1
|
Kikuchi Y, Yoshida M, Kuwae A, Asami Y, Inahashi Y, Abe A. Correlation between the spread of IMP-producing bacteria and the promoter strength of bla IMP genes. J Antibiot (Tokyo) 2024; 77:315-323. [PMID: 38491135 DOI: 10.1038/s41429-024-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
The first report of transmissible carbapenem resistance encoded by blaIMP-1 was discovered in Pseudomonas aeruginosa GN17203 in 1988, and blaIMP-1 has since been detected in other bacteria, including Enterobacterales. Currently, many variants of blaIMPs exist, and point mutations in the blaIMP promoter have been shown to alter promoter strength. For example, the promoter (Pc) of blaIMP-1, first reported in P. aeruginosa GN17203, was a weak promoter (PcW) with low-level expression intensity. This study investigates whether point mutations in the promoter region have helped to create strong promoters under antimicrobial selection pressure. Using bioinformatic approaches, we retrieved 115 blaIMPs from 14,529 genome data of Pseudomonadota and performed multiple alignment analyses. The results of promoter analysis of the 115 retrieved blaIMPs showed that most of them used the Pc located in class 1 integrons (n = 112, 97.4%). The promoter analysis by year revealed that the blaIMP population with the strong promoter, PcS, was transient. In contrast, the PcW-TG population, which had acquired a TGn-extended -10 motif in PcW and had an intermediate promoter strength, gradually spread throughout the world. An inverse correlation between Pc promoter strength and Intl1 integrase excision efficiency has been reported previously [1]. Because of this trade-off, it is unlikely that blaIMPs with strong promoters will increase rapidly, but the possibility that promoter strength will increase with the use of other integrons cannot be ruled out. Monitoring of the blaIMP genes, including promoter analysis, is necessary for global surveillance of carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Yuta Kikuchi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Mariko Yoshida
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Asaomi Kuwae
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Yukihiro Asami
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Yuki Inahashi
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan
| | - Akio Abe
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
- Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
2
|
Zhu Y, Wang T, Zhu W, Wei Q. Molecular Characterization of Class 1 Integrons and Carbapenem-Resistant Genes in Enterobacter cloacae Complex Isolates. Curr Microbiol 2024; 81:158. [PMID: 38658428 DOI: 10.1007/s00284-024-03679-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Enterobacter cloacae complex (ECC) widely exists in the hospital environment and is one of the important conditional pathogens of hospital-acquired infection. To investigate the distribution of integrons and carbapenem-resistant genes in clinical ECC, 70 isolates of ECC from non-sputum specimens were collected. Class 1 and class 2 integron integrase gene intI1 and intI2, as well as common carbapenem-resistant genes, blaKPC, blaVIM, blaIMP, blaNDM, blaGES, and blaOXA-23, were screened. Gene cassette arrays and common promoters of class 1 integron together with subtypes of carbapenem-resistant genes were determined by sequencing. Resistant rates to commonly used antimicrobial agents between class 1 integron-positive and integron-negative ECC isolates were analyzed. The whole-genome of blaNDM-7 harboring Enterobacter hormaechei was sequenced and the sequence around blaNDM-7 was analyzed. Twenty isolates were positive for intI1. Nineteen different antimicrobial-resistant gene cassettes and 11 different gene cassette arrays, including aadA22-lnuF, were detected in this study. Common promoters of class 1 integron PcH1, PcW, PcW-P2, and PcH2 were detected in 12, 4, 3, and 1 isolates, respectively. The rates of antimicrobial resistance of intI1-positive isolates were higher than those of intI1-negative isolates to clinical commonly used antimicrobial agents. Carbapenem-resistant genes blaKPC-2, blaNDM-1, blaNDM-2, and blaNDM-7 were detected in 2, 1, 1, and 1 isolates, respectively. blaNDM-7 was located between bleMBL and IS5. To the best of our knowledge, this study reported for the first time of blaNDM-7 in ECC isolate in China.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
- Department of Laboratory Medicine, Yancheng Second People's Hospital, Jiangsu, 224000, China
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Tong Wang
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Wenwen Zhu
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China
| | - Quhao Wei
- Department of Laboratory Medicine, Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Laboratory Medicine, Southern Medical University Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai, 201499, China.
| |
Collapse
|
3
|
Romina PE, Lucía A, Leticia C, Federica F, Pablo Á, Verónica S, Antonio G, Inés B, Rafael V. In vitro effectiveness of ceftazidime-avibactam in combination with aztreonam on carbapenemase-producing Enterobacterales. J Glob Antimicrob Resist 2023; 35:62-66. [PMID: 37611893 DOI: 10.1016/j.jgar.2023.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
OBJECTIVE This work aimed to describe the in vitro performance of the combined activity of ceftazidime-avibactam (CZA) plus aztreonam (ATM) against carbapenemase-producing Enterobacterales (CPE). METHODS We studied 44 CPE clinical isolates: NDM-1 (31), KPC-2 (5), KPC-3 (3), VIM-2 (2), NDM-1+KPC-2 (2), and OXA-48 (1). The efficacy of CZA in combination with were determined by two methods: (i) Kirby-Bauer's double disk synergy test and; (ii) Determination of the minimum inhibitory concentration to CZA by E-test, in either Mueller-Hinton agar alone or, supplemented with ATM 4 mg/L. Additionally, the Fractional inhibitory concentration index (FICI) was determined; values of ≤ 0.5 were interpreted as synergistic, while FICI > 0.5 were considered indifferent. RESULTS All isolates were carbapenem-resistant, 14 were resistant to CZA and ATM, 15 were only CZA resistant, 12 were only ATM resistant, and three were susceptible to both. 34/44 isolates presented positive double disk synergy tests between CZA and ATM regardless of their susceptibility profile, the isolates with negative synergy tests were susceptible to at least one of the agents. On the other hand, the 21 isolates selected to compare the MIC to CZA alone and CZA plus 4 mg/L ATM of exhibited FICI values between 0.016 and 0.125, indicating a synergistic effect. CONCLUSIONS This method is available to clinical laboratories and would provide valuable information to guide the treatment of infections with CZA and ATM. In this sense, the use of CZA together with ATM is a potentially suitable combination for the treatment of carbapenemase-producing microorganisms.
