1
|
Datta M, Rajeev A, Chattopadhyay I. Application of antimicrobial peptides as next-generation therapeutics in the biomedical world. Biotechnol Genet Eng Rev 2024; 40:2458-2496. [PMID: 37036043 DOI: 10.1080/02648725.2023.2199572] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
Antimicrobial peptide (AMP), also called host defense peptide, is a part of the innate immune system in eukaryotic organisms. AMPs are also produced by prokaryotes in response to stressful conditions and environmental changes. They have a broad spectrum of activity against both Gram positive and Gram negative bacteria. They are also effective against viruses, fungi, parasites, and cancer cells. AMPs are cationic or amphipathic in nature, but in recent years cationic AMPs have attracted a lot of attention because cationic AMPs can easily interact with negatively charged bacterial and cancer cell membranes through electrostatic interaction. AMPs can also eradicate bacterial biofilms and have broad-spectrum activity against multidrug resistant (MDR) bacteria. Although the main target site for AMPs is the cell membrane, they can also disrupt bacterial cell walls, interfere with protein folding and inhibit enzymatic activity. In recent centuries antibiotics are gradually losing their potential because of the continuous rise of antibiotic resistant bacteria. Therefore, there is an urgent need to develop novel therapeutic approaches to treat MDR bacteria, and AMP is such an alternative treatment option over conventional antibiotics. Several communicable diseases like tuberculosis and non-communicable diseases such as cancer can be treated by using AMPs. One of the major advantages of using AMP is that it works with high specificity and does not cause any harm to normal tissue. AMPs can be modified to improve their efficacy. In this narrative review, we are focusing on the potential application of AMPs in medical science.
Collapse
Affiliation(s)
- Manjari Datta
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashwin Rajeev
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Indranil Chattopadhyay
- Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
2
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
3
|
Gao N, Bai P, Fang C, Wu W, Bi C, Wang J, Shan A. Biomimetic Peptide Nanonets: Exploiting Bacterial Entrapment and Macrophage Rerousing for Combatting Infections. ACS NANO 2024; 18:25446-25464. [PMID: 39240217 DOI: 10.1021/acsnano.4c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The alarming rise in global antimicrobial resistance underscores the urgent need for effective antibacterial drugs. Drawing inspiration from the bacterial-entrapment mechanism of human defensin 6, we have fabricated biomimetic peptide nanonets composed of multiple functional fragments for bacterial eradication. These biomimetic peptide nanonets are designed to address antimicrobial resistance challenges through a dual-approach strategy. First, the resulting nanofibrous networks trap bacteria and subsequently kill them by loosening the membrane structure, dissipating proton motive force, and causing multiple metabolic perturbations. Second, these trapped bacterial clusters reactivate macrophages to scavenge bacteria through enhanced chemotaxis and phagocytosis via the PI3K-AKT signaling pathway and ECM-receptor interaction. In vivo results have proven that treatment with biomimetic peptide nanonets can alleviate systemic bacterial infections without causing noticeable systemic toxicity. As anticipated, the proposed strategy can address stubborn infections by entrapping bacteria and awakening antibacterial immune responses. This approach might serve as a guide for the design of bioinspired materials for future clinical applications.
Collapse
Affiliation(s)
- Nan Gao
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Bai
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Chunyang Fang
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Wanpeng Wu
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Chongpeng Bi
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Jiajun Wang
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- College of animal science and technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Tran TTQ, Narayanan C, Loes AN, Click TH, Pham NTH, Létourneau M, Harms MJ, Calmettes C, Agarwal PK, Doucet N. Ancestral sequence reconstruction dissects structural and functional differences among eosinophil ribonucleases. J Biol Chem 2024; 300:107280. [PMID: 38588810 PMCID: PMC11101842 DOI: 10.1016/j.jbc.2024.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
Evolutionarily conserved structural folds can give rise to diverse biological functions, yet predicting atomic-scale interactions that contribute to the emergence of novel activities within such folds remains challenging. Pancreatic-type ribonucleases illustrate this complexity, sharing a core structure that has evolved to accommodate varied functions. In this study, we used ancestral sequence reconstruction to probe evolutionary and molecular determinants that distinguish biological activities within eosinophil members of the RNase 2/3 subfamily. Our investigation unveils functional, structural, and dynamical behaviors that differentiate the evolved ancestral ribonuclease (AncRNase) from its contemporary eosinophil RNase orthologs. Leveraging the potential of ancestral reconstruction for protein engineering, we used AncRNase predictions to design a minimal 4-residue variant that transforms human RNase 2 into a chimeric enzyme endowed with the antimicrobial and cytotoxic activities of RNase 3 members. This work provides unique insights into mutational and evolutionary pathways governing structure, function, and conformational states within the eosinophil RNase subfamily, offering potential for targeted modulation of RNase-associated functions.
Collapse
Affiliation(s)
- Thi Thanh Quynh Tran
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, Quebec, Canada
| | - Chitra Narayanan
- Department of Chemistry, York College, City University of New York (CUNY), Jamaica, New York, USA
| | - Andrea N Loes
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Timothy H Click
- Chemistry and Biochemistry, University of Mary, Bismarck, North Dakota, USA
| | - N T Hang Pham
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, Quebec, Canada
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, Quebec, Canada
| | - Michael J Harms
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Charles Calmettes
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, Quebec, Canada; PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, UQAM, Montréal, Quebec, Canada
| | - Pratul K Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, Quebec, Canada; PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, UQAM, Montréal, Quebec, Canada.
| |
Collapse
|
5
|
Tandon A, Harioudh MK, Verma NK, Saroj J, Gupta A, Pant G, Tripathi JK, Kumar A, Kumari T, Tripathi AK, Mitra K, Ghosh JK. Characterization of a Myeloid Differentiation Factor 2-Derived Peptide that Facilitates THP-1 Macrophage-Mediated Phagocytosis of Gram-Negative Bacteria. ACS Infect Dis 2024; 10:845-857. [PMID: 38363869 DOI: 10.1021/acsinfecdis.3c00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Myeloid differentiation factor 2 (MD2), the TLR4 coreceptor, has been shown to possess opsonic activity and has been implicated in phagocytosis and intracellular killing of Gram-negative bacteria. However, any MD2 protein segment involved in phagocytosis of Gram-negative bacteria is not yet known. A short synthetic MD2 segment, MD54 (amino acid regions 54 to 69), was shown to interact with a Gram-negative bacterial outer membrane component, LPS, earlier. Furthermore, the MD54 peptide induced aggregation of LPS and facilitated its internalization in THP-1 cells. Currently, it has been investigated if MD2-derived MD54 possesses any opsonic property and role in phagocytosis of Gram-negative bacteria. Remarkably, we observed that MD54 facilitated agglutination of Gram-negative bacteria, Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC BAA-427), but not of Gram-positive bacteria, Bacillus subtilis (ATCC 6633) and Staphylococcus aureus (ATCC 25923). The MD54-opsonized Gram-negative bacteria internalized within PMA-treated THP-1 cells and were killed over a longer incubation period. However, both internalization and intracellular killing of the MD54-opsonized Gram-negative bacteria within THP-1 phagocytes were appreciably inhibited in the presence of a phagocytosis inhibitor, cytochalasin D. Furthermore, MD54 facilitated the clearance of Gram-negative bacteria E. coli (ATCC 25922) and P. aeruginosa (ATCC BAA-427) from the infected BALB/c mice whereas an MD54 analog, MMD54, was inactive. Overall, for the first time, the results revealed that a short MD2-derived peptide can specifically agglutinate Gram-negative bacteria, act as an opsonin for these bacteria, and facilitate their phagocytosis by THP-1 phagocytes. The results suggest that the MD54 segment could have a crucial role in MD2-mediated host-pathogen interaction involving the Gram-negative bacteria.
Collapse
Affiliation(s)
- Anshika Tandon
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Munesh Kumar Harioudh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Arvind Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Garima Pant
- Electron Microscopy Unit, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Jitendra Kumar Tripathi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Amit Kumar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Tripti Kumari
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Amit Kumar Tripathi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Kalyan Mitra
- Electron Microscopy Unit, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| |
Collapse
|
6
|
Alahyaribeik S, Nazarpour M. Peptide recovery from chicken feather keratin and their anti-biofilm properties against methicillin-resistant Staphylococcus aureus (MRSA). World J Microbiol Biotechnol 2024; 40:123. [PMID: 38441817 DOI: 10.1007/s11274-024-03921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/03/2024] [Indexed: 03/07/2024]
Abstract
Bacteria have the potential to adhere to abiotic surfaces, which has an undesirable effect in the food industry because they can survive for sustained periods through biofilm formation. In this study, an antibacterial peptide (ABP), with a molecular mass of 3861 Da, was purified from hydrolyzed chicken feathers using a locally isolated keratinolytic bacterium, namely Rhodococcus erythropolis, and its antibacterial and antibiofilm potential were investigated against planktonic and biofilm cells of Methicillin-Resistant Staphylococcus Aureus (MRSA). The results demonstrated that purified ABP showed the growth inhibition of MRSA cells with the minimum inhibitory concentration (MIC) of 45 µg/ml and disrupted MRSA biofilm formation at a concentration of 200 ug/ml, which results were confirmed by scanning electron micrograph (SEM). Moreover, the secondary structures of the peptide were assessed as part of the FTIR analysis to evaluate its mode of action. ExPASy tools were used to predict the ABP sequence, EPCVQUQDSRVVIQPSPVVVVTLPGPILSSFPQNTA, from a chicken feather keratin sequence database following in silico digestion by trypsin. Also, ABP had 54.29% hydrophobic amino acids, potentially contributing to its antimicrobial activity. The findings of toxicity prediction of the peptide by the ToxinPred tool revealed that ABP had non-toxic effects. Thus, these results support the potential of this peptide to be used as an antimicrobial agent for the treatment or prevention of MRSA biofilm formation in feed, food, or pharmaceutical applications.
