- C4-UBI-Cloud Computing Competence Centre, University of Beira Interior, 6200-284 Covilhã, Portugal;
| | - Ana P. Duarte
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
- C4-UBI-Cloud Computing Competence Centre, University of Beira Interior, 6200-284 Covilhã, Portugal;
| | - Fernanda Domingues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal;
| | - Susana Ferreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.B.); (C.M.); (A.R.A.); (A.P.D.); (F.D.)
- Correspondence:
| |
Collapse
|
8
|
Mateus C, Nunes AR, Oleastro M, Domingues F, Ferreira S. RND Efflux Systems Contribute to Resistance and Virulence of Aliarcobacter butzleri. Antibiotics (Basel) 2021; 10:823. [PMID: 34356744 PMCID: PMC8300790 DOI: 10.3390/antibiotics10070823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Aliarcobacter butzleri is an emergent enteropathogen that can be found in a range of environments. This bacterium presents a vast repertoire of efflux pumps, such as the ones belonging to the resistance nodulation cell division family, which may be associated with bacterial resistance, as well as virulence. Thus, this work aimed to evaluate the contribution of three RND efflux systems, AreABC, AreDEF and AreGHI, in the resistance and virulence of A. butzleri. Mutant strains were constructed by inactivation of the gene that encodes the inner membrane protein of these systems. The bacterial resistance profile of parental and mutant strains to several antimicrobials was assessed, as was the intracellular accumulation of the ethidium bromide dye. Regarding bacterial virulence, the role of these three efflux pumps on growth, strain fitness, motility, biofilm formation ability, survival in adverse conditions (oxidative stress and bile salts) and human serum and in vitro adhesion and invasion to Caco-2 cells was evaluated. We observed that the mutants from the three efflux pumps were more susceptible to several classes of antimicrobials than the parental strain and presented an increase in the accumulation of ethidium bromide, indicating a potential role of the efflux pumps in the extrusion of antimicrobials. The mutant strains had no bacterial growth defects; nonetheless, they presented a reduction in relative fitness. For the three mutants, an increase in the susceptibility to oxidative stress was observed, while only the mutant for AreGHI efflux pump showed a relevant role in bile stress survival. All the mutant strains showed an impairment in biofilm formation ability, were more susceptible to human serum and were less adherent to intestinal epithelial cells. Overall, the results support the contribution of the efflux pumps AreABC, AreDEF and AreGHI of A. butzleri to antimicrobial resistance, as well as to bacterial virulence.
Collapse
Affiliation(s)
- Cristiana Mateus
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| | - Ana Rita Nunes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Fernanda Domingues
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| | - Susana Ferreira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (A.R.N.); (F.D.)
| |
Collapse
|