Collapse
Affiliation(s)
- Papa-Ezdra Romina
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Araújo Lucía
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Caiata Leticia
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ferreira Federica
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ávila Pablo
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Seija Verónica
- Departamento de Laboratorio Clínico, Área Microbiología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Galiana Antonio
- Laboratorio de Microbiología, Hospital Maciel, Montevideo, Uruguay
| | - Bado Inés
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Vignoli Rafael
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
4
|
Li X, Zhang X, Cai H, Zhu Y, Ji J, Qu T, Tu Y, Zhou H, Yu Y. Overexpression of bla GES-1 due to a strong promoter in the class 1 integron contributes to decreased ceftazidime-avibactam susceptibility in carbapenem-resistant Pseudomonas aeruginosa ST235. Drug Resist Updat 2023; 69:100973. [PMID: 37148599 DOI: 10.1016/j.drup.2023.100973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/10/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Sequence type 235 (ST235) Pseudomonas aeruginosa, harboring so-called international, high-risk, or widespread clones, is associated with relatively high morbidity and mortality, partly due to multiantibiotic and high-level antibiotic resistance. Treatment of infections caused by such strains with ceftazidime-avibactam (CZA) is often successful. However, CZA resistance in carbapenem-resistant P. aeruginosa (CRPA) strains has been consistently reported with the increasing use of this drug. Likewise, we identified thirty-seven CZA-resistant ST235 P. aeruginosa strains from among 872 CRPA isolates. A total of 10.8% of the ST235 CRPA strains were resistant to CZA. Site-directed mutagenesis, cloning, expression, and whole-genome sequencing analysis revealed that overexpression of blaGES-1, which was carried in a class 1 integron of the complex transposon Tn6584, occurred due to a strong promoter, contributing to CZA resistance. Moreover, such overexpression of blaGES-1 combined with an efflux pump resulted in high-level resistance to CZA, considerably reducing the therapeutic options available for treating infections caused by ST235 CRPA. Considering the widespread presence of ST235 P. aeruginosa strains, clinicians should be aware of the risk of CZA resistance development in high-risk ST235 P. aeruginosa. Surveillance initiatives for preventing further dissemination of high-risk ST235 CRPA isolates with CZA resistance are essential.
Collapse
Affiliation(s)
- Xi Li
- Centre of Laboratory Medicine, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang 310014, China
| | - Xiaofan Zhang
- Centre of Laboratory Medicine, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang 310014, China
| | - Heng Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yiwei Zhu
- Department of Critical Care Medicine, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingshu Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Yuexing Tu
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, Zhejiang 310012, China.
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Yunsong Yu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
5
|
Toh WK, Teo YL, Tor XY, Loh PC, Wong HL. Development of constitutive and IPTG-inducible integron promoter-based expression systems for Escherichia coli and Agrobacterium tumefaciens. 3 Biotech 2023; 13:91. [PMID: 36825259 PMCID: PMC9941393 DOI: 10.1007/s13205-023-03507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Broad host range (BHR) expression vector is a vital tool in molecular biology research and application. Currently, most of the plasmid vectors used in Agrobacterium spp. are binary vectors that are designed for plant transformation, and very few are designed for expressing transgenes in Agrobacterium spp. Class 1 integrons are common genetic elements that allow for the efficient capture and expression of antibiotic resistance genes, especially in Gram-negative bacteria. One of its compound promoters, PcS + P2, was used in this study and has been reported to be the strongest class 1 integron constitutive promoter; it is referred to as "integron promoter" (P int) henceforth. Herein, we created two versions of isopropyl-d-thiogalactopyranoside (IPTG)-inducible promoters by substituting and/or inserting lacO sequence(s) into P int. These inducible promoters, which possess different degrees of stringency and inducibility, were used to construct two broad host range expression vectors (pWK102 and pWK103) based on the versatile pGREEN system. This allows them to be stably maintained and replicated in both Escherichia coli and Agrobacterium tumefaciens. Functional validation of these vectors was performed by the expression of the reporter gene, superfolder green fluorescent protein (sfGFP), which was cloned downstream of these promoters. Due to the strong induction and tunable expression of a transgene located downstream to the inducible integron promoter, these vectors may be useful for heterologous gene expression in both E. coli and A. tumefaciens, thus facilitating recombinant protein production and genetic studies in Gram-negative bacteria. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03507-0.
Collapse
Affiliation(s)
- Wai Keat Toh
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak Malaysia
| | - Yuh Leng Teo
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak Malaysia
| | - Xin Yen Tor
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak Malaysia
| | - Pek Chin Loh
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak Malaysia
| | - Hann Ling Wong
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak Malaysia
| |
Collapse
|
6
|
Li W, Ma J, Sun X, Liu M, Wang H. Antimicrobial Resistance and Molecular Characterization of Gene Cassettes from Class 1 Integrons in Escherichia coli Strains. Microb Drug Resist 2022; 28:413-418. [PMID: 35076316 PMCID: PMC9058876 DOI: 10.1089/mdr.2021.0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To investigate the antimicrobial resistance and molecular characterization of gene cassettes from class 1 integrons in Escherichia coli strains isolated from hospitalized patients. Bacterial identification was conducted using the Vitek-2 Compact system, and antimicrobial susceptibility analysis was performed using the Kirby-Bauer method. Class 1 integrons, integrase genes, the variable regions of integrons and promoters from the isolated E. coli were screened by polymerase chain reaction, and subjected to DNA sequencing. In total, 138 E. coli strains were collected from the hospitalized patients, most from urine specimens (41.30%, 57/138). Antimicrobial resistance to ampicillin (89.86%) was most prevalent, with 79.99% of strains being multidrug-resistant (MDR). The class 1 integron integrase intI1 gene was detected in 67.39% of the isolates (93/138). Three gene cassette arrays and 5 antimicrobial resistance gene cassettes were detected in 69 of the class 1 integron-positive strains. The most common gene cassette array was dfrA17-aadA5. Of the 93 intI1-positive strains, 5 different common promoters were detected. The most prevalent common promoter was PcH1, and most isolates contained the dfrA17-aadA5 gene cassette array. In summary, antimicrobial resistance and MDR were prevalent among E. coli isolates in our city Weifang in Shandong Provence China. Gene cassettes of the class 1 integron variable region mostly conferred resistance to traditional antimicrobials. Weak promoters in the variable regions were predominant in this study. Integrons pose a great threat to the treatment of MDR bacterial infections and further investigations are needed.
