1
|
Kasza K, Richards B, Jones S, Romero M, Robertson SN, Hardie KR, Gurnani P, Cámara M, Alexander C. Ciprofloxacin Poly(β-amino ester) Conjugates Enhance Antibiofilm Activity and Slow the Development of Resistance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5412-5425. [PMID: 38289032 PMCID: PMC10859900 DOI: 10.1021/acsami.3c14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
To tackle the emerging antibiotic resistance crisis, novel antimicrobial approaches are urgently needed. Bacterial biofilms are a particular concern in this context as they are responsible for over 80% of bacterial infections and are inherently more recalcitrant toward antimicrobial treatments. The high tolerance of biofilms to conventional antibiotics has been attributed to several factors, including reduced drug diffusion through the dense exopolymeric matrix and the upregulation of antimicrobial resistance machinery with successful biofilm eradication requiring prolonged high doses of multidrug treatments. A promising approach to tackle bacterial infections involves the use of polymer drug conjugates, shown to improve upon free drug toxicity and bioavailability, enhance drug penetration through the thick biofilm matrix, and evade common resistance mechanisms. In the following study, we conjugated the antibiotic ciprofloxacin (CIP) to a small library of biodegradable and biocompatible poly(β-amino ester) (PBAE) polymers with varying central amine functionality. The suitability of the polymers as antibiotic conjugates was then verified in a series of assays including testing of efficacy and resistance response in planktonic Gram-positive and Gram-negative bacteria and the reduction of viability in mono- and multispecies biofilm models. The most active polymer within the prepared PBAE-CIP library was shown to achieve an over 2-fold increase in the reduction of biofilm viability in a Pseudomonas aeruginosa monospecies biofilm and superior elimination of all the species present within the multispecies biofilm model. Hence, we demonstrate that CIP conjugation to PBAEs can be employed to achieve improved antibiotic efficacy against clinically relevant biofilm models.
Collapse
Affiliation(s)
- Karolina Kasza
- Division
of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- National
Biofilms Innovation Centre, School of Life Sciences, Biodiscovery
Institute, University Park, University of
Nottingham, Nottingham NG7 2RD, U.K.
| | - Brogan Richards
- National
Biofilms Innovation Centre, School of Life Sciences, Biodiscovery
Institute, University Park, University of
Nottingham, Nottingham NG7 2RD, U.K.
| | - Sal Jones
- Division
of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Manuel Romero
- National
Biofilms Innovation Centre, School of Life Sciences, Biodiscovery
Institute, University Park, University of
Nottingham, Nottingham NG7 2RD, U.K.
- Department
of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Shaun N. Robertson
- National
Biofilms Innovation Centre, School of Life Sciences, Biodiscovery
Institute, University Park, University of
Nottingham, Nottingham NG7 2RD, U.K.
| | - Kim R. Hardie
- National
Biofilms Innovation Centre, School of Life Sciences, Biodiscovery
Institute, University Park, University of
Nottingham, Nottingham NG7 2RD, U.K.
| | - Pratik Gurnani
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Miguel Cámara
- National
Biofilms Innovation Centre, School of Life Sciences, Biodiscovery
Institute, University Park, University of
Nottingham, Nottingham NG7 2RD, U.K.
| | - Cameron Alexander
- Division
of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
2
|
Izmest'ev ES, Pestova SV, Kolesnikova AI, Baidamshina DR, Kayumov AR, Rubtsova SA. Terpene-Functionalized Fluoroquinolones as Potential Antimicrobials: Synthesis and Properties. ChemMedChem 2023; 18:e202300358. [PMID: 37872856 DOI: 10.1002/cmdc.202300358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
This study was the first to synthesize terpene-containing conjugates of fluoroquinolones, ciprofloxacin and norfloxacin, and to evaluate their antibacterial activity against gram-positive methicillin sensitive (MSSA) and methicillin resistant (MRSA) S. aureus, gram-negative P. aeruginosa as well as antifungal activity against C. albicans. The ability of obtained fluoroquinolones to inhibit S. aureus growth was found to depend upon the presence of a linker separating the bulky terpene and fluoroquinolone fragments, and this activity diminished with increasing its length. The highest activity against MSSA was demonstrated by ciprofloxacin derivatives with campholenic (MIC 1 μg/mL) and 2-(isobornan-2-yl-sulfanyl)acetyl (MIC 0.5 μg/mL) substituents. The compound with the last fragment showed high activity against MRSA (MIC 8 μg/mL). The terpene-functionalized norfloxacin derivatives generally proved to be less active than those containing ciprofloxacin fragment. Camphor-10-sulfonylamide derivative with the ciprofloxacin fragment was the only one of all compounds that showed high antifungal activity against C. albicans (8 μg/mL). The study presents data on docking fluoroquinolones to S. aureus DNA gyrase to explain the reasons for manifestation or disappearance of antibacterial activity. The cytotoxicity of fluoroquinolones that showed any antimicrobial activity was investigated against bovine primary lung cells, and they were found to be not toxic in most cases.