Collapse
Affiliation(s)
- Samira Alahyaribeik
- Industrial and Environmental Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Madineh Nazarpour
- Industrial and Environmental Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
7
|
Surekha S, Lamiyan AK, Gupta V. Antibiotic Resistant Biofilms and the Quest for Novel Therapeutic Strategies. Indian J Microbiol 2024; 64:20-35. [PMID: 38468748 PMCID: PMC10924852 DOI: 10.1007/s12088-023-01138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/03/2023] [Indexed: 03/13/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the major leading causes of death around the globe. Present treatment pipelines are insufficient to overcome the critical situation. Prominent biofilm forming human pathogens which can thrive in infection sites using adaptive features results in biofilm persistence. Considering the present scenario, prudential investigations into the mechanisms of resistance target them to improve antibiotic efficacy is required. Regarding this, developing newer and effective treatment options using edge cutting technologies in medical research is the need of time. The reasons underlying the adaptive features in biofilm persistence have been centred on different metabolic and physiological aspects. The high tolerance levels against antibiotics direct researchers to search for novel bioactive molecules that can help combat the problem. In view of this, the present review outlines the focuses on an opportunity of different strategies which are in testing pipeline can thus be developed into products ready to use.
Collapse
Affiliation(s)
- Saumya Surekha
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | - Varsha Gupta
- GMCH: Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
8
|
Zhang LM, Yang M, Zhou SW, Zhang H, Feng Y, Shi L, Li DS, Lu QM, Zhang ZH, Zhao M. Blapstin, a Diapause-Specific Peptide-Like Peptide from the Chinese Medicinal Beetle Blaps rhynchopetera, Has Antifungal Function. Microbiol Spectr 2023; 11:e0308922. [PMID: 37140456 PMCID: PMC10269622 DOI: 10.1128/spectrum.03089-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/10/2023] [Indexed: 05/05/2023] Open
Abstract
Drug resistance against bacteria and fungi has become common in recent years, and it is urgent to discover novel antimicrobial peptides to manage this problem. Many antimicrobial peptides from insects have been reported to have antifungal activity and are candidate molecules in the treatment of human diseases. In the present study, we characterized an antifungal peptide named blapstin that was isolated from the Chinese medicinal beetle Blaps rhynchopetera used in folk medicine. The complete coding sequence was cloned from the cDNA library prepared from the midgut of B. rhynchopetera. It is a 41-amino-acid diapause-specific peptide (DSP)-like peptide stabilized by three disulfide bridges and shows antifungal activity against Candida albicans and Trichophyton rubrum with MICs of 7 μM and 5.3 μM, respectively. The C. albicans and T. rubrum treated with blapstin showed irregular and shrunken cell membranes. In addition, blapstin inhibited the activity of C. albicans biofilm and showed little hemolytic or toxic activity on human cells and it is highly expressed in the fat body, followed by the hemolymph, midgut, muscle, and defensive glands. These results indicate that blapstin may help insects fight against fungi and showed a potential application in the development of antifungal reagents. IMPORTANCE Candida albicans is one of the conditional pathogenic fungi causing severe nosocomial infections. Trichophyton rubrum and other skin fungi are the main pathogens of superficial cutaneous fungal diseases, especially in children and the elderly. At present, antibiotics such as amphotericin B, ketoconazole, and fluconazole are the main drugs for the clinical treatment of C. albicans and T. rubrum infections. However, these drugs have certain acute toxicity. Long-term use can increase kidney damage and other side effects. Therefore, obtaining broad-spectrum antifungal drugs with high efficiency and low toxicity for the treatment of C. albicans and T. rubrum infections is a top priority. Blapstin is an antifungal peptide which shows activity against C. albicans and T. rubrum. The discovery of blapstin provides a novel clue for our understanding of the innate immunity of Blaps rhynchopetera and provides a template for designing antifungal drugs.
Collapse
Affiliation(s)
- La-Mei Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Min Yang
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Sheng-Wen Zhou
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Zhang
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Feng
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Lei Shi
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Dong-Sheng Li
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan, Hubei, China
| | - Qiu-Min Lu
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan, Hubei, China
| | - Zhong-He Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| | - Min Zhao
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming, China
| |
Collapse
|
9
|
Suchi SA, Nam KB, Kim YK, Tarek H, Yoo JC. A novel antimicrobial peptide YS12 isolated from Bacillus velezensis CBSYS12 exerts anti-biofilm properties against drug-resistant bacteria. Bioprocess Biosyst Eng 2023; 46:813-828. [PMID: 36997801 DOI: 10.1007/s00449-023-02864-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023]
Abstract
Nowadays, the abuse of antibiotics has led to the rise of multi-drug-resistant bacteria. Antimicrobial peptides (AMPs), with broad-spectrum antimicrobial activity have attracted considerable attention as possible alternatives to traditional antibiotics. In this work, we aimed to evaluate the antimicrobial and anti-biofilm activity of an antimicrobial peptide designed as YS12 derived from Bacillus velezensis CBSYS12. The strain CBSYS12 was isolated from Korean food kimchi and purified followed by ultrafiltration and sequential chromatographic methodology. Hereafter, Tricine SDS-PAGE revealed a single protein band of around 3.3 kDa that was further confirmed in situ inhibitory activity of the gel. A similar molecular weight (~ 3348.4 Da) protein also appeared in MALDI-TOF confirming the purity and homogeneity of peptide YS12. Intriguingly, YS12 revealed a strong antimicrobial activity with a minimum inhibitory concentration (MIC) value ranging from 6 to 12 μg/ml for both Gram-positive and Gram-negative bacteria, such as E. coli, P. aeruginosa, MRSA 4-5, VRE 82, and M. smegmatis. We also determined the mode of action of the peptide against pathogenic microorganisms using different fluorescent dyes. In addition, the anti-biofilm assay demonstrated that peptide YS12 was able to inhibit biofilm formation around 80% for both bacterial strains E. coli and P. aeruginosa at 80 µg/ml. Notably, YS12 exhibited a greater biofilm eradication activity than commercial antibiotics. In summary, our study proposed that peptide YS12 may be used as a promising therapeutic agent to overcome drug and biofilm-related infections.
Collapse
Affiliation(s)
- Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Kyung Bin Nam
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Young Kyun Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hasan Tarek
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Jin Cheol Yoo
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
10
|
Lila ASA, Rajab AAH, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, Tabrez S, Hegazy WAH. Biofilm Lifestyle in Recurrent Urinary Tract Infections. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010148. [PMID: 36676100 PMCID: PMC9865985 DOI: 10.3390/life13010148] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.
Collapse
Affiliation(s)
- Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| | - Azza A. H. Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
- Correspondence: (A.S.A.L.); (W.A.H.H.)
| |
Collapse
|
11
|
Szadkowska M, Olewniczak M, Kloska A, Jankowska E, Kapusta M, Rybak B, Wyrzykowski D, Zmudzinska W, Gieldon A, Kocot A, Kaczorowska AK, Nierzwicki L, Makowska J, Kaczorowski T, Plotka M. A Novel Cryptic Clostridial Peptide That Kills Bacteria by a Cell Membrane Permeabilization Mechanism. Microbiol Spectr 2022; 10:e0165722. [PMID: 36094301 PMCID: PMC9602519 DOI: 10.1128/spectrum.01657-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 12/31/2022] Open
Abstract
This work reports detailed characteristics of the antimicrobial peptide Intestinalin (P30), which is derived from the LysC enzyme of Clostridium intestinale strain URNW. The peptide shows a broader antibacterial spectrum than the parental enzyme, showing potent antimicrobial activity against clinical strains of Gram-positive staphylococci and Gram-negative pathogens and causing between 3.04 ± 0.12 log kill for Pseudomonas aeruginosa PAO1 and 7.10 ± 0.05 log kill for multidrug-resistant Acinetobacter baumannii KPD 581 at a 5 μM concentration. Moreover, Intestinalin (P30) prevents biofilm formation and destroys 24-h and 72-h biofilms formed by Acinetobacter baumannii CRAB KPD 205 (reduction levels of 4.28 and 2.62 log CFU/mL, respectively). The activity of Intestinalin is combined with both no cytotoxicity and little hemolytic effect against mammalian cells. The nuclear magnetic resonance and molecular dynamics (MD) data show a high tendency of Intestinalin to interact with the bacterial phospholipid cell membrane. Although positively charged, Intestinalin resides in the membrane and aggregates into small oligomers. Negatively charged phospholipids stabilize peptide oligomers to form water- and ion-permeable pores, disrupting the integrity of bacterial cell membranes. Experimental data showed that Intestinalin interacts with negatively charged lipoteichoic acid (logK based on isothermal titration calorimetry, 7.45 ± 0.44), causes membrane depolarization, and affects membrane integrity by forming large pores, all of which result in loss of bacterial viability. IMPORTANCE Antibiotic resistance is rising rapidly among pathogenic bacteria, becoming a global public health problem that threatens the effectiveness of therapies for many infectious diseases. In this respect, antimicrobial peptides appear to be an interesting alternative to combat bacterial pathogens. Here, we report the characteristics of an antimicrobial peptide (of 30 amino acids) derived from the clostridial LysC enzyme. The peptide showed killing activity against clinical strains of Gram-positive and Gram-negative pathogens. Experimental data and computational modeling showed that this peptide forms transmembrane pores, directly engaging the negatively charged phospholipids of the bacterial cell membrane. Consequently, dissipation of the electrochemical gradient across cell membranes affects many vital processes, such as ATP synthesis, motility, and transport of nutrients. This kind of dysfunction leads to the loss of bacterial viability. Our firm conviction is that the presented study will be a helpful resource in searching for novel antimicrobial peptides that could have the potential to replace conventional antibiotics.