Collapse
Affiliation(s)
- Wanxiang Li
- Department of Clinical Laboratory and Weifang People's Hospital, Weifang, China
| | - Jie Ma
- Department of Clinical Laboratory and Weifang People's Hospital, Weifang, China
| | - Xicai Sun
- Department of Archives, Weifang People's Hospital, Weifang, China
| | - Mi Liu
- Department of Clinical Laboratory and Weifang People's Hospital, Weifang, China
| | - Honggang Wang
- Department of Clinical Laboratory and Weifang People's Hospital, Weifang, China
| |
Collapse
|
7
|
Feng W, Lv J, Wang H, Yao P, Xiong L, Xia P, Yuan Q, Sun F. The first report of the bla IMP-10 gene and complete sequence of the IMP-10-encoding plasmid p12NE515 from Pseudomonas aeruginosa in China. Acta Trop 2022; 228:106326. [PMID: 35077675 DOI: 10.1016/j.actatropica.2022.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To investigate a detailed genomic characterization of the blaIMP-10-carrying plasmid p12NE515 from a Pseudomonas aeruginosa isolate in China. METHODS Plasmid p12NE515 was subjected to whole-genome sequencing and the complete sequence was compared with related plasmid sequences. Transferability of plasmid, carbapenemase activity and bacterial susceptibility profiles were determined to assess p12NE515-mediated resistance phenotypes. RESULTS P. aeruginosa 12NE515 was identified as a less common sequence type of ST1976. p12NE515 harboring blaIMP-10 possessed a backbone identical to plasmid p60512-IMP (carrying blaIMP-1), but the accessory resistance regions differed. Only one accessory module, Tn7339, was carried in p12NE515, and this transposon was an insertion sequence-mediated transposition unit generated by the insertion of a novel class 1 integron, In1814, at the downstream end of ISPa17. Here, blaIMP-10 together with aacA7 was located in In1814, being at evolution stage III of Tn402-associated integron due to truncation of the tni module. CONCLUSION This study is the first to determine the complete sequence of a blaIMP-10-carrying plasmid, and this is also the first report of a blaIMP-10-producing strain in China. The prevalence of the blaIMP-10 gene and the genetic characterization of the blaIMP-10-carrying plasmid should be analyzed to provide deeper insight into the transmission mechanism of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Wei Feng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Lv
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hongping Wang
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lirong Xiong
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qian Yuan
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
8
|
Aztreonam in Combination with Imipenem-Relebactam Against Clinical and Isogenic Strains of Serine and Metallo-β-Lactamase-Producing Enterobacterales. Diagn Microbiol Infect Dis 2022; 103:115674. [DOI: 10.1016/j.diagmicrobio.2022.115674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/28/2022]
|
9
|
Genomic characterization of three GES-producing Enterobacterales isolated in the Czech Republic. J Glob Antimicrob Resist 2022; 29:116-119. [DOI: 10.1016/j.jgar.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/18/2022] Open
|
10
|
Fonseca ÉL, Vicente AC. Integron Functionality and Genome Innovation: An Update on the Subtle and Smart Strategy of Integrase and Gene Cassette Expression Regulation. Microorganisms 2022; 10:microorganisms10020224. [PMID: 35208680 PMCID: PMC8876359 DOI: 10.3390/microorganisms10020224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022] Open
Abstract
Integrons are considered hot spots for bacterial evolution, since these platforms allow one-step genomic innovation by capturing and expressing genes that provide advantageous novelties, such as antibiotic resistance. The acquisition and shuffling of gene cassettes featured by integrons enable the population to rapidly respond to changing selective pressures. However, in order to avoid deleterious effects and fitness burden, the integron activity must be tightly controlled, which happens in an elegant and elaborate fashion, as discussed in detail in the present review. Here, we aimed to provide an up-to-date overview of the complex regulatory networks that permeate the expression and functionality of integrons at both transcriptional and translational levels. It was possible to compile strong shreds of evidence clearly proving that these versatile platforms include functions other than acquiring and expressing gene cassettes. The well-balanced mechanism of integron expression is intricately related with environmental signals, host cell physiology, fitness, and survival, ultimately leading to adaptation on the demand.
Collapse
|
11
|
Brovedan MA, Marchiaro PM, Díaz MS, Faccone D, Corso A, Pasteran F, Viale AM, Limansky AS. Pseudomonas putida group species as reservoirs of mobilizable Tn402-like class 1 integrons carrying bla VIM-2 metallo-β-lactamase genes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105131. [PMID: 34748986 DOI: 10.1016/j.meegid.2021.105131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023]
Abstract
The Pseudomonas putida group (P. putida G) is composed of at least 21 species associated with a wide range of environments, including the clinical setting. Here, we characterized 13 carbapenem-resistant P. putida G clinical isolates bearing class 1 integrons/transposons (class 1 In/Tn) carrying blaVIM-2 metallo-β-lactamase gene cassettes obtained from hospitals of Argentina. Multilocus sequencing (MLSA) and phylogenetic analyses based on 16S rDNA, gyrB and rpoD sequences distinguished 7 species among them. blaVIM-2 was found in three different cassette arrays: In41 (blaVIM-2-aacA4), In899 (only blaVIM-2), and In528 (dfrB1-aacA4-blaVIM-2). In41 and In899 were associated with complete tniABQC transposition modules and IRi/IRt boundaries characteristic of the Tn5053/Tn402 transposons, which were designated Tn6335 and Tn6336, respectively. The class 1 In/Tn element carrying In528, however, exhibited a defective tni module bearing only the tniC (transposase) gene, associated with a complete IS6100 bounded with two oppositely-oriented IRt end regions. In some P. putida G isolates including P. asiatica, P. juntendi, P. putida G/II, and P. putida G/V, Tn6335/Tn6336 were carried by pLD209-type conjugative plasmids capable of self-mobilization to P. aeruginosa or Escherichia coli. In other isolates of P. asiatica, P. putida G/II, and P. monteiliieilii, however, these blaVIM-2-containing class 1 In/Tn elements were found inserted into the res regions preceding the tnpR (resolvase) gene of particular Tn21 subgroup members of Tn3 transposons. The overall results reinforce the notion of P. putida G members as blaVIM-2 reservoirs, and shed light on the mechanisms of dissemination of carbapenem resistance genes to other pathogenic bacteria in the clinical setting.