Collapse
Affiliation(s)
- Evgeniy S Izmest'ev
- Institute of Chemistry, FRC Komi Science Center Ural Branch of the Russian Academy of Sciences, 48, Pervomaiskaya St., 167000, Syktyvkar, Russian Federation
| | - Svetlana V Pestova
- Institute of Chemistry, FRC Komi Science Center Ural Branch of the Russian Academy of Sciences, 48, Pervomaiskaya St., 167000, Syktyvkar, Russian Federation
| | - Alena I Kolesnikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya St., 420008, Kazan, Russian Federation
| | - Diana R Baidamshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya St., 420008, Kazan, Russian Federation
| | - Airat R Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya St., 420008, Kazan, Russian Federation
| | - Svetlana A Rubtsova
- Institute of Chemistry, FRC Komi Science Center Ural Branch of the Russian Academy of Sciences, 48, Pervomaiskaya St., 167000, Syktyvkar, Russian Federation
| |
Collapse
|
3
|
Sass G, Scherpe L, Martinez M, Marsh JJ, Stevens DA. Metrics of Antifungal Effects of Ciprofloxacin on Aspergillus fumigatus Planktonic Growth and Biofilm Metabolism; Effects of Iron and Siderophores. J Fungi (Basel) 2022; 8:jof8030240. [PMID: 35330242 PMCID: PMC8950033 DOI: 10.3390/jof8030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
Pseudomonas aeruginosa and Aspergillus fumigatus frequently coexist in the airways of immunocompromised patients or individuals with cystic fibrosis. Ciprofloxacin (CIP) is a synthetic quinolone antibiotic commonly used to treat bacterial infections, such as those produced by Pseudomonas aeruginosa. CIP binds iron, and it is unclear what effect this complex would have on the mycobiome. The effects of CIP on Aspergillus were dependent on the iron levels present, and on the presence of Aspergillus siderophores. We found that CIP alone stimulated wildtype planktonic growth, but not biofilm metabolism. At high concentrations, CIP antagonized a profungal effect of iron on wildtype Aspergillus metabolism, presumably owing to iron chelation. CIP interfered with the metabolism and growth of an Aspergillus siderophore mutant, with the effect on metabolism being antagonized by iron. CIP acted synergistically with iron on the growth of the mutant, and, to a lesser extent, the wildtype. In summary, CIP can increase fungal growth or affect fungal metabolism, depending on the local iron concentration and available siderophores. Therefore, high local CIP concentrations during treatment of Pseudomonas–Aspergillus co-infections may increase the fungal burden.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA; (L.S.); (M.M.); (J.J.M.); (D.A.S.)
- Correspondence: ; Tel.: +1-408-998-4557
| | - Lynn Scherpe
- California Institute for Medical Research, San Jose, CA 95128, USA; (L.S.); (M.M.); (J.J.M.); (D.A.S.)
- Faculty of Science and Engineering, Maastricht University, 6229 EN Maastricht, The Netherlands
| | - Marife Martinez
- California Institute for Medical Research, San Jose, CA 95128, USA; (L.S.); (M.M.); (J.J.M.); (D.A.S.)
| | - Julianne J. Marsh
- California Institute for Medical Research, San Jose, CA 95128, USA; (L.S.); (M.M.); (J.J.M.); (D.A.S.)