Collapse
Affiliation(s)
- Monika Szadkowska
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Michal Olewniczak
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Elzbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Malgorzata Kapusta
- Department of Plant Cytology and Embryology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Dariusz Wyrzykowski
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Wioletta Zmudzinska
- Laboratory of Biopolymer Structure, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Artur Gieldon
- Laboratory of Simulation of Polymers, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Aleksandra Kocot
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Lukasz Nierzwicki
- Department of Physical Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Joanna Makowska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
12
|
Lima LS, Ramalho SR, Sandim GC, Parisotto EB, Orlandi Sardi JDC, Rodrigues Macedo ML. Prevention of hospital pathogen biofilm formation by antimicrobial peptide KWI18. Microb Pathog 2022; 172:105791. [PMID: 36150557 DOI: 10.1016/j.micpath.2022.105791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
This study investigated the antimicrobial and antibiofilm activity of KWI18, a new synthetic peptide. KWI18 was tested against planktonic cells and Pseudomonas aeruginosa and Candida parapsilosis biofilms. Time-kill and synergism assays were performed. Sorbitol, ergosterol, lipid peroxidation, and protein oxidation assays were used to gain insight into the mechanism of action of the peptide. Toxicity was evaluated against erythrocytes and Galleria mellonella. KWI18 showed antimicrobial activity, with minimum inhibitory concentration (MIC) values ranging from 0.5 to 10 μM. KWI18 at 10 × MIC reduced P. aeruginosa and C. parapsilosis biofilm formation and cell viability. Time-kill assays revealed that KWI18 inhibited the growth of P. aeruginosa in 4 h and that of C. parapsilosis in 6 h. The mechanism of action was related to ergosterol as well as induction of oxidative damage in cells and biofilms. Furthermore, KWI18 demonstrated low toxicity to erythrocytes and G. mellonella. KWI18 proved to be an effective antibiofilm agent, opening opportunities for the development of new antimicrobials.
Collapse
Affiliation(s)
- Letícia Souza Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Suellen Rodrigues Ramalho
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Graziele Custódia Sandim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Eduardo Benedetti Parisotto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Janaina de Cássia Orlandi Sardi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil; Programa de Pós-Graduação em Ciências Odontológicas Integradas, Universidade de Cuiabá, Cuiabá, Mato Grosso, Brazil
| | - Maria Lígia Rodrigues Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
13
|
Fernández-Millán P, Vázquez-Monteagudo S, Boix E, Prats-Ejarque G. Exploring the RNase A scaffold to combine catalytic and antimicrobial activities. Structural characterization of RNase 3/1 chimeras. Front Mol Biosci 2022; 9:964717. [PMID: 36188223 PMCID: PMC9515509 DOI: 10.3389/fmolb.2022.964717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Design of novel antibiotics to fight antimicrobial resistance is one of the first global health priorities. Novel protein-based strategies come out as alternative therapies. Based on the structure-function knowledge of the RNase A superfamily we have engineered a chimera that combines RNase 1 highest catalytic activity with RNase 3 unique antipathogen properties. A first construct (RNase 3/1-v1) was successfully designed with a catalytic activity 40-fold higher than RNase 3, but alas in detriment of its anti-pathogenic activity. Next, two new versions of the original chimeric protein were created showing improvement in the antimicrobial activity. Both second generation versions (RNases 3/1-v2 and -v3) incorporated a loop characteristic of RNase 3 (L7), associated to antimicrobial activity. Last, removal of an RNase 1 flexible loop (L1) in the third version enhanced its antimicrobial properties and catalytic efficiency. Here we solved the 3D structures of the three chimeras at atomic resolution by X-ray crystallography. Structural analysis outlined the key functional regions. Prediction by molecular docking of the protein chimera in complex with dinucleotides highlighted the contribution of the C-terminal region to shape the substrate binding cavity and determine the base selectivity and catalytic efficiency. Nonetheless, the structures that incorporated the key features related to RNase 3 antimicrobial activity retained the overall RNase 1 active site conformation together with the essential structural elements for binding to the human ribonuclease inhibitor (RNHI), ensuring non-cytotoxicity. Results will guide us in the design of the best RNase pharmacophore for anti-infective therapies.
Collapse
Affiliation(s)
| | | | - Ester Boix
- *Correspondence: Ester Boix, ; Guillem Prats-Ejarque,
| | | |
Collapse
|
14
|
Abengózar MÁ, Fernández-Reyes M, Salazar VA, Torrent M, de la Torre BG, Andreu D, Boix E, Rivas L. Essential Role of Enzymatic Activity in the Leishmanicidal Mechanism of the Eosinophil Cationic Protein (RNase 3). ACS Infect Dis 2022; 8:1207-1217. [PMID: 35731709 PMCID: PMC9274760 DOI: 10.1021/acsinfecdis.1c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The recruitment of
eosinophils into Leishmania lesions is frequently
associated with a favorable evolution. A feasible
effector for this process is eosinophil cationic protein (ECP, RNase
3), one of the main human eosinophil granule proteins, endowed with
a broad spectrum of antimicrobial activity, including parasites. ECP
was active on Leishmania promastigotes and axenic
amastigotes (LC50’s = 3 and 16 μM, respectively)
but, in contrast to the irreversible membrane damage caused on bacteria
and reproduced by its N-terminal peptides, it only
induced a mild and transient plasma membrane destabilization on Leishmania donovani promastigotes. To assess the
contribution of RNase activity to the overall leishmanicidal activity
of ECP, parasites were challenged in parallel with a single-mutant
version, ECP-H15A, devoid of RNase activity, that fully preserves
the conformation and liposome permeabilization ability. ECP-H15A showed
a similar uptake to ECP on promastigotes, but with higher LC50’s (>25 μM) for both parasite stages. ECP-treated
promastigotes
showed a degraded RNA pattern, absent in ECP-H15A-treated samples.
Moreover ECP, but not ECP-H15A, reduced more than 2-fold the parasite
burden of infected macrophages. Altogether, our results suggest that
ECP enters the Leishmania cytoplasm by an endocytic
pathway, ultimately leading to RNA degradation as a key contribution
to the leishmanicidal mechanism. Thus, ECP combines both membrane
destabilization and enzymatic activities to effect parasite killing.
Taken together, our data highlight the microbicidal versatility of
ECP as an innate immunity component and support the development of
cell-penetrating RNases as putative leishmanicidal agents.
Collapse
Affiliation(s)
- María Ángeles Abengózar
- Department of Structural and Chemical Biology, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Fernández-Reyes
- Department of Structural and Chemical Biology, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Vivian A Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogota, Colorado 111711, Colombia
| | - Marc Torrent
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Beatriz G de la Torre
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Luis Rivas
- Department of Structural and Chemical Biology, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
15
|
Hu YZ, Ma ZY, Wu CS, Wang J, Zhang YA, Zhang XJ. LECT2 Is a Novel Antibacterial Protein in Vertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2037-2053. [PMID: 35365566 DOI: 10.4049/jimmunol.2100812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
In vertebrates, leukocyte-derived chemotaxin-2 (LECT2) is an important immunoregulator with conserved chemotactic and phagocytosis-stimulating activities to leukocytes during bacterial infection. However, whether LECT2 possesses direct antibacterial activity remains unknown. In this article, we show that, unlike tetrapods with a single LECT2 gene, two LECT2 genes exist in teleost fish, named LECT2-a and LECT2-b Using grass carp as a research model, we found that the expression pattern of grass carp LECT2-a (gcLECT2-a) is more similar to that of LECT2 in tetrapods, while gcLECT2-b has evolved to be highly expressed in mucosal immune organs, including the intestine and skin. Interestingly, we found that gcLECT2-b, with conserved chemotactic and phagocytosis-stimulating activities, can also kill Gram-negative and Gram-positive bacteria directly in a membrane-dependent and a non-membrane-dependent manner, respectively. Moreover, gcLECT2-b could prevent the adherence of bacteria to epithelial cells through agglutination by targeting peptidoglycan and lipoteichoic acid. Further study revealed that gcLECT2-b can protect grass carp from Aeromonas hydrophila infection in vivo, because it significantly reduces intestinal necrosis and tissue bacterial load. More importantly, we found that LECT2 from representative tetrapods, except human, also possesses direct antibacterial activities, indicating that the direct antibacterial property of LECT2 is generally conserved in vertebrates. Taken together, to our knowledge, our study discovered a novel function of LECT2 in the antibacterial immunity of vertebrates, especially teleost fish, greatly enhancing our knowledge of this important molecule.