Collapse
Affiliation(s)
- Marco A Brovedan
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Patricia M Marchiaro
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María S Díaz
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego Faccone
- Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Corso
- Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Pasteran
- Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro M Viale
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Adriana S Limansky
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
12
|
Comparison of Class 2 Integron Integrase Activities. Curr Microbiol 2021; 78:967-978. [PMID: 33543359 DOI: 10.1007/s00284-021-02352-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 01/10/2021] [Indexed: 01/21/2023]
Abstract
Integrons play important roles in the dissemination of antimicrobial resistant genes among bacteria. Class 2 integrons usually has an internal stop codon, TAA, in integrase genes (intI2), leading to a truncated integrase, IntI2*. However, a few class 2 integrons with a natural full-length integrase have been reported. In this study, the sequences of natural full-length intI2 were extracted from INTEGRALL database and analyzed. A total of 236 sequences of intI2 were retrieved from INTEGRALL database, only seven of which were natural full-length intI2 genes and could be divided into five types according to their coding amino acid sequence. Quantitative real-time PCR was used to detect gene cassette sat2 integration and excision efficiency catalyzed by different natural full-length IntI2s. The results showed that all five IntI2s could catalyze attI2 × attCsat2 integration and attCdfrA1/sat2 × attCsat2/aadA1 excision in Escherichia coli. Integration and excision frequency catalyzed by IntI2A176 was highest and was about twofold as high as those catalyzed by IntI2S175_A176. The secondary structure of the IntI2 was predicted by online software. Polymorphisms of these five IntI2s were limited within residues 172, 174, 175, 176 and 256, and these residues were all far away from the predicted DNA binding regions or catalyzed sites. Influence of amino acid sequence polymorphisms of these natural full-length IntI2s on their catalyzed activities is limited.
Collapse
|
13
|
Copy Number of an Integron-Encoded Antibiotic Resistance Locus Regulates a Virulence and Opacity Switch in Acinetobacter baumannii AB5075. mBio 2020; 11:mBio.02338-20. [PMID: 33024041 PMCID: PMC7542366 DOI: 10.1128/mbio.02338-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acinetobacter baumannii remains a leading cause of hospital-acquired infections. Widespread multidrug resistance in this species has prompted the WHO to name carbapenem-resistant A. baumannii as its top priority for research and development of new antibiotics. Many strains of A. baumannii undergo a high-frequency virulence switch, which is an attractive target for new therapeutics targeting this pathogen. This study reports a novel mechanism controlling the frequency of switching in strain AB5075. The rate of switching from the virulent opaque (VIR-O) to the avirulent translucent (AV-T) variant is positively influenced by the copy number of an antibiotic resistance locus encoded on a plasmid-borne composite integron. Our data suggest that this locus encodes a small RNA that regulates opacity switching. Low-switching opaque variants, which harbor a single copy of this locus, also exhibit decreased virulence. This study increases our understanding of this critical phenotypic switch, while also identifying potential targets for virulence-based A. baumannii treatments. We describe a novel genetic mechanism in which tandem amplification of a plasmid-borne integron regulates virulence, opacity variation, and global gene expression by altering levels of a putative small RNA (sRNA) in Acinetobacter baumannii AB5075. Copy number of this amplified locus correlated with the rate of switching between virulent opaque (VIR-O) and avirulent translucent (AV-T) cells. We found that prototypical VIR-O colonies, which exhibit high levels of switching and visible sectoring with AV-T cells by 24 h of growth, harbor two copies of this locus. However, a subset of opaque colonies that did not form AV-T sectors within 24 h were found to harbor only one copy. The colonies with decreased sectoring to AV-T were designated low-switching opaque (LSO) variants and were found to exhibit a 3-log decrease in switching relative to that of the VIR-O. Overexpression studies revealed that the element regulating switching was localized to the 5′ end of the aadB gene within the amplified locus. Northern blotting indicated that an sRNA of approximately 300 nucleotides (nt) is encoded in this region and is likely responsible for regulating switching to AV-T. Copy number of the ∼300-nt sRNA was also found to affect virulence, as the LSO variant exhibited decreased virulence during murine lung infections. Global transcriptional profiling revealed that >100 genes were differentially expressed between VIR-O and LSO variants, suggesting that the ∼300-nt sRNA may act as a global regulator. Several virulence genes exhibited decreased expression in LSO cells, potentially explaining their decreased virulence.
Collapse
|
14
|
Tansirichaiya S, Mullany P, Roberts AP. Promoter activity of ORF-less gene cassettes isolated from the oral metagenome. Sci Rep 2019; 9:8388. [PMID: 31182805 PMCID: PMC6557892 DOI: 10.1038/s41598-019-44640-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/17/2019] [Indexed: 01/09/2023] Open
Abstract
Integrons are genetic elements consisting of a functional platform for recombination and expression of gene cassettes (GCs). GCs usually carry promoter-less open reading frames (ORFs), encoding proteins with various functions including antibiotic resistance. The transcription of GCs relies mainly on a cassette promoter (PC), located upstream of an array of GCs. Some integron GCs, called ORF-less GCs, contain no identifiable ORF with a small number shown to be involved in antisense mRNA mediated gene regulation. In this study, the promoter activity of ORF-less GCs, previously recovered from the oral metagenome, was verified by cloning them upstream of a gusA reporter, proving they can function as a promoter, presumably allowing bacteria to adapt to multiple stresses within the complex physico-chemical environment of the human oral cavity. A bi-directional promoter detection system was also developed allowing direct identification of clones with promoter-containing GCs on agar plates. Novel promoter-containing GCs were identified from the human oral metagenomic DNA using this construct, called pBiDiPD. This is the first demonstration and detection of promoter activity of ORF-less GCs from Treponema bacteria and the development of an agar plate-based detection system will enable similar studies in other environments.