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (L.S.); (M.M.); (J.J.M.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Integrative Transkingdom Analysis of the Gut Microbiome in Antibiotic Perturbation and Critical Illness. mSystems 2021; 6:6/2/e01148-20. [PMID: 33727397 PMCID: PMC8546997 DOI: 10.1128/msystems.01148-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacterial microbiota play a critical role in mediating local and systemic immunity, and shifts in these microbial communities have been linked to impaired outcomes in critical illness. Emerging data indicate that other intestinal organisms, including bacteriophages, viruses of eukaryotes, fungi, and protozoa, are closely interlinked with the bacterial microbiota and their host, yet their collective role during antibiotic perturbation and critical illness remains to be elucidated. We employed multi-omics factor analysis (MOFA) to systematically integrate the bacterial (16S rRNA), fungal (intergenic transcribed spacer 1 rRNA), and viral (virus discovery next-generation sequencing) components of the intestinal microbiota of 33 critically ill patients with and without sepsis and 13 healthy volunteers. In addition, we quantified the absolute abundances of bacteria and fungi using 16S and 18S rRNA PCRs and characterized the short-chain fatty acids (SCFAs) butyrate, acetate, and propionate using nuclear magnetic resonance spectroscopy. We observe that a loss of the anaerobic intestinal environment is directly correlated with an overgrowth of aerobic pathobionts and their corresponding bacteriophages as well as an absolute enrichment of opportunistic yeasts capable of causing invasive disease. We also observed a strong depletion of SCFAs in both disease states, which was associated with an increased absolute abundance of fungi with respect to bacteria. Therefore, these findings illustrate the complexity of transkingdom changes following disruption of the intestinal bacterial microbiome. IMPORTANCE While numerous studies have characterized antibiotic-induced disruptions of the bacterial microbiome, few studies describe how these disruptions impact the composition of other kingdoms such as viruses, fungi, and protozoa. To address this knowledge gap, we employed MOFA to systematically integrate viral, fungal, and bacterial sequence data from critically ill patients (with and without sepsis) and healthy volunteers, both prior to and following exposure to broad-spectrum antibiotics. In doing so, we show that modulation of the bacterial component of the microbiome has implications extending beyond this kingdom alone, enabling the overgrowth of potentially invasive fungi and viruses. While numerous preclinical studies have described similar findings in vitro, we confirm these observations in humans using an integrative analytic approach. These findings underscore the potential value of multi-omics data integration tools in interrogating how different components of the microbiota contribute to disease states. In addition, our findings suggest that there is value in further studying potential adjunctive therapies using anaerobic bacteria or SCFAs to reduce fungal expansion after antibiotic exposure, which could ultimately lead to improved outcomes in the intensive care unit (ICU).
Collapse
|
5
|
Rossato L, Camargo Dos Santos M, Vitale RG, de Hoog S, Ishida K. Alternative treatment of fungal infections: Synergy with non-antifungal agents. Mycoses 2020; 64:232-244. [PMID: 33098146 DOI: 10.1111/myc.13203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Fungal infections are responsible for high mortality rates in immunocompromised and high-risk surgical patients. Therapy failures during the last decades due to increasing multidrug resistance demand innovative strategies for novel and effective antifungal drugs. Synergistic combinations of antifungals with non-antifungal agents highlight a pragmatic strategy to reduce the development of drug resistance and potentially repurpose known compounds with other functions to bypass costly and time-consuming novel drug development.