Collapse
Affiliation(s)
- Ya-Zhen Hu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Zi-You Ma
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Chang-Song Wu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Jie Wang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China;
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Hubei Hongshan Laboratory, Wuhan, China; and
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China;
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, China
| |
Collapse
|
16
|
Recent Strategies to Combat Biofilms Using Antimicrobial Agents and Therapeutic Approaches. Pathogens 2022; 11:pathogens11030292. [PMID: 35335616 PMCID: PMC8955104 DOI: 10.3390/pathogens11030292] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Biofilms are intricate bacterial assemblages that attach to diverse surfaces using an extracellular polymeric substance that protects them from the host immune system and conventional antibiotics. Biofilms cause chronic infections that result in millions of deaths around the world every year. Since the antibiotic tolerance mechanism in biofilm is different than that of the planktonic cells due to its multicellular structure, the currently available antibiotics are inadequate to treat biofilm-associated infections which have led to an immense need to find newer treatment options. Over the years, various novel antibiofilm compounds able to fight biofilms have been discovered. In this review, we have focused on the recent and intensively researched therapeutic techniques and antibiofilm agents used for biofilm treatment and grouped them according to their type and mode of action. We also discuss some therapeutic approaches that have the potential for future advancement.
Collapse
|
17
|
In Vivo Evaluation of ECP Peptide Analogues for the Treatment of Acinetobacter baumannii Infection. Biomedicines 2022; 10:biomedicines10020386. [PMID: 35203595 PMCID: PMC8962335 DOI: 10.3390/biomedicines10020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial peptides (AMPs) are alternative therapeutics to traditional antibiotics against bacterial resistance. Our previous work identified an antimicrobial region at the N-terminus of the eosinophil cationic protein (ECP). Following structure-based analysis, a 30mer peptide (ECPep-L) was designed that combines antimicrobial action against Gram-negative species with lipopolysaccharides (LPS) binding and endotoxin-neutralization activities. Next, analogues that contain non-natural amino acids were designed to increase serum stability. Here, two analogues were selected for in vivo assays: the all-D version (ECPep-D) and the Arg to Orn version that incorporates a D-amino acid at position 2 (ECPep-2D-Orn). The peptide analogues retained high LPS-binding and anti-endotoxin activities. The peptides efficacy was tested in a murine acute infection model of Acinetobacter baumannii. Results highlighted a survival rate above 70% following a 3-day supervision with a single administration of ECPep-D. Moreover, in both ECPep-D and ECPep-2D-Orn peptide-treated groups, clinical symptoms improved significantly and the tissue infection was reduced to equivalent levels to mice treated with colistin, used as a last resort in the clinics. Moreover, treatment drastically reduced serum levels of TNF-α inflammation marker within the first 8 h. The present results support ECP-derived peptides as alternative candidates for the treatment of acute infections caused by Gram-negative bacteria.
Collapse
|
18
|
Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, Wang Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 2022; 42:1377-1422. [PMID: 34984699 DOI: 10.1002/med.21879] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), are important effector immune defense molecules in multicellular organisms. AMPs exert their antimicrobial activities through several mechanisms; thus far, induction of drug resistance through AMPs has been regarded as unlikely. Therefore, they have great potential as new generation antimicrobial agents. To date, more than 30 AMP-related drugs are in the clinical trial phase. In recent years, studies show that some AMPs and conventional antibiotics have synergistic effects. The combined use of AMPs and antibiotics can kill drug-resistant pathogens, prevent drug resistance, and significantly improve the therapeutic effects of antibiotics. In this review, we discuss the progress in synergistic studies on AMPs and conventional antibiotics. An overview of the current understanding of the functional scope of AMPs, ongoing clinical trials, and challenges in the development processes are also presented.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Weijing Hao
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xia Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Deng
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
Nomura N, Matsumoto H, Yokoyama A, Nishimura Y, Asano K, Niimi A, Tohda Y, Harada N, Nagase H, Nagata M, Inoue H, Kondo M, Horiguchi T, Miyahara N, Hizawa N, Hojo M, Hattori N, Hashimoto N, Yamasaki A, Kadowaki T, Kimura T, Miki M, Taniguchi H, Toyoshima M, Kawamura T, Matsuno O, Sato Y, Sunadome H, Nagasaki T, Oguma T, Hirai T. Nationwide survey of refractory asthma with bronchiectasis by inflammatory subtypes. Respir Res 2022; 23:365. [PMID: 36539765 PMCID: PMC9763800 DOI: 10.1186/s12931-022-02289-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
RATIONALE Bronchiectasis and bronchiolitis are differential diagnoses of asthma; moreover, they are factors associated with worse asthma control. OBJECTIVE We determined clinical courses of bronchiectasis/bronchiolitis-complicated asthma by inflammatory subtypes as well as factors affecting them. METHODS We conducted a survey of refractory asthma with non-cystic fibrosis bronchiectasis/bronchiolitis in Japan. Cases were classified into three groups, based on the latest fractional exhaled NO (FeNO) level (32 ppb for the threshold) and blood eosinophil counts (320/µL for the threshold): high (type 2-high) or low (type 2-low) FeNO and eosinophil and high FeNO or eosinophil (type 2-intermediate). Clinical courses in groups and factors affecting them were analysed. RESULTS In total, 216 cases from 81 facilities were reported, and 142 were stratified: 34, 40 and 68 into the type 2-high, -intermediate and -low groups, respectively. The frequency of bronchopneumonia and exacerbations requiring antibiotics and gram-negative bacteria detection rates were highest in the type 2-low group. Eighty-seven cases had paired latest and oldest available data of FeNO and eosinophil counts; they were analysed for inflammatory transition patterns. Among former type 2-high and -intermediate groups, 32% had recently transitioned to the -low group, to which relatively low FeNO in the past and oral corticosteroid use contributed. Lastly, in cases treated with moderate to high doses of inhaled corticosteroids, the frequencies of exacerbations requiring antibiotics were found to be higher in cases with more severe airway lesions and lower FeNO. CONCLUSIONS Bronchiectasis/bronchiolitis-complicated refractory asthma is heterogeneous. In patients with sputum symptoms and low FeNO, airway colonisation of pathogenic bacteria and infectious episodes are common; thus, corticosteroids should be carefully used.
Collapse
Affiliation(s)
- Natsuko Nomura
- grid.258799.80000 0004 0372 2033Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hisako Matsumoto
- grid.258799.80000 0004 0372 2033Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan ,grid.258622.90000 0004 1936 9967Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osakasayama, Osaka Japan
| | - Akihito Yokoyama
- grid.278276.e0000 0001 0659 9825Department of Respiratory Medicine and Allergology, Kochi Medical School, Kochi University, Kochi, Japan
| | - Yoshihiro Nishimura
- grid.31432.370000 0001 1092 3077Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koichiro Asano
- grid.265061.60000 0001 1516 6626Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Akio Niimi
- grid.260433.00000 0001 0728 1069Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuji Tohda
- grid.258622.90000 0004 1936 9967Department of Respiratory Medicine and Allergology, Kindai University Faculty of Medicine, 377-2, Ohno-Higashi, Osakasayama, Osaka Japan
| | - Norihiro Harada
- grid.258269.20000 0004 1762 2738Department of Respiratory Medicine, Juntendo University Faculty of Medicine and Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Nagase
- grid.264706.10000 0000 9239 9995Department of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Makoto Nagata
- grid.410802.f0000 0001 2216 2631Department of Respiratory Medicine, Saitama Medical University, Saitama, Japan
| | - Hiromasa Inoue
- grid.258333.c0000 0001 1167 1801Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Mitsuko Kondo
- grid.410818.40000 0001 0720 6587Department of Respiratory Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Takahiko Horiguchi
- Department of Respiratory Medicine, Toyota Regional Medical Center, Toyota, Japan
| | - Nobuaki Miyahara
- grid.261356.50000 0001 1302 4472Department of Medical Technology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Nobuyuki Hizawa
- grid.20515.330000 0001 2369 4728Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Hojo
- grid.45203.300000 0004 0489 0290Department of Respiratory Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Noboru Hattori
- grid.257022.00000 0000 8711 3200Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naozumi Hashimoto
- grid.27476.300000 0001 0943 978XDepartment of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yamasaki
- grid.265107.70000 0001 0663 5064Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, School of Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Toru Kadowaki
- Department of Pulmonary Medicine, National Hospital Organization Matsue Medical Center, Matsue, Japan
| | - Tomoki Kimura
- grid.417192.80000 0004 1772 6756Department of Respiratory Medicine and Allergy, Tosei General Hospital, Aichi, Japan
| | - Mari Miki
- grid.416803.80000 0004 0377 7966Department of Respiratory Medicine, National Hospital Organization Toneyama Medical Center, Osaka, Japan
| | - Hirokazu Taniguchi
- grid.417235.60000 0001 0498 6004Department of Respiratory Medicine, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Mikio Toyoshima
- grid.413556.00000 0004 1773 8511Department of Respiratory Medicine, Hamamatsu Rosai Hospital, Hamamatsu, Japan
| | - Tetsuji Kawamura
- grid.414101.10000 0004 0569 3280Department of Respiratory Medicine, National Hospital Organization Himeji Medical Center, Himeji, Japan
| | - Osamu Matsuno
- Department of Allergy and Rheumatoid disease, Osaka Habikino Medical Center, Osaka, Japan
| | - Yoko Sato
- Department of Respiratory Medicine, Yuuai Medical Center, Okinawa, Japan
| | - Hironobu Sunadome
- grid.258799.80000 0004 0372 2033Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan ,grid.258799.80000 0004 0372 2033Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tadao Nagasaki
- grid.258799.80000 0004 0372 2033Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan ,grid.258799.80000 0004 0372 2033Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsuyoshi Oguma
- grid.258799.80000 0004 0372 2033Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toyohiro Hirai
- grid.258799.80000 0004 0372 2033Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
20
|
Zhang Y, Xiao X, Hu Y, Liao Z, Zhu W, Jiang R, Yang C, Zhang Y, Su J. CXCL20a, a Teleost-Specific Chemokine That Orchestrates Direct Bactericidal, Chemotactic, and Phagocytosis-Killing-Promoting Functions, Contributes to Clearance of Bacterial Infections. THE JOURNAL OF IMMUNOLOGY 2021; 207:1911-1925. [PMID: 34462313 DOI: 10.4049/jimmunol.2100300] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022]
Abstract
The major role of chemokines is to act as a chemoattractant to guide the migration of immune cells to the infectious sites. In the current study, we found that CiCXCL20a, a teleost-specific chemokine from grass carp (Ctenopharyngodon idella), demonstrates broad-spectrum, potent, direct bactericidal activity and immunomodulatory functions to bacterial infections, apart from the chemotaxis. CiCXCL20a kills bacteria by binding, mainly targeting acid lipids, perforating bacterial membrane, resulting in bacterial cytoplasm leakage and death. CiCXCL20a aggregates and neutralizes LPS, agglutinates Gram-negative bacteria, and binds to peptidoglycan and Gram-positive bacteria, but not agglutinate them. All the complexes may be phagocytized and cleared away. CiCXCL20a chemoattracts leukocytes, facilitates phagocytosis of myeloid leukocytes, not lymphoid leukocytes, and enhances the bacteria-killing ability in leukocytes. We further identified its receptor CiCXCR3.1b1. Furthermore, we investigated the physiological roles of CiCXCL20a against Aeromonas hydrophila infection in vivo. The recombinant CiCXCL20a increases the survival rate and decreases the tissue bacterial loads, edema, and lesions. Then, we verified this function by purified CiCXCL20a Ab blockade, and the survival rate decreases, and the tissue bacterial burdens increase. In addition, zebrafish (Danio rerio) DrCXCL20, an ortholog of CiCXCL20a, was employed to verify the bactericidal function and mechanism. The results indicated that DrCXCL20 also possesses wide-spectrum, direct bactericidal activity through membrane rupture mechanism. The present study, to our knowledge, provides the first evidence that early vertebrate chemokine prevents from bacterial infections by direct bactericidal and phagocytosis-killing-promoting manners. The results also demonstrate the close functional relationship between chemokines and antimicrobial peptides.