Collapse
Affiliation(s)
- Supathep Tansirichaiya
- Department of Microbial Diseases, University College London, Eastman Dental Institute, 256 Gray's Inn Road, London, WC1X 8LD, UK.,Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Peter Mullany
- Department of Microbial Diseases, University College London, Eastman Dental Institute, 256 Gray's Inn Road, London, WC1X 8LD, UK
| | - Adam P Roberts
- Department of Microbial Diseases, University College London, Eastman Dental Institute, 256 Gray's Inn Road, London, WC1X 8LD, UK. .,Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
15
|
Xiao L, Wang X, Kong N, Cao M, Zhang L, Wei Q, Liu W. Polymorphisms of Gene Cassette Promoters of the Class 1 Integron in Clinical Proteus Isolates. Front Microbiol 2019; 10:790. [PMID: 31068909 PMCID: PMC6491665 DOI: 10.3389/fmicb.2019.00790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/27/2019] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To describe the polymorphisms of gene cassette promoters of the class 1 integron in clinical Proteus isolates and their relationship with antibiotic resistance. METHODS Polymorphisms of the gene cassette promoter in 153 strains of Proteus were analyzed by PCR and nucleotide sequencing. Variable regions of atypical class 1 integrons were detected by inverse PCR and nucleotide sequencing. Enterobacterial repetitive intergenic consensus (ERIC)-PCR was used to analyze the phylogenetic relationships of class 1 integron-positive clinical Proteus isolates. Representative beta-lactamase genes (bla), including bla TEM,bla SHV,bla CTX-M-1,bla CTX-M-2,bla CTX-M-8,bla CTX-M-9,bla CTX-M-25 and bla OXA-1, and plasmid-mediated quinolone resistance (PMQR) genes including qnrA, qnrB, qnrC, qnrD, qnrS, oqxA, oqxB, qepA, and aac(6')-Ib were also screened using PCR and sequence analysis. RESULTS Fifteen different gene cassette arrays and 20 different gene cassettes were detected in integron-positive strains. Of them, aadB-aadA2 (37/96) was the most common gene cassette array. Two of these gene cassette arrays (estX-psp-aadA2-cmlA1, estX-psp-aadA2-cmlA1-aadA1a-qacI-tnpA-sul3) have not previously been reported. Three different Pc-P2 variants (PcS, PcWTGN-10, PcH1) were detected among the 96 Proteus strains, with PcH1 being the most common (49/96). Strains carrying the promoters PcS or PcWTGN-10 were more resistant to sulfamethoxazole, gentamicin and tobramycin than those carrying PcH1. Strains with weak promoter (PcH1) harbored significantly more intra- and extra-integron antibiotic resistance genes than isolates with strong promoter (PcWTGN-10). Further, among 153 isolates, representative beta-lactamase genes were detected in 70 isolates (bla TEM-1, 54; bla OXA-1, 40; bla CTX-M-3, 12; bla CTX-M-14, 12; bla CTX-M-65, 5; bla CTX-M-15, 2) and representative PMQR genes were detected in 87 isolates (qnrA, 6; qnrB, 3; qnrC, 5; qnrD, 46; qnrS, 5; oqxA, 7; aac(6')-Ib, 13; aac(6')-Ib-cr, 32). CONCLUSION To the best of our knowledge, this study provides the first evidence for polymorphisms of the class 1 integron variable promoter in clinical Proteus isolates, which generally contain relatively strong promoters. Resistance genotypes showed a higher coincidence rate with the drug-resistant phenotype in strong-promoter-containing strains, resulting in an ability to confer strong resistance to antibiotics among host bacteria and a relatively limited ability to capture gene cassettes. Moreover, strains with relatively weak integron promoters can "afford" a heavier "extra-integron antibiotic resistance gene load". Furthermore, the gene cassettes estX, psp and the gene cassette arrays estX-psp-aadA2-cmlA1, estX-psp-aadA2-cmlA1-aadA1a-qacI-tnpA-sul3 have been confirmed for the first time in clinical Proteus isolates. Beta-lactamase genes and PMQR were investigated, and bla TEM-1 and bla OXA-1 were the most common, with qnrD and aac (6')-Ib-cr also being dominant.
Collapse
Affiliation(s)
- Linlin Xiao
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xiaotong Wang
- Anhui University of Science and Technology, Anhui, China
| | - Nana Kong
- Anhui University of Science and Technology, Anhui, China
| | - Mei Cao
- Anhui University of Science and Technology, Anhui, China
| | - Long Zhang
- Anhui University of Science and Technology, Anhui, China
| | - Quhao Wei
- Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
- Department of Laboratory Medicine, Affiliated Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
- Anhui University of Science and Technology, Anhui, China
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Weiwei Liu
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China
- Department of Laboratory Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
16
|
Emergence of sequence type 252 Enterobacter cloacae producing GES-5 carbapenemase in a Czech hospital. Diagn Microbiol Infect Dis 2017; 90:148-150. [PMID: 29150370 DOI: 10.1016/j.diagmicrobio.2017.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 10/14/2017] [Indexed: 11/23/2022]
Abstract
ST252 Enterobacter cloacae, producing GES-5 carbapenemase, was isolated in a Czech hospital. blaGES-5 was part of a novel class 1 integron, In1406, which also included a new allele of the aadA15 gene cassette. In1406 was located on a ColE2-like plasmid, pEcl-35771cz (6953bp).
Collapse
|
17
|
Integrons in Enterobacteriaceae: diversity, distribution and epidemiology. Int J Antimicrob Agents 2017; 51:167-176. [PMID: 29038087 DOI: 10.1016/j.ijantimicag.2017.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/29/2017] [Accepted: 10/07/2017] [Indexed: 01/03/2023]
Abstract
Integrons are versatile gene acquisition systems that allow efficient capturing of exogenous genes and ensure their expression. Various classes of integrons possessing a wide variety of gene cassettes are ubiquitously distributed in enteric bacteria worldwide. The epidemiology of integrons associated multidrug resistance in Enterobacteriaceae is rapidly evolving. In the past two decades, the incidence of integrons in enteric bacteria has increased drastically with evolution of multiple gene cassettes, novel gene arrangements and complex chromosomal integrons such as Salmonella genomic islands. This review focuses on the distribution, versatility, spread and global trends of integrons among important members of the Enterobacteriaceae, including Escherichia coli, Klebsiella, Shigella and Salmonella, which are known to cause infections globally. Such a comprehensive understanding of integron-associated antibiotic resistance, their role in the spread of such resistance traits and their clinical relevance especially with regard to each genus individually is paramount to contain the global spread of antibiotic resistance.
Collapse
|
18
|
attI1-Located Small Open Reading Frames ORF-17 and ORF-11 in a Class 1 Integron Affect Expression of a Gene Cassette Possessing a Canonical Shine-Dalgarno Sequence. Antimicrob Agents Chemother 2017; 61:AAC.02070-16. [PMID: 28031195 DOI: 10.1128/aac.02070-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/20/2016] [Indexed: 11/20/2022] Open
Abstract
By searching the Integrall integron and GenBank databases, a novel open reading frame (ORF) of 51 nucleotides (nts) (ORF-17) overlapping the previously described ORF-11 was identified within the attI1 site in virtually all class 1 integrons. Using a set of isogenic plasmid constructs carrying a single gene cassette (blaGES-1) and possessing a canonical translation initiation region, we found that ORF-17 contributes to GES-1 expression.