Collapse
Affiliation(s)
- Luana Rossato
- Faculdade de Ciências da Saúde, Federal University of Grande Dourados, Mato Grosso do Sul, Brazil
| | | | - Roxana G Vitale
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and Hospital JM Ramos Mejía, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sybren de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Grainha T, Magalhães AP, Melo LDR, Pereira MO. Pitfalls Associated with Discriminating Mixed-Species Biofilms by Flow Cytometry. Antibiotics (Basel) 2020; 9:antibiotics9110741. [PMID: 33121057 PMCID: PMC7694060 DOI: 10.3390/antibiotics9110741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/21/2022] Open
Abstract
Since biofilms are ubiquitous in different settings and act as sources of disease for humans, reliable methods to characterize and quantify these microbial communities are required. Numerous techniques have been employed, but most of them are unidirectional, labor intensive and time consuming. Although flow cytometry (FCM) can be a reliable choice to quickly provide a multiparametric analysis, there are still few applications on biofilms, and even less on the study of inter-kingdom communities. This work aimed to give insights into the application of FCM in order to more comprehensively analyze mixed-species biofilms, formed by different Pseudomonas aeruginosa and Candida albicans strains, before and after exposure to antimicrobials. For comparison purposes, biofilm culturability was also assessed determining colony-forming units. The results showed that some aspects, namely the microbial strain used, the morphological state of the cells and the biofilm matrix, make the accurate analysis of FCM data difficult. These aspects were even more challenging when double-species biofilms were being inspected, as they could engender data misinterpretations. The outcomes draw our attention towards the need to always take into consideration the characteristics of the biofilm samples to be analyzed through FCM, and undoubtedly link to the need for optimization of the processes tailored for each particular case study.
Collapse
Affiliation(s)
| | | | - Luís D. R. Melo
- Correspondence: (L.D.R.M.); (M.O.P.); Tel.: +351-253-601-989 (L.D.R.M.); +351-253-604-402 (M.O.P.)
| | - Maria O. Pereira
- Correspondence: (L.D.R.M.); (M.O.P.); Tel.: +351-253-601-989 (L.D.R.M.); +351-253-604-402 (M.O.P.)
| |
Collapse
|
7
|
Liu Y, Wang W, Yan H, Wang D, Zhang M, Sun S. Anti- Candida activity of existing antibiotics and their derivatives when used alone or in combination with antifungals. Future Microbiol 2019; 14:899-915. [PMID: 31394935 DOI: 10.2217/fmb-2019-0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fungal infections are a growing challenge in immunocompromised patients, especially candidiasis. The prolonged use of traditional antifungals to treat Candida infection has caused the emergence of drug resistance, especially fluconazole. Therefore, new therapeutic strategies for Candida infection are warranted. Recently, attention has been paid to the anti-Candida activity of antibiotics and their derivatives. Studies revealed that a series of antibiotics/derivatives displayed potential anti-Candida activity and some of them could significantly increase the susceptibility of antifungals. Interestingly, the derivatives of aminoglycosides were even more active than fluconazole/itraconazole/posaconazole. This article reviews the anti-Candida activities and mechanisms of antibiotics/derivatives used alone or in combination with antifungals. This review will helpfully provide novel insights for overcoming Candida resistance and discovering new antifungals.
Collapse
Affiliation(s)
- Yaxin Liu
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Weixin Wang
- Department of Pharmacy, Taishan hospital of Shandong Province, Taian, Shandong Province, People's Republic of China
| | - Haiying Yan
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, People's Republic of China
| | - Decai Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
| | - Min Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, People's Republic of China
| |
Collapse
|
8
|
Ojdana D, Gutowska A, Sacha P, Majewski P, Wieczorek P, Tryniszewska E. Activity of Ceftazidime-Avibactam Alone and in Combination with Ertapenem, Fosfomycin, and Tigecycline Against Carbapenemase-Producing Klebsiella pneumoniae. Microb Drug Resist 2019; 25:1357-1364. [PMID: 31295055 DOI: 10.1089/mdr.2018.0234] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate the synergy between ceftazidime-avibactam, ertapenem, fosfomycin, and tigecycline against carbapenemase-producing Klebsiella pneumoniae using the E test MIC:MIC (minimum inhibitory concentration) ratio synergy method. The results were interpreted using fractional inhibitory concentration index (FICI) to describe the effects of antimicrobial combinations in vitro. To assess the clinical significance of each antibiotic combination, the susceptible breakpoint index (SBPI) was calculated for each combination, and within each strain. The FICI method revealed that the most synergistic combinations against carbapenemase-producing K. pneumoniae were ceftazidime-avibactam with ertapenem and ceftazidime-avibactam with fosfomycin. This effect was demonstrated in 47% (9/19) of all tested clinical K. pneumoniae isolates. Considering the effects of all drug combinations in K. pneumoniae harboring blaKPC, blaNDM, and blaOXA-48 genes, we observed that the combination of ceftazidime-avibactam with fosfomycin was the most synergistic in New Delhi metallo-β-lactamase (NDM)-producing K. pneumoniae, and the combination of ceftazidime-avibactam with ertapenem was the most synergistic in K. pneumoniae carbapenemase (KPC)-producing K. pneumoniae. In addition, all tested combinations were synergistic against oxacillinase (OXA)-48-producing K. pneumoniae, except the combination of ceftazidime-avibactam with tigecycline. The SBPI index showed that ceftazidime-avibactam in combination with fosfomycin reduced the MIC to less than the susceptibility breakpoint among all tested carbapenemase-producing K. pneumoniae. Moreover, the combinations of ceftazidime-avibactam with ertapenem, and ceftazidime-avibactam with tigecycline were able to reduce the MIC to less than the susceptibility breakpoint in all KPC- and OXA-48-producing K. pneumoniae.