Collapse
Affiliation(s)
- Yanqi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; and.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yazhen Hu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wentao Zhu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Rui Jiang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongan Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China; .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China; and
| |
Collapse
|
21
|
Enhancement of Antibiofilm Activity of Ciprofloxacin against Staphylococcus aureus by Administration of Antimicrobial Peptides. Antibiotics (Basel) 2021; 10:antibiotics10101159. [PMID: 34680739 PMCID: PMC8532819 DOI: 10.3390/antibiotics10101159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus can develop resistance by mutation, transfection or biofilm formation. Resistance was induced in S. aureus by growth in sub-inhibitory concentrations of ciprofloxacin for 30 days. The ability of the antimicrobials to disrupt biofilms was determined using crystal violet and live/dead staining. Effects on the cell membranes of biofilm cells were evaluated by measuring release of dyes and ATP, and nucleic acids. None of the strains developed resistance to AMPs while only S. aureus ATCC 25923 developed resistance (128 times) to ciprofloxacin after 30 passages. Only peptides reduced biofilms of ciprofloxacin-resistant cells. The antibiofilm effect of melimine with ciprofloxacin was more (27%) than with melimine alone at 1X MIC (p < 0.001). Similarly, at 1X MIC the combination of Mel4 and ciprofloxacin produced more (48%) biofilm disruption than Mel4 alone (p < 0.001). Combinations of either of the peptides with ciprofloxacin at 2X MIC released ≥ 66 nM ATP, more than either peptide alone (p ≤ 0.005). At 2X MIC, only melimine in combination with ciprofloxacin released DNA/RNA which was three times more than that released by melimine alone (p = 0.043). These results suggest the potential use of melimine and Mel4 with conventional antibiotics for the treatment of S. aureus biofilms.
Collapse
|
22
|
Sandín D, Valle J, Chaves-Arquero B, Prats-Ejarque G, Larrosa MN, González-López JJ, Jiménez MÁ, Boix E, Andreu D, Torrent M. Rationally Modified Antimicrobial Peptides from the N-Terminal Domain of Human RNase 3 Show Exceptional Serum Stability. J Med Chem 2021; 64:11472-11482. [PMID: 34342438 PMCID: PMC8483441 DOI: 10.1021/acs.jmedchem.1c00795] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Multidrug
resistance against conventional antibiotics poses an
important threat to human health. In this context, antimicrobial peptides
(AMPs) have been extensively studied for their antibacterial activity
and promising results have been shown so far. However, AMPs tend to
be rather vulnerable to protease degradation, which offsets their
therapeutic appeal. Here, we demonstrate how replacing functional
residues in the antimicrobial region of human RNase 3—also
named eosinophil cationic protein—by non-natural amino acids
increases stability in human serum. These changes were also shown
to reduce the hemolytic effect of the peptides in general terms, whereas
the antimicrobial activity was reasonably preserved. Digestion profiles enabled us to design new peptides
with superior stability and lower toxicity that could become relevant
candidates to reach clinical stages.
Collapse
Affiliation(s)
- Daniel Sandín
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Javier Valle
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Belén Chaves-Arquero
- Departamento de Química-Física Biológica, Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, Madrid 28006, Spain
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - María Nieves Larrosa
- Servei de Microbiologia, Hospital Universitari Vall d'Hebron, Barcelona 08035, Spain.,Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Juan José González-López
- Servei de Microbiologia, Hospital Universitari Vall d'Hebron, Barcelona 08035, Spain.,Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - María Ángeles Jiménez
- Departamento de Química-Física Biológica, Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, Madrid 28006, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Marc Torrent
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| |
Collapse
|
23
|
Antibiofilm activity of host defence peptides: complexity provides opportunities. Nat Rev Microbiol 2021; 19:786-797. [PMID: 34183822 DOI: 10.1038/s41579-021-00585-w] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Host defence peptides (HDPs) are integral components of innate immunity across all living organisms. These peptides can exert direct antibacterial effects, targeting planktonic cells (referred to as antimicrobial peptides), and exhibit antibiofilm (referred to as antibiofilm peptides), antiviral, antifungal and host-directed immunomodulatory activities. In this Review, we discuss how the complex functional attributes of HDPs provide many opportunities for the development of antimicrobial therapeutics, focusing particularly on their emerging antibiofilm properties. The mechanisms of action of antibiofilm peptides are compared and contrasted with those of antimicrobial peptides. Furthermore, obstacles for the practical translation of candidate peptides into therapeutics and the potential solutions are discussed. Critically, HDPs have the value-added assets of complex functional attributes, particularly antibiofilm and anti-inflammatory activities and their synergy with conventional antibiotics.
Collapse
|
24
|
Srinivasan R, Santhakumari S, Poonguzhali P, Geetha M, Dyavaiah M, Xiangmin L. Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Front Microbiol 2021; 12:676458. [PMID: 34054785 PMCID: PMC8149761 DOI: 10.3389/fmicb.2021.676458] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Biofilm formation is a major concern in various sectors and cause severe problems to public health, medicine, and industry. Bacterial biofilm formation is a major persistent threat, as it increases morbidity and mortality, thereby imposing heavy economic pressure on the healthcare sector. Bacterial biofilms also strengthen biofouling, affecting shipping functions, and the offshore industries in their natural environment. Besides, they accomplish harsh roles in the corrosion of pipelines in industries. At biofilm state, bacterial pathogens are significantly resistant to external attack like antibiotics, chemicals, disinfectants, etc. Within a cell, they are insensitive to drugs and host immune responses. The development of intact biofilms is very critical for the spreading and persistence of bacterial infections in the host. Further, bacteria form biofilms on every probable substratum, and their infections have been found in plants, livestock, and humans. The advent of novel strategies for treating and preventing biofilm formation has gained a great deal of attention. To prevent the development of resistant mutants, a feasible technique that may target adhesive properties without affecting the bacterial vitality is needed. This stimulated research is a rapidly growing field for applicable control measures to prevent biofilm formation. Therefore, this review discusses the current understanding of antibiotic resistance mechanisms in bacterial biofilm and intensely emphasized the novel therapeutic strategies for combating biofilm mediated infections. The forthcoming experimental studies will focus on these recent therapeutic strategies that may lead to the development of effective biofilm inhibitors than conventional treatments.
Collapse
Affiliation(s)
- Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China
| | - Sivasubramanian Santhakumari
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | | | - Mani Geetha
- PG Research and Department of Microbiology, St. Joseph's College of Arts and Science (Autonomous), Tamil Nadu, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Lin Xiangmin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.,Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fujian, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
25
|
Antimicrobial Activity of Human Eosinophil Granule Proteins. Methods Mol Biol 2021; 2241:257-274. [PMID: 33486742 DOI: 10.1007/978-1-0716-1095-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eosinophils secrete a number of proinflammatory mediators that include cytokines, chemokines, and granule proteins which are responsible for the initiation and maintenance of inflammatory responses. The eosinophil granule proteins, ECP, EDN, MBP, and EPO, possess antimicrobial activity against bacteria, helminths, protozoa, and viruses. In this chapter, we describe various assays used to detect and quantitate the antimicrobial activities of eosinophil granule proteins, particularly ECP and EDN. We have taken a model organism for each assay and described the method for antiviral, antihelminthic, antiprotozoan, and antibacterial activity of purified eosinophil granule proteins.