Collapse
|
19
|
Interspecies Dissemination of a Mobilizable Plasmid Harboring blaIMP-19 and the Possibility of Horizontal Gene Transfer in a Single Patient. Antimicrob Agents Chemother 2016; 60:5412-9. [PMID: 27381397 DOI: 10.1128/aac.00933-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/21/2016] [Indexed: 01/03/2023] Open
Abstract
Carbapenemase-producing Gram-negative bacilli have been a global concern over the past 2 decades because these organisms can cause severe infections with high mortality rates. Carbapenemase genes are often carried by mobile genetic elements, and resistance plasmids can be transferred through conjugation. We conducted whole-genome sequencing (WGS) to demonstrate that the same plasmid harboring a metallo-β-lactamase gene was detected in two different species isolated from a single patient. Metallo-β-lactamase-producing Achromobacter xylosoxidans (KUN4507), non-metallo-β-lactamase-producing Klebsiella pneumoniae (KUN4843), and metallo-β-lactamase-producing K. pneumoniae (KUN5033) were sequentially isolated from a single patient and then analyzed in this study. Antimicrobial susceptibility testing, molecular typing (pulsed-field gel electrophoresis and multilocus sequence typing), and conjugation analyses were performed by conventional methods. Phylogenetic and molecular clock analysis of K. pneumoniae isolates were performed with WGS, and the nucleotide sequences of plasmids detected from these isolates were determined using WGS. Conventional molecular typing revealed that KUN4843 and KUN5033 were identical, whereas the phylogenetic tree analysis revealed a slight difference. These two isolates were separated from the most recent common ancestor 0.74 years before they were isolated. The same resistance plasmid harboring blaIMP-19 was detected in metallo-β-lactamase-producing A. xylosoxidans and K. pneumoniae Although this plasmid was not self-transferable, the conjugation of this plasmid from A. xylosoxidans to non-metallo-β-lactamase-producing K. pneumoniae was successfully performed. The susceptibility patterns for metallo-β-lactamase-producing K. pneumoniae and the transconjugant were similar. These findings supported the possibility of the horizontal transfer of plasmid-borne blaIMP-19 from A. xylosoxidans to K. pneumoniae in a single patient.
Collapse
|
20
|
Tada T, Miyoshi-Akiyama T, Shimada K, Shiroma A, Nakano K, Teruya K, Satou K, Hirano T, Shimojima M, Kirikae T. A Carbapenem-Resistant Pseudomonas aeruginosa Isolate Harboring Two Copies of blaIMP-34 Encoding a Metallo-β-Lactamase. PLoS One 2016; 11:e0149385. [PMID: 27055243 PMCID: PMC4824433 DOI: 10.1371/journal.pone.0149385] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022] Open
Abstract
A carbapenem-resistant strain of Pseudomonas aeruginosa, NCGM1984, was isolated in 2012 from a hospitalized patient in Japan. Immunochromatographic assay showed that the isolate was positive for IMP-type metallo-β-lactamase. Complete genome sequencing revealed that NCGM1984 harbored two copies of blaIMP-34, located at different sites on the chromosome. Each blaIMP-34 was present in the same structures of the class 1 integrons, tnpA(ISPa7)-intI1-qacG-blaIMP-34-aac(6')-Ib-qacEdelta1-sul1-orf5-tniBdelta-tniA. The isolate belonged to multilocus sequence typing ST235, one of the international high-risk clones. IMP-34, with an amino acid substitution (Glu126Gly) compared with IMP-1, hydrolyzed all β-lactamases tested except aztreonam, and its catalytic activities were similar to IMP-1. This is the first report of a clinical isolate of an IMP-34-producing P. aeruginosa harboring two copies of blaIMP-34 on its chromosome.
Collapse
Affiliation(s)
- Tatsuya Tada
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, Japan
| | - Tohru Miyoshi-Akiyama
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, Japan
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, Japan
| | - Kayo Shimada
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, Japan
| | - Akino Shiroma
- Research and Development Division, Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Kazuma Nakano
- Research and Development Division, Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Kuniko Teruya
- Research and Development Division, Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Kazuhito Satou
- Research and Development Division, Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | - Takashi Hirano
- Research and Development Division, Okinawa Institute of Advanced Sciences, Uruma, Okinawa, Japan
| | | | - Teruo Kirikae
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
21
|
Papagiannitsis CC, Dolejska M, Izdebski R, Dobiasova H, Studentova V, Esteves FJ, Derde LPG, Bonten MJM, Hrabák J, Gniadkowski M. Characterization of pKP-M1144, a Novel ColE1-Like Plasmid Encoding IMP-8, GES-5, and BEL-1 β-Lactamases, from a Klebsiella pneumoniae Sequence Type 252 Isolate. Antimicrob Agents Chemother 2015; 59:5065-8. [PMID: 26033721 PMCID: PMC4505226 DOI: 10.1128/aac.00937-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/29/2015] [Indexed: 11/20/2022] Open
Abstract
IMP-8 metallo-β-lactamase was identified in Klebsiella pneumoniae sequence type 252 (ST252), isolated in a Portuguese hospital in 2009. blaIMP-8 was the first gene cassette of a novel class 3 integron, In1144, also carrying the blaGES-5, blaBEL-1, and aacA4 cassettes. In1144 was located on a ColE1-like plasmid, pKP-M1144 (12,029 bp), with a replication region of limited nucleotide similarity to those of other RNA-priming plasmids, such as pJHCMW1. In1144 and pKP-M1144 represent an interesting case of evolution of resistance determinants in Gram-negative bacteria.