Collapse
Affiliation(s)
- Dominika Ojdana
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Gutowska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Paweł Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
A review of cosmetic contact lens infections. Eye (Lond) 2018; 33:78-86. [PMID: 30385879 DOI: 10.1038/s41433-018-0257-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 11/08/2022] Open
Abstract
This paper provides a comprehensive review of the existing literature surrounding cosmetic contact lens infections. In this paper, lens-related, dispensing-related and patient-related factors are examined in detail.
Collapse
|
10
|
In vitro Effects of Magnesium-Aluminum Hydroxide (Maalox) on the Antibacterial Activity of Ciprofloxacin against Clinical Bacterial Isolates. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.2.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Venturini TP, Al-Hatmi AM, Rossato L, Azevedo MI, Keller JT, Weiblen C, Santurio JM, Alves SH. Do antibacterial and antifungal combinations have better activity against clinically relevant fusarium species? in vitro synergism. Int J Antimicrob Agents 2018; 51:784-788. [DOI: 10.1016/j.ijantimicag.2017.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 11/16/2022]
|
12
|
Carnt N, Samarawickrama C, White A, Stapleton F. The diagnosis and management of contact lens-related microbial keratitis. Clin Exp Optom 2017; 100:482-493. [PMID: 28815736 DOI: 10.1111/cxo.12581] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/22/2017] [Accepted: 05/27/2017] [Indexed: 01/10/2023] Open
Abstract
Contact lens-associated microbial keratitis poses a diagnostic dilemma for optometrists on two fronts. The distinction between sterile inflammation and microbial infection is often blurred. In addition, there is a requirement with nearly 50 per cent of the Australian and New Zealand optometric profession being therapeutically endorsed, to distinguish between cases of infection that can be managed in the community verses those that require escalation to public hospitals that have access to laboratory diagnostic tools and advanced imaging techniques, such as in vivo confocal microscopy. Pattern recognition and incorporation of knowledge of aetiology and risk factors assists optometrists to decide on optimal management strategies. Skilled optometrists will utilise emerging diagnostic and therapeutic technologies to ensure safe management strategies and better outcomes for these cases.
Collapse
Affiliation(s)
- Nicole Carnt
- School of Optometry and Vision Science, The University of New South Wales, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Chameen Samarawickrama
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew White
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Laurent A, Monod M. Production ofTrichophyton rubrummicrospores in large quantities and its application to evaluate amorolfine/azole compound interactions in vitro. Mycoses 2017; 60:581-586. [DOI: 10.1111/myc.12632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/15/2017] [Accepted: 04/06/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Alexis Laurent
- School of Pharmaceutical Sciences; University of Geneva, University of Lausanne; Geneva Switzerland
| | - Michel Monod
- Service of Dermatology; Laboratory of Mycology; Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| |
Collapse
|
14
|
Hodge G, Cohen SH, Thompson GR. In vitro interactions between amphotericin B and hydrocortisone: potential implications for intrathecal therapy. Med Mycol 2015; 53:749-53. [PMID: 26162473 DOI: 10.1093/mmy/myv047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/17/2015] [Indexed: 12/19/2022] Open
Abstract
Fungal meningitis remains a severe and often lethal infection requiring aggressive antifungal therapy and in refractory cases the use of intrathecal amphotericin B (AmB). Administration of amphotericin B by this method may result in clinically apparent adverse reactions such as paresthesias, radiculitis, or myelopathy. Coadministration of hydrocortisone is therefore often given in an attempt to avoid these effects; however, the potential consequences of this approach on fungal growth or on drug synergy/antagonism had not previously been assessed. We used the checkerboard titration broth microdilution method to analyze interactions by fractional inhibitory concentration indices (FICIs). The combination of amphotericin B and hydrocortisone resulted in synergy or indifference against all isolates (Candida, Cryptococcus, and Coccidioides) during in vitro testing at low concentrations. Antagonism was observed using higher hydrocortisone concentrations (those not observed in vivo) suggesting possible steric hindrance or binding to AmB may occur at doses unlikely to be present during clinical care. Concurrent hydrocortisone and AmB administration should not be avoided due to in vitro antagonism concerns.