Collapse
|
26
|
Activity of Antimicrobial Peptides and Ciprofloxacin against Pseudomonas aeruginosa Biofilms. Molecules 2020; 25:molecules25173843. [PMID: 32847059 PMCID: PMC7503749 DOI: 10.3390/molecules25173843] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is increasingly resistant to conventional antibiotics, which can be compounded by the formation of biofilms on surfaces conferring additional resistance. P. aeruginosa was grown in sub-inhibitory concentrations of the antimicrobial peptides (AMPs) melimine and Mel4 or ciprofloxacin for 30 consecutive days to induce the development of resistance. Antibiofilm effect of AMPs and ciprofloxacin was evaluated using crystal violet and live/dead staining with confocal microscopy. Effect on the cell membrane of biofilm cells was evaluated using DiSC(3)-5 dye and release of intracellular ATP and DNA/RNA. The minimum inhibitory concentration (MIC) of ciprofloxacin increased 64-fold after 30 passages, but did not increase for melimine or Mel4. Ciprofloxacin could not inhibit biofilm formation of resistant cells at 4× MIC, but both AMPs reduced biofilms by >75% at 1× MIC. At 1× MIC, only the combination of either AMP with ciprofloxacin was able to significantly disrupt pre-formed biofilms (≥61%; p < 0.001). Only AMPs depolarized the cell membranes of biofilm cells at 1× MIC. At 1× MIC either AMP with ciprofloxacin released a significant amount of ATP (p < 0.04), but did not release DNA/RNA. AMPs do not easily induce resistance in P. aeruginosa and can be used in combination with ciprofloxacin to treat biofilm.
Collapse
|
27
|
Locke LW, Shankaran K, Gong L, Stoodley P, Vozar SL, Cole SL, Tweedle MF, Wozniak DJ. Evaluation of Peptide-Based Probes toward In Vivo Diagnostic Imaging of Bacterial Biofilm-Associated Infections. ACS Infect Dis 2020; 6:2086-2098. [PMID: 32603591 PMCID: PMC7429274 DOI: 10.1021/acsinfecdis.0c00125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The clinical management of bacterial biofilm infections represents an enormous challenge in today's healthcare setting. The NIH estimates that 65% of bacterial infections are biofilm-related, and therapeutic outcomes are positively correlated with early intervention. Currently, there is no reliable imaging technique to detect biofilm infections in vivo, and current clinical protocols for accurate and direct biofilm identification are nonexistent. In orthopedic implant-associated biofilm infections, for example, current detection methods are based on nonspecific X-ray or radiolabeled white blood cell imaging, coupled with peri-prosthetic tissue or fluid samples taken invasively, and must be cultured. This approach is time-consuming and often fails to detect biofilm bacteria due to sampling errors and a lack of sensitivity. The ability to quantify bacterial biofilms by real-time noninvasive imaging is an urgent unmet clinical need that would revolutionize the management and treatment of these devastating types of infections. In the present study, we assembled a collection of fluorescently labeled peptide candidates to specifically explore their biofilm targeting properties. We evaluated these fluorescently labeled peptides using various in vitro assays for their ability to specifically and nondestructively target biofilms produced by model bacterial pathogen Pseudomonas aeruginosa. The lead candidate that emerged, 4Iphf-HN17, demonstrated rapid biofilm labeling kinetics, a lack of bactericidal activity, and biofilm targeting specificity in human cell infection models. In vivo fluorescently labeled 4Iphf-HN17 showed enhanced accumulation in biofilm-infected wounds, thus warranting further study.
Collapse
Affiliation(s)
- Landon W. Locke
- Dept. of Microbial Infection and Immunity, The Ohio State University
| | - Kothandaraman Shankaran
- Dept. of Radiology, The Wright Center for Innovation in Biomedical Eng, The Ohio State University
| | - Li Gong
- Dept. of Radiology, The Wright Center for Innovation in Biomedical Eng, The Ohio State University
| | - Paul Stoodley
- Dept. of Microbial Infection and Immunity, The Ohio State University
| | | | - Sara L. Cole
- Campus Microscopy and Imaging Facility, The Ohio State University
| | - Michael F. Tweedle
- Dept. of Radiology, The Wright Center for Innovation in Biomedical Eng, The Ohio State University
| | - Daniel J. Wozniak
- Dept. of Microbial Infection and Immunity, The Ohio State University,Dept. of Microbiology, The Ohio State University
| |
Collapse
|
28
|
Maystrenko A, Feng Y, Akhtar N, Li J. The Addition of a Synthetic LPS-Targeting Domain Improves Serum Stability While Maintaining Antimicrobial, Antibiofilm, and Cell Stimulating Properties of an Antimicrobial Peptide. Biomolecules 2020; 10:E1014. [PMID: 32650576 PMCID: PMC7407491 DOI: 10.3390/biom10071014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
Multi-drug resistant (MDR) bacteria and their biofilms are a concern in veterinary and human medicine. Protegrin-1 (PG-1), a potent antimicrobial peptide (AMP) with antimicrobial and immunomodulatory properties, is considered a potential alternative for conventional antibiotics. AMPs are less stable and lose activity in the presence of physiological fluids, such as serum. To improve stability of PG-1, a hybrid peptide, SynPG-1, was designed. The antimicrobial and antibiofilm properties of PG-1 and the PG-1 hybrid against MDR pathogens was analyzed, and activity after incubation with physiological fluids was compared. The effects of these peptides on the IPEC-J2 cell line was also investigated. While PG-1 maintained some activity in 25% serum for 2 h, SynPG-1 was able to retain activity in the same condition for up to 24 h, representing a 12-fold increase in stability. Both peptides had some antibiofilm activity against Escherichia coli and Salmonella typhimurium. While both peptides prevented biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA), neither could destroy MRSA's pre-formed biofilms. Both peptides maintained activity after incubation with trypsin and porcine gastric fluid, but not intestinal fluid, and stimulated IPEC-J2 cell migration. These findings suggest that SynPG-1 has much better serum stability while maintaining the same antimicrobial potency as PG-1.
Collapse
Affiliation(s)
| | | | | | - Julang Li
- Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.M.); (Y.F.); (N.A.)
| |
Collapse
|
29
|
Mercer DK, Torres MDT, Duay SS, Lovie E, Simpson L, von Köckritz-Blickwede M, de la Fuente-Nunez C, O'Neil DA, Angeles-Boza AM. Antimicrobial Susceptibility Testing of Antimicrobial Peptides to Better Predict Efficacy. Front Cell Infect Microbiol 2020; 10:326. [PMID: 32733816 PMCID: PMC7358464 DOI: 10.3389/fcimb.2020.00326] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
During the development of antimicrobial peptides (AMP) as potential therapeutics, antimicrobial susceptibility testing (AST) stands as an essential part of the process in identification and optimisation of candidate AMP. Standard methods for AST, developed almost 60 years ago for testing conventional antibiotics, are not necessarily fit for purpose when it comes to determining the susceptibility of microorganisms to AMP. Without careful consideration of the parameters comprising AST there is a risk of failing to identify novel antimicrobials at a time when antimicrobial resistance (AMR) is leading the planet toward a post-antibiotic era. More physiologically/clinically relevant AST will allow better determination of the preclinical activity of drug candidates and allow the identification of lead compounds. An important consideration is the efficacy of AMP in biological matrices replicating sites of infection, e.g., blood/plasma/serum, lung bronchiolar lavage fluid/sputum, urine, biofilms, etc., as this will likely be more predictive of clinical efficacy. Additionally, specific AST for different target microorganisms may help to better predict efficacy of AMP in specific infections. In this manuscript, we describe what we believe are the key considerations for AST of AMP and hope that this information can better guide the preclinical development of AMP toward becoming a new generation of urgently needed antimicrobials.
Collapse
Affiliation(s)
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Searle S. Duay
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| | - Emma Lovie
- NovaBiotics Ltd, Aberdeen, United Kingdom
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Penn Institute for Computational Science, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Alfredo M. Angeles-Boza
- Department of Chemistry, Institute of Materials Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
30
|
Rangel-Muñoz N, Suarez-Arnedo A, Anguita R, Prats-Ejarque G, Osma JF, Muñoz-Camargo C, Boix E, Cruz JC, Salazar VA. Magnetite Nanoparticles Functionalized with RNases against Intracellular Infection of Pseudomonas aeruginosa. Pharmaceutics 2020; 12:E631. [PMID: 32640506 PMCID: PMC7408537 DOI: 10.3390/pharmaceutics12070631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
Current treatments against bacterial infections have severe limitations, mainly due to the emergence of resistance to conventional antibiotics. In the specific case of Pseudomonas aeruginosa strains, they have shown a number of resistance mechanisms to counter most antibiotics. Human secretory RNases from the RNase A superfamily are proteins involved in a wide variety of biological functions, including antimicrobial activity. The objective of this work was to explore the intracellular antimicrobial action of an RNase 3/1 hybrid protein that combines RNase 1 high catalytic and RNase 3 bactericidal activities. To achieve this, we immobilized the RNase 3/1 hybrid on Polyetheramine (PEA)-modified magnetite nanoparticles (MNPs). The obtained nanobioconjugates were tested in macrophage-derived THP-1 cells infected with Pseudomonas aeruginosa PAO1. The obtained results show high antimicrobial activity of the functionalized hybrid protein (MNP-RNase 3/1) against the intracellular growth of P. aeruginosa of the functionalized hybrid protein. Moreover, the immobilization of RNase 3/1 enhances its antimicrobial and cell-penetrating activities without generating any significant cell damage. Considering the observed antibacterial activity, the immobilization of the RNase A superfamily and derived proteins represents an innovative approach for the development of new strategies using nanoparticles to deliver antimicrobials that counteract P. aeruginosa intracellular infection.