Collapse
Affiliation(s)
- Costas C Papagiannitsis
- Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Plzen, Czech Republic National Medicines Institute, Warsaw, Poland
| | - Monika Dolejska
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | | | - Hana Dobiasova
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Vendula Studentova
- Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Plzen, Czech Republic
| | | | | | | | - Jaroslav Hrabák
- Faculty of Medicine and University Hospital in Plzen, Charles University in Prague, Plzen, Czech Republic Biomedical Center, Faculty of Medicine in Plzen, Charles University in Prague, Plzen, Czech Republic
| | | |
Collapse
|
22
|
Relative Strengths of Promoters Provided by Common Mobile Genetic Elements Associated with Resistance Gene Expression in Gram-Negative Bacteria. Antimicrob Agents Chemother 2015; 59:5088-91. [PMID: 26055385 DOI: 10.1128/aac.00420-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/05/2015] [Indexed: 01/01/2023] Open
Abstract
Comparison of green fluorescent protein expression from outward-facing promoters (POUT) of ISAba1, ISEcp1, and ISAba125 revealed approximate equivalence in strength, intermediate between PCS (strong) and PCWTGN-10 (weak) class 1 integron promoter variants, >30-fold stronger than POUT of ISCR1, and >5 times stronger than Ptac. Consistent with its usual role, PCWTGN-10 produces more mRNA from a "downstream" gfp gene transcriptionally linked to a "usual" PCWTGN-10-associated gene cassette than does POUT of ISAba1.
Collapse
|
23
|
Pfennigwerth N, Geis G, Gatermann SG, Kaase M. Description of IMP-31, a novel metallo-β-lactamase found in an ST235 Pseudomonas aeruginosa strain in Western Germany. J Antimicrob Chemother 2015; 70:1973-80. [PMID: 25835992 DOI: 10.1093/jac/dkv079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/07/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The objective of this study was to characterize a novel IMP-type metallo-β-lactamase (MBL) found in an MDR clinical isolate of Pseudomonas aeruginosa. METHODS The P. aeruginosa isolate NRZ-00156 was recovered from an inguinal swab from a patient hospitalized in Western Germany and showed high MICs of carbapenems. MBL production was analysed by Etest for MBLs, an EDTA combined disc test and an EDTA bioassay. Typing of the isolate was performed by MLST. Genetic characterization of the new blaIMP gene was performed by sequencing the PCR products. A phylogenetic tree was constructed. The novel blaIMP gene was expressed in Escherichia coli TOP10 and the enzyme was subjected to biochemical characterization. RESULTS The P. aeruginosa isolate NRZ-00156 expressed the ST235 allelic profile and was resistant to all the β-lactams tested except aztreonam. The isolate was positive for MBL production and harboured a new IMP allele, blaIMP-31, located on a disrupted class I integron [also carrying the blaOXA-35, aac(6')-Ib, aac(3)-Ic and aphA15 genes]. Its closest relative was IMP-35, with 96.7% amino acid identity. Expression of blaIMP-31 demonstrated that E. coli TOP10 producing IMP-31 had elevated resistance to all the β-lactams tested except aztreonam. Kinetic data were obtained for both IMP-31 and IMP-1. In comparison with IMP-1, IMP-31 showed weaker hydrolytic activity against all the β-lactams tested, which resulted from lower kcat values. CONCLUSIONS The characterization of the new IMP-type gene blaIMP-31 from an ST235 P. aeruginosa isolate indicates an ongoing spread of highly divergent IMP-type carbapenemases in clinical P. aeruginosa strains and highlights the continuous need for the prevention of nosocomial infections caused by MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Niels Pfennigwerth
- Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Gabriele Geis
- Institute for Medical Laboratory Diagnostics Bochum GmbH, Castroper Straße 45, 44791 Bochum, Germany
| | - Sören G Gatermann
- Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Martin Kaase
- Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
24
|
Tseng CS, Yen YC, Chang CC, Hsu YM. Polymorphism of gene cassette promoter variants of class 1 integron harbored in S. Choleraesuis and Typhimurium isolated from Taiwan. Biomedicine (Taipei) 2014; 4:20. [PMID: 25520933 PMCID: PMC4264977 DOI: 10.7603/s40681-014-0020-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/26/2014] [Indexed: 11/06/2022] Open
Abstract
Integrons, mobile genetic units, capture and incorporate antibiotic resistance gene cassette by site-specific recombination. Class 1 integrons are widespread and associated with dispersion of antibiotic resistance among Gram-negative bacteria. The expression of gene cassette in Class 1 can vary, based on the Pc promoter but seldom from another promoter hiding downstream of Pc, called P2. To probe distribution and prevalence of gene cassette promoter variants, we analyzed 169 S. Choleraesuis and 191 S. Typhimurium isolates from humans and animals, finding 95.27% occurrence of integrin among S. Choleraesuis, 83.25% among S. Typhimurium. PCR-RFLP analysis identified four promoters (PcS+P2, PcWTGN-10+P2, PcH1+P2, and PcWTGN-10+P2-GGG) in said integron-positive isolates; major types in S. Choleraesuis and S. Typhimurium were PcS+P2 and PcWTGN-10+P2, respectively. Likewise, β-galactosidase assay rated promoter strength of variants by transcriptional fusion constructs to show extended -10 promoter (TGn/-10 promoter) in Pc and three-nucleotide insertion (GGG) between -35 and -10 region of P2 improving promoter strength of gene cassette.
Collapse
Affiliation(s)
- Chih-Sian Tseng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - Yu-Chieh Yen
- Graduate Institute of Microbiology and Public Health, School of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chao-Chin Chang
- Graduate Institute of Microbiology and Public Health, School of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
25
|
Wei Q, Jiang X, Li M, Li G, Hu Q, Lu H, Chen G, Zhou Y, Lu Y. Diversity of Gene Cassette Promoter Variants of Class 1 Integrons in Uropathogenic Escherichia coli. Curr Microbiol 2013; 67:543-9. [DOI: 10.1007/s00284-013-0399-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
|
26
|
Vinué L, Jové T, Torres C, Ploy MC. Diversity of class 1 integron gene cassette Pc promoter variants in clinical Escherichia coli strains and description of a new P2 promoter variant. Int J Antimicrob Agents 2011; 38:526-9. [PMID: 21917427 DOI: 10.1016/j.ijantimicag.2011.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 11/16/2022]
Abstract
Gene cassettes of class 1 integrons may be differently expressed depending on the Pc promoter variant as well as occasionally from a second promoter located downstream of Pc, named P2. So far, the distribution of the variants has only been described in an in silico study. In this study, the prevalence of these variants in vivo was analysed in a population of 85 Escherichia coli strains from a variety of phylogenetic groups isolated from healthy subjects and clinical samples in Spain and France from 2004 to 2007. The weakest variants (PcW and PcH1) prevailed (variants associated with the integrase having the most efficient excision activity), whilst the two strongest variants, PcW(TGN-10) and PcS, were less frequent. Furthermore, a new variant of P2 associated with PcW was characterised in one integron (harbouring the gene cassette bla(OXA-1)-aadA1) from a French strain of a healthy subject. This variant was hereafter named P2m3 and shows a G→A substitution in its -10 element (TACAGT to TACAAT), a mutation that doubled the strength of P2 and approached the level of expression of the strong PcW(TGN-10) variant. When the correlation between the Pc variants and the origin of the strains was analysed, no significant difference (P<0.05) was observed in the Pc variant distribution according to the geographic origin or clinical setting.