Collapse
Affiliation(s)
- Greg Hodge
- Department of Medical Microbiology and Immunology, University of California-Davis
| | - Stuart H Cohen
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center
| | - George R Thompson
- Department of Medical Microbiology and Immunology, University of California-Davis Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center
| |
Collapse
|
15
|
Dalhoff A. Antiviral, antifungal, and antiparasitic activities of fluoroquinolones optimized for treatment of bacterial infections: a puzzling paradox or a logical consequence of their mode of action? Eur J Clin Microbiol Infect Dis 2015; 34:661-8. [PMID: 25515946 PMCID: PMC7087824 DOI: 10.1007/s10096-014-2296-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/02/2014] [Indexed: 12/19/2022]
Abstract
This review summarizes evidence that commercially available fluoroquinolones used for the treatment of bacterial infections are active against other non-bacterial infectious agents as well. Any of these fluoroquinolones exerts, in parallel to its antibacterial action, antiviral, antifungal, and antiparasitic actions at clinically achievable concentrations. This broad range of anti-infective activities is due to one common mode of action, i.e., the inhibition of type II topoisomerases or inhibition of viral helicases, thus maintaining the selective toxicity of fluoroquinolones inhibiting microbial topoisomerases at low concentrations but mammalian topoisomerases at much higher concentrations. Evidence suggests that standard doses of the fluoroquinolones studied are clinically effective against viral and parasitic infections, whereas higher doses administered topically were active against Candida spp. causing ophthalmological infections. Well-designed clinical studies should be performed to substantiate these findings.
Collapse
Affiliation(s)
- A Dalhoff
- Institute for Infection Medicine, University Medical Center Schleswig-Holstein, Brunswiker Str. 4, 24105, Kiel, Germany,
| |
Collapse
|
16
|
Combination of fluconazole with non-antifungal agents: A promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int J Antimicrob Agents 2014; 43:395-402. [DOI: 10.1016/j.ijantimicag.2013.12.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/29/2022]
|
17
|
Abstract
PURPOSE To report 5 cases of culture-proven fungal keratitis that resolved with moxifloxacin monotherapy. METHODS Case reports and review of medical literature. Five patients with fungal keratitis were treated with topical moxifloxacin. RESULTS All 5 patients had resolution of their infection with topical moxifloxacin monotherapy. CONCLUSIONS Topical fluoroquinolone agents may have significant antifungal properties. However, the vast majority of fungal keratitis patients cannot be cured with fluoroquinolone monotherapy. An initial response of keratitis to topical fluoroquinolone therapy should not lead to the assumption that the infection is bacterial because the possibility of fungal infection cannot be ruled out on that basis.