Collapse
Affiliation(s)
- Nathaly Rangel-Muñoz
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (N.R.-M.); (A.S.-A.); (C.M.-C.)
| | - Alejandra Suarez-Arnedo
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (N.R.-M.); (A.S.-A.); (C.M.-C.)
| | - Raúl Anguita
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (R.A.); (G.P.-E.)
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (R.A.); (G.P.-E.)
| | - Johann F. Osma
- Department of Electrical and Electronics Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia;
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (N.R.-M.); (A.S.-A.); (C.M.-C.)
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (R.A.); (G.P.-E.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (N.R.-M.); (A.S.-A.); (C.M.-C.)
| | - Vivian A. Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (R.A.); (G.P.-E.)
- Department of Electrical and Electronics Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia;
| |
Collapse
|
31
|
Li J, Fernández-Millán P, Boix E. Synergism between Host Defence Peptides and Antibiotics Against Bacterial Infections. Curr Top Med Chem 2020; 20:1238-1263. [DOI: 10.2174/1568026620666200303122626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 01/10/2023]
Abstract
Background:Antimicrobial resistance (AMR) to conventional antibiotics is becoming one of the main global health threats and novel alternative strategies are urging. Antimicrobial peptides (AMPs), once forgotten, are coming back into the scene as promising tools to overcome bacterial resistance. Recent findings have attracted attention to the potentiality of AMPs to work as antibiotic adjuvants.Methods:In this review, we have tried to collect the currently available information on the mechanism of action of AMPs in synergy with other antimicrobial agents. In particular, we have focused on the mechanisms of action that mediate the inhibition of the emergence of bacterial resistance by AMPs.Results and Conclusion:We find in the literature many examples where AMPs can significantly reduce the antibiotic effective concentration. Mainly, the peptides work at the bacterial cell wall and thereby facilitate the drug access to its intracellular target. Complementarily, AMPs can also contribute to permeate the exopolysaccharide layer of biofilm communities, or even prevent bacterial adhesion and biofilm growth. Secondly, we find other peptides that can directly block the emergence of bacterial resistance mechanisms or interfere with the community quorum-sensing systems. Interestingly, the effective peptide concentrations for adjuvant activity and inhibition of bacterial resistance are much lower than the required for direct antimicrobial action. Finally, many AMPs expressed by innate immune cells are endowed with immunomodulatory properties and can participate in the host response against infection. Recent studies in animal models confirm that AMPs work as adjuvants at non-toxic concentrations and can be safely administrated for novel combined chemotherapies.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Pablo Fernández-Millán
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| |
Collapse
|
32
|
Baranzini N, De Vito A, Orlandi VT, Reguzzoni M, Monti L, de Eguileor M, Rosini E, Pollegioni L, Tettamanti G, Acquati F, Grimaldi A. Antimicrobial Role of RNASET2 Protein During Innate Immune Response in the Medicinal Leech Hirudo verbana. Front Immunol 2020; 11:370. [PMID: 32210967 PMCID: PMC7068815 DOI: 10.3389/fimmu.2020.00370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/17/2020] [Indexed: 12/23/2022] Open
Abstract
The innate immune response represents a first-line defense against pathogen infection that has been widely conserved throughout evolution. Using the invertebrate Hirudo verbana (Annelida, Hirudinea) as an experimental model, we show here that the RNASET2 ribonuclease is directly involved in the immune response against Gram-positive bacteria. Injection of lipoteichoic acid (LTA), a key component of Gram-positive bacteria cell wall, into the leech body wall induced a massive migration of granulocytes and macrophages expressing TLR2 (the key receptor involved in the response to Gram-positive bacteria) toward the challenged/inoculated area. We hypothesized that the endogenous leech RNASET2 protein (HvRNASET2) might be involved in the antimicrobial response, as already described for other vertebrate ribonucleases, such as RNase3 and RNase7. In support of our hypothesis, HvRNASET2 was mainly localized in the granules of granulocytes, and its release in the extracellular matrix triggered the recruitment of macrophages toward the area stimulated with LTA. The activity of HvRNASET2 was also evaluated on Staphylococcus aureus living cells by means of light, transmission, and scanning electron microscopy analysis. HvRNASET2 injection triggered the formation of S. aureus clumps following a direct interaction with the bacterial cell wall, as demonstrated by immunogold assay. Taken together, our data support the notion that, during the early phase of leech immune response, granulocyte-released HvRNASET2 triggers bacterial clumps formation and, at the same time, actively recruits phagocytic macrophages in order to elicit a rapid and effective eradication of the infecting microorganisms from inoculated area.
Collapse
Affiliation(s)
- Nicolò Baranzini
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Annarosaria De Vito
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | | | - Marcella Reguzzoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Laura Monti
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Magda de Eguileor
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Francesco Acquati
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| |
Collapse
|
33
|
Raheem N, Straus SK. Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Front Microbiol 2019; 10:2866. [PMID: 31921046 PMCID: PMC6927293 DOI: 10.3389/fmicb.2019.02866] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
The antibiotic crisis has led to a pressing need for alternatives such as antimicrobial peptides (AMPs). Recent work has shown that these molecules have great potential not only as antimicrobials, but also as antibiofilm agents, immune modulators, anti-cancer agents and anti-inflammatories. A better understanding of the mechanism of action (MOA) of AMPs is an important part of the discovery of more potent and less toxic AMPs. Many models and techniques have been utilized to describe the MOA. This review will examine how biological assays and biophysical methods can be utilized in the context of the specific antibacterial and antibiofilm functions of AMPs.
Collapse
Affiliation(s)
- Nigare Raheem
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Suzana K Straus
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Salazar VA, Arranz-Trullén J, Prats-Ejarque G, Torrent M, Andreu D, Pulido D, Boix E. Insight into the Antifungal Mechanism of Action of Human RNase N-terminus Derived Peptides. Int J Mol Sci 2019; 20:ijms20184558. [PMID: 31540052 PMCID: PMC6770517 DOI: 10.3390/ijms20184558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a polymorphic fungus responsible for mucosal and skin infections. Candida cells establish themselves into biofilm communities resistant to most currently available antifungal agents. An increase of severe infections ensuing in fungal septic shock in elderly or immunosuppressed patients, along with the emergence of drug-resistant strains, urge the need for the development of alternative antifungal agents. In the search for novel antifungal drugs our laboratory demonstrated that two human ribonucleases from the vertebrate-specific RNaseA superfamily, hRNase3 and hRNase7, display a high anticandidal activity. In a previous work, we proved that the N-terminal region of the RNases was sufficient to reproduce most of the parental protein bactericidal activity. Next, we explored their potency against a fungal pathogen. Here, we have tested the N-terminal derived peptides that correspond to the eight human canonical RNases (RN1-8) against planktonic cells and biofilms of C. albicans. RN3 and RN7 peptides displayed the most potent inhibitory effect with a mechanism of action characterized by cell-wall binding, membrane permeabilization and biofilm eradication activities. Both peptides are able to eradicate planktonic and sessile cells, and to alter their gene expression, reinforcing its role as a lead candidate to develop novel antifungal and antibiofilm therapies.