Collapse
|
18
|
Brilhante RSN, Caetano EP, Sidrim JJC, Cordeiro RA, Camargo ZP, Fechine MAB, Lima RAC, Castelo Branco DSCM, Marques FJF, Mesquita JRL, Lima DT, Monteiro AJ, Rocha MFG. Ciprofloxacin shows synergism with classical antifungals against Histoplasma capsulatum var. capsulatum and Coccidioides posadasii. Mycoses 2012. [PMID: 23205615 DOI: 10.1111/myc.12025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study evaluated the in vitro interaction between ciprofloxacin (CIP) and classical antifungals against Histoplasma capsulatum var. capsulatum in mycelial (n = 16) and yeast-like forms (n = 9) and Coccidioides posadasii in mycelial form (n = 16). This research was conducted through broth microdilution and macrodilution, according to Clinical Laboratory Standards Institute. Inocula were prepared to obtain from 0.5 × 10(3) to 2.5 × 10(4) cfu ml(-1) for H. capsulatum and from 10(3) to 5 × 10(3) cfu ml(-1) for C. posadasii. Initially, minimum inhibitory concentration (MIC) for each drug alone was determined. Then, these MICs were used as the highest concentration for each drug during combination assays. The procedures were performed in duplicate. For all combination assays, MICs were defined as the lowest concentration capable of inhibiting 80% of visible fungal growth, when compared to the drug-free control. Drug interaction was evaluated by paired sample t-Student test. The obtained data showed a significant MIC reduction for most tested combinations of CIP with antifungals, except for that of CIP and voriconazole against yeast-like H. capsulatum. This study brings potential alternatives for the treatment of histoplasmosis and coccidioidomycosis, raising the possibility of using CIP as an adjuvant antifungal therapy, providing perspectives to delineate in vivo studies.
Collapse
Affiliation(s)
- R S N Brilhante
- Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Fortaleza, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
In vitro synergisms obtained by amphotericin B and voriconazole associated with non-antifungal agents against Fusarium spp. Diagn Microbiol Infect Dis 2011; 71:126-30. [DOI: 10.1016/j.diagmicrobio.2011.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/02/2011] [Accepted: 05/12/2011] [Indexed: 11/20/2022]
|
20
|
Synergistic interaction of the triple combination of amphotericin B, ciprofloxacin, and polymorphonuclear neutrophils against Aspergillus fumigatus. Antimicrob Agents Chemother 2011; 55:5923-9. [PMID: 21911564 DOI: 10.1128/aac.00548-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aspergillus is damaged by polymorphonuclear neutrophils (PMNs) by means of nonoxidative and oxidative mechanisms, which may be affected by antifungal and antibacterial agents that patients with invasive pulmonary aspergillosis often receive. The pharmacodynamic interactions among deoxycholate amphotericin B (AMB), ciprofloxacin (CIP), and human PMNs against Aspergillus fumigatus growth are unknown. We therefore studied the interactions between 0.032 to 2.0 μg/ml of AMB, 0.1 to 50 μg/ml of CIP at a fixed AMB/CIP ratio of 1:3.125, and PMNs from six donors at an effector-to-target (E:T) ratio of 400:1 against a clinical A. fumigatus isolate using an XTT metabolic assay and the Bliss independence pharmacodynamic-interaction model. CIP exhibited no antifungal activity alone or in combination with PMNs. Synergy was found between AMB and PMNs, with interaction indices (II) of 0.06 to 0.21; the highest interaction of 21% ± 3.6% was observed at 0.22 ± 0.09 μg/ml of AMB. The AMB and CIP (AMB+CIP) combination was synergistic (II = 0.39) at low AMB concentrations and antagonistic (II = 1.39) at high AMB concentrations, with a maximal synergistic interaction of 16% ± 3.7% observed at 0.16 ± 0.08 μg/ml of AMB. The triple combination AMB+CIP+PMNs was synergistic, with interaction indices of 0.05 to 0.20, and a maximal synergistic interaction of 24% ± 4% was observed at 0.20 ± 0.07 μg/ml of AMB. The increased percentage of Bliss synergy of the triple combination AMB+CIP+PMNs (24% ± 4%) was the product of those of the constituent double combinations AMB+PMNs (21% ± 3.6%) and AMB+CIP (16% ± 3.7%). Thus, the antifungal activity of AMB, at clinically relevant concentrations, was enhanced in combination with PMNs and CIP against A. fumigatus growth in a concentration-dependent manner.
Collapse
|
21
|
Chen SCA, Lewis RE, Kontoyiannis DP. Direct effects of non-antifungal agents used in cancer chemotherapy and organ transplantation on the development and virulence of Candida and Aspergillus species. Virulence 2011; 2:280-95. [PMID: 21701255 PMCID: PMC3173675 DOI: 10.4161/viru.2.4.16764] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/01/2011] [Accepted: 06/03/2011] [Indexed: 11/19/2022] Open
Abstract
Conventional antineoplastic, novel immunosuppressive agents and antibiotics used in cancer treatment can directly affect the growth, development and virulence of Candida and Aspergillus species. Cytotoxic and cisplatin compounds have anti-Candida activity and may be synergistic with antifungal drugs; they also inhibit Candida and Aspergillus filamentation/conidation and effect increased virulence in vitro. Glucocorticoids enhance Candida adherence to epithelial cells, germination in serum and in vitro secretion of phospholipases and proteases, as well as growth of A. fumigatus. Calcineurin and target of rapamycin inhibitors perturb Candida and Aspergillus morphogenesis, stress responses and survival in serum, reduce azole tolerance in Candida, but yield conflicting in vivo data. Inhibition of candidal heat shock protein 90 and candidal-specific histone deacetylase represent feasible therapeutic approaches for candidiasis. Tyrosine kinase inhibitors inhibit fungal cell entry into epithelial cells and phagocytosis. Quinolone and other antibiotics may augment activity of azole and polyene agents. The correlation of in vitro effects with clinically meaningful in vivo systems is warranted.
Collapse
Affiliation(s)
- Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, University of Sydney, Westmead, NSW Australia
| | | | | |
Collapse
|
22
|
Yamaguchi MU, Garcia FP, Cortez DAG, Ueda-Nakamura T, Filho BPD, Nakamura CV. Antifungal effects of Ellagitannin isolated from leaves of Ocotea odorifera (Lauraceae). Antonie van Leeuwenhoek 2010; 99:507-14. [DOI: 10.1007/s10482-010-9516-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/20/2010] [Indexed: 11/28/2022]
|
23
|
van Vuuren S, Suliman S, Viljoen A. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett Appl Microbiol 2009; 48:440-6. [DOI: 10.1111/j.1472-765x.2008.02548.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Stergiopoulou T, Meletiadis J, Sein T, Papaioannidou P, Tsiouris I, Roilides E, Walsh TJ. Comparative pharmacodynamic interaction analysis between ciprofloxacin, moxifloxacin and levofloxacin and antifungal agents against Candida albicans and Aspergillus fumigatus. J Antimicrob Chemother 2008; 63:343-8. [PMID: 19109335 DOI: 10.1093/jac/dkn473] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Patients suffering from invasive mycoses often receive concomitant antifungal therapy and antibacterial agents. Ciprofloxacin, a carboxyfluoroquinolone, was previously observed to demonstrate the pharmacodynamic interactions with antifungal agents by altering their growth inhibitory activity against Candida albicans and Aspergillus fumigatus. However, little is known about the interaction between other extended-spectrum fluoroquinolones, such as levofloxacin and moxifloxacin, and antifungal agents against C. albicans and A. fumigatus. METHODS Using a microdilution chequerboard technique, we employed isobolographic analysis adapted to incorporate a non-active agent in order to analyse the potential in vitro interaction between ciprofloxacin, levofloxacin or moxifloxacin and the following representative antifungal agents: amphotericin B, fluconazole or voriconazole and caspofungin. RESULTS Synergistic interactions [interaction indices (Iis) 0.69-0.83, P < 0.05] were observed between amphotericin B (0.07-0.31 mg/L) and either ciprofloxacin (0.19-7.65 mg/L) or levofloxacin (0.41-32.88 mg/L) against C. albicans and A. fumigatus. Synergy (Iis 0.56-0.87, P < 0.05) also was found between voriconazole (0.09-0.14 mg/L) and ciprofloxacin (0.22-11.41 mg/L) as well as between caspofungin (8.94-22.07 mg/L) and levofloxacin (0.14-5.17 mg/L) against A. fumigatus. Some antagonistic (Iis 1.16-1.29, P < 0.05) interactions were observed between fluoroquinolones and fluconazole against C. albicans. In general, ciprofloxacin enhanced the activity of antifungal agents more than moxifloxacin and levofloxacin against both C. albicans and A. fumigatus. CONCLUSIONS The knowledge of the pharmacodynamic interactions between fluoroquinolones and antifungal agents may guide selection and potentially improve the outcome of immunosuppressed patients with concurrent bacterial and fungal infections.
Collapse
Affiliation(s)
- Theodouli Stergiopoulou
- Immunocompromised Host Section, Pediatric Oncology Branch, Clinical Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|