Collapse
Affiliation(s)
- Vivian A Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Javier Arranz-Trullén
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Marc Torrent
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - David Pulido
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
35
|
Lu L, Arranz-Trullén J, Prats-Ejarque G, Pulido D, Bhakta S, Boix E. Human Antimicrobial RNases Inhibit Intracellular Bacterial Growth and Induce Autophagy in Mycobacteria-Infected Macrophages. Front Immunol 2019; 10:1500. [PMID: 31312205 PMCID: PMC6614385 DOI: 10.3389/fimmu.2019.01500] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
The development of novel treatment against tuberculosis is a priority global health challenge. Antimicrobial proteins and peptides offer a multifaceted mechanism suitable to fight bacterial resistance. Within the RNaseA superfamily there is a group of highly cationic proteins secreted by innate immune cells with anti-infective and immune-regulatory properties. In this work, we have tested the human canonical members of the RNase family using a spot-culture growth inhibition assay based mycobacteria-infected macrophage model for evaluating their anti-tubercular properties. Out of the seven tested recombinant human RNases, we have identified two members, RNase3 and RNase6, which were highly effective against Mycobacterium aurum extra- and intracellularly and induced an autophagy process. We observed the proteins internalization within macrophages and their capacity to eradicate the intracellular mycobacterial infection at a low micro-molar range. Contribution of the enzymatic activity was discarded by site-directed mutagenesis at the RNase catalytic site. The protein induction of autophagy was analyzed by RT-qPCR, western blot, immunofluorescence, and electron microscopy. Specific blockage of auto-phagosome formation and maturation reduced the protein's ability to eradicate the infection. In addition, we found that the M. aurum infection of human THP1 macrophages modulates the expression of endogenous RNase3 and RNase6, suggesting a function in vivo. Overall, our data anticipate a biological role for human antimicrobial RNases in host response to mycobacterial infections and set the basis for the design of novel anti-tubercular drugs.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Javier Arranz-Trullén
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Pulido
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
36
|
Yasir M, Willcox MDP, Dutta D. Action of Antimicrobial Peptides against Bacterial Biofilms. MATERIALS 2018; 11:ma11122468. [PMID: 30563067 PMCID: PMC6317029 DOI: 10.3390/ma11122468] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
Microbes are known to colonize surfaces and form biofilms. These biofilms are communities of microbes encased in a self-produced matrix that often contains polysaccharides, DNA and proteins. Antimicrobial peptides (AMPs) have been used to control the formation and to eradicate mature biofilms. Naturally occurring or synthetic antimicrobial peptides have been shown to prevent microbial colonization of surfaces, to kill bacteria in biofilms and to disrupt the biofilm structure. This review systemically analyzed published data since 1970 to summarize the possible anti-biofilm mechanisms of AMPs. One hundred and sixty-two published reports were initially selected for this review following searches using the criteria ‘antimicrobial peptide’ OR ‘peptide’ AND ‘mechanism of action’ AND ‘biofilm’ OR ‘antibiofilm’ in the databases PubMed; Scopus; Web of Science; MEDLINE; and Cochrane Library. Studies that investigated anti-biofilm activities without describing the possible mechanisms were removed from the analysis. A total of 17 original reports were included which have articulated the mechanism of antimicrobial action of AMPs against biofilms. The major anti-biofilm mechanisms of antimicrobial peptides are: (1) disruption or degradation of the membrane potential of biofilm embedded cells; (2) interruption of bacterial cell signaling systems; (3) degradation of the polysaccharide and biofilm matrix; (4) inhibition of the alarmone system to avoid the bacterial stringent response; (5) downregulation of genes responsible for biofilm formation and transportation of binding proteins.
Collapse
Affiliation(s)
- Muhammad Yasir
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
37
|
Unveiling the Multifaceted Mechanisms of Antibacterial Activity of Buforin II and Frenatin 2.3S Peptides from Skin Micro-Organs of the Orinoco Lime Treefrog ( Sphaenorhynchus lacteus). Int J Mol Sci 2018; 19:ijms19082170. [PMID: 30044391 PMCID: PMC6121439 DOI: 10.3390/ijms19082170] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Amphibian skin is a rich source of natural compounds with diverse antimicrobial and immune defense properties. Our previous studies showed that the frog skin secretions obtained by skin micro-organs from various species of Colombian anurans have antimicrobial activities against bacteria and viruses. We purified for the first time two antimicrobial peptides from the skin micro-organs of the Orinoco lime treefrog (Sphaenorhynchus lacteus) that correspond to Buforin II (BF2) and Frenatin 2.3S (F2.3S). Here, we have synthesized the two peptides and tested them against Gram-negative and Gram-positive bacteria, observing an effective bactericidal activity at micromolar concentrations. Evaluation of BF2 and F2.3S membrane destabilization activity on bacterial cell cultures and synthetic lipid bilayers reveals a distinct membrane interaction mechanism. BF2 agglutinates E. coli cells and synthetic vesicles, whereas F2.3S shows a high depolarization and membrane destabilization activities. Interestingly, we found that F2.3S is able to internalize within bacterial cells and can bind nucleic acids, as previously reported for BF2. Moreover, bacterial exposure to both peptides alters the expression profile of genes related to stress and resistance response. Overall, these results show the multifaceted mechanism of action of both antimicrobial peptides that can provide alternative tools in the fight against bacterial resistance.
Collapse
|
38
|
Pulido D, Prats-Ejarque G, Villalba C, Albacar M, Moussaoui M, Andreu D, Volkmer R, Torrent M, Boix E. Positional scanning library applied to the human eosinophil cationic protein/RNase3 N-terminus reveals novel and potent anti-biofilm peptides. Eur J Med Chem 2018; 152:590-599. [DOI: 10.1016/j.ejmech.2018.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/20/2018] [Accepted: 05/07/2018] [Indexed: 01/14/2023]
|
39
|
Abstract
Microbial biofilms, which are elaborate and highly resistant microbial aggregates formed on surfaces or medical devices, cause two-thirds of infections and constitute a serious threat to public health. Immunocompromised patients, individuals who require implanted devices, artificial limbs, organ transplants, or external life support and those with major injuries or burns, are particularly prone to become infected. Antibiotics, the mainstay treatments of bacterial infections, have often proven ineffective in the fight against microbes when growing as biofilms, and to date, no antibiotic has been developed for use against biofilm infections. Antibiotic resistance is rising, but biofilm-mediated multidrug resistance transcends this in being adaptive and broad spectrum and dependent on the biofilm growth state of organisms. Therefore, the treatment of biofilms requires drug developers to start thinking outside the constricted "antibiotics" box and to find alternative ways to target biofilm infections. Here, we highlight recent approaches for combating biofilms focusing on the eradication of preformed biofilms, including electrochemical methods, promising antibiofilm compounds and the recent progress in drug delivery strategies to enhance the bioavailability and potency of antibiofilm agents.
Collapse
Affiliation(s)
- Heidi Wolfmeier
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Daniel Pletzer
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sarah C. Mansour
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology, Center for Microbial Diseases
and Immunity Research, University of British Columbia, Room 232, 2259
Lower Mall Research Station, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
40
|
Kinetics Study of Antimicrobial Peptide, Melittin, in Simultaneous Biofilm Degradation and Eradication of Potent Biofilm Producing MDR Pseudomonas aeruginosa Isolates. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9675-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Structure and Interactions of A Host Defense Antimicrobial Peptide Thanatin in Lipopolysaccharide Micelles Reveal Mechanism of Bacterial Cell Agglutination. Sci Rep 2017; 7:17795. [PMID: 29259246 PMCID: PMC5736615 DOI: 10.1038/s41598-017-18102-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022] Open
Abstract
Host defense cationic Antimicrobial Peptides (AMPs) can kill microorganisms including bacteria, viruses and fungi using various modes of action. The negatively charged bacterial membranes serve as a key target for many AMPs. Bacterial cell death by membrane permeabilization has been well perceived. A number of cationic AMPs kill bacteria by cell agglutination which is a distinctly different mode of action compared to membrane pore formation. However, mechanism of cell agglutinating AMPs is poorly understood. The outer membrane lipopolysaccharide (LPS) or the cell-wall peptidoglycans are targeted by AMPs as a key step in agglutination process. Here, we report the first atomic-resolution structure of thanatin, a cell agglutinating AMP, in complex with LPS micelle by solution NMR. The structure of thanatin in complex with LPS, revealed four stranded antiparallel β-sheet in a ‘head-tail’ dimeric topology. By contrast, thanatin in free solution assumed an antiparallel β-hairpin conformation. Dimeric structure of thanatin displayed higher hydrophobicity and cationicity with sites of LPS interactions. MD simulations and biophysical interactions analyses provided mode of LPS recognition and perturbation of LPS micelle structures. Mechanistic insights of bacterial cell agglutination obtained in this study can be utilized to develop antibiotics of alternative mode of action.
Collapse
|
42
|
Chang R, Subramanian K, Wang M, Webster TJ. Enhanced Antibacterial Properties of Self-Assembling Peptide Amphiphiles Functionalized with Heparin-Binding Cardin-Motifs. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22350-22360. [PMID: 28628296 DOI: 10.1021/acsami.7b07506] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The emergence of antibiotic resistance in bacteria has caused many healthcare problems and social burdens. In this study, a type of self-assembled peptide amphiphiles (PA) functionalized with a heparin-binding Cardin-motif peptide (sequence (AKKARK)2) has been designed to combat bacterial drug resistance. Above the critical micelle concentration (CMC) at 45 μM, these amphiphilic Cardin antimicrobial peptide (ACA-PA) can self-assemble into cylindrical supramolecular structures (7-10 nm in diameter) via hydrophobic interactions and β-sheet secondary conformation. The ACA-PA displays excellent antibacterial properties against both Gram-positive and Gram-negative bacteria. This work also demonstrates the effects of molecular self-assembly on antibacterial activity of peptide amphiphiles. The ACA-PA exhibits antibacterial activity on Gram-positive bacteria in a dose-dependent manner, but in the case of Gram-negative bacteria, the antibacterial potency of ACA-PA is remarkably enhanced at concentrations above the CMC. The ACA-PA has been shown to cause bacterial cytoplasmic leakage, causing localized membrane disruption in Gram-positive bacteria and blisters on disorganized membranes of Gram-negative bacteria. Therefore, these peptide-based nanoparticles have promising potential as antimicrobial agents without resorting to the use of antibiotics, and, thus, should be further studied for a wide range of biomaterial applications.
Collapse
Affiliation(s)
- Run Chang
- Department of Chemical Engineering, Northeastern University , 313 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Keerthana Subramanian
- Department of Chemical Engineering, Northeastern University , 313 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Mian Wang
- Department of Chemical Engineering, Northeastern University , 313 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University , 313 Snell Engineering Center, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Wenzhou Institute of Biomaterials and Engineering , Wenzhou, China
| |
Collapse
|
43
|
Wang B. Human Skin RNases Offer Dual Protection against Invading Bacteria. Front Microbiol 2017; 8:624. [PMID: 28443087 PMCID: PMC5386971 DOI: 10.3389/fmicb.2017.00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
|