Collapse
Affiliation(s)
- Laura Vinué
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | | | | | | |
Collapse
|
27
|
Solomenny AP, Lyapunov YE, Kuzyaev RZ. Genetic Variability of Enterobacterial Resistant Integrons. Bull Exp Biol Med 2011; 151:619-21. [DOI: 10.1007/s10517-011-1397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Ke X, Gu B, Pan S, Tong M. Epidemiology and molecular mechanism of integron-mediated antibiotic resistance in Shigella. Arch Microbiol 2011; 193:767-74. [PMID: 21842348 DOI: 10.1007/s00203-011-0744-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/27/2011] [Accepted: 08/02/2011] [Indexed: 01/15/2023]
Abstract
Integrons are gene capture and expression systems that are characterized by the presence of an integrase gene. This encodes an integrase, a recombined site, and a promoter. They are able to capture gene cassettes from the environment and incorporate them using site-specific recombination. The role of integrons and gene cassettes in the dissemination of multidrug resistance in Gram-negative bacteria is significant. In Shigella species, antimicrobial resistance is often associated with the presence of class 1 and class 2 integrons that contain resistance gene cassettes. Multiple and complex expression regulation mechanisms involving mobile genetic elements in integrons have been developed in the evolution of Shigella strains. Knowledge of the epidemiology and molecular mechanisms of antimicrobial resistance in this important pathogen is essential for the implementation of intervention strategies. This review was conducted to introduce the structures and functions of integrons in Shigella species and mechanisms that control integron-mediated events linked to antibiotic resistance.
Collapse
Affiliation(s)
- Xing Ke
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | |
Collapse
|
29
|
Cagle CA, Shearer JES, Summers AO. Regulation of the integrase and cassette promoters of the class 1 integron by nucleoid-associated proteins. MICROBIOLOGY-SGM 2011; 157:2841-2853. [PMID: 21778209 DOI: 10.1099/mic.0.046987-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The integrase IntI1 catalyses recombination of antibiotic-resistance gene cassettes in the integron, a widely found bacterial mobile element active in spreading antibiotic multi-resistance. We have previously shown that resistance cassette recombination rate and specificity depend on the amount of intracellular integrase. Here, we used in vivo and in vitro methods to examine convergent expression of the integrase promoter (P(int)) and of the cassette promoters (P(c) and P(2)) in the prototypical plasmid-borne class 1 integron, In2. Highly conserved P(int) has near consensus -10 and -35 hexamers for σ(70) RNA polymerase, but there are 11 naturally occurring arrangements of P(c) alone or combinations of the P(c)+P(2) cassette promoters (note that P(2) occurs with a 14 or 17 bp spacer). Using a bi-directional reporter vector, we found that P(int) is a strong promoter in vivo, but its expression is reduced by converging transcription from P(c) and P(2). In addition to cis-acting convergence control of integrase expression, the regulator site prediction program, prodoric 8.9, identified sites for global regulators FIS, LexA, IHF and H-NS in and near the integron promoters. In strains mutated in each global regulator, we found that: (1) FIS repressed integrase and cassette expression; (2) LexA repressed P(int) and P(2) with the 14 bp spacer version of P(2) and FIS was necessary for maximum LexA repression; (3) IHF activated P(int) when it faced the strong 17 bp spacer P(2) but did not elevate its expression versus LexA-repressed P(2) with the 14 bp spacer; and (4) H-NS repressed both P(int) and the 14 bp P(2) but activated the 17 bp P(2) cassette promoters. Mobility shift assays showed that FIS and IHF interact directly with the promoter regions and DNase I footprinting confirmed extensive protection by FIS of wild-type In2 integron promoter sequence. Thus, nucleoid-associated proteins, known to act directly in site-specific recombination, also control integron gene expression directly and possibly indirectly.
Collapse
Affiliation(s)
- Caran A Cagle
- Department of Microbiology, The University of Georgia, Athens, GA 30602-2605, USA
| | - Julia E S Shearer
- Department of Microbiology, The University of Georgia, Athens, GA 30602-2605, USA
| | - Anne O Summers
- Department of Microbiology, The University of Georgia, Athens, GA 30602-2605, USA
| |
Collapse
|
30
|
Wei Q, Jiang X, Li M, Chen X, Li G, Li R, Lu Y. Transcription of integron-harboured gene cassette impacts integration efficiency in class 1 integron. Mol Microbiol 2011; 80:1326-36. [PMID: 21453444 DOI: 10.1111/j.1365-2958.2011.07648.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Class 1 integrons play important roles in the dissemination of antibiotic resistance genes among bacteria. Generally, class 1 integron consists of an integrase gene (intI1), a recombination site (attI1) and a promoter (Pc) that drives the transcription of the downstreamed gene cassettes. Occasionally, there is a second promoter P2 downstream of the Pc promoter. Several Pc variants and Pc-P2 combinations have been defined and they display different transcription strengths, but the influence of the transcription of integron-harboured gene cassette on the integration efficiency has never been comprehensively studied. In this study, the integration frequencies of gene cassettes into the attI1 sites that downstream of four different Pc variants as well as their combinations with P2 promoter were measured. The results showed that there was an inverse correlation between the strength of Pc promoter and the integration efficiency and, with the same Pc promoter, the integration efficiency was significantly decreased when a P2 promoter preceded the attI1 site. Our findings indicate there is a relationship between the transcription of integron-harboured gene cassette and the integration of exogenous gene cassettes. The interrelationship between these two relatively independent processes may throw a light on our understanding the regulation system of class 1 integron.
Collapse
Affiliation(s)
- Quhao Wei
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Central Urumqi Road, Shanghai 200040, China
| | | | | | | | | | | | | |
Collapse
|
31
|
da Fonseca ÉL, dos Santos Freitas F, Vicente ACP. Pc promoter from class 2 integrons and the cassette transcription pattern it evokes. J Antimicrob Chemother 2011; 66:797-801. [PMID: 21393219 DOI: 10.1093/jac/dkr011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Integrons are considered expression systems due to the presence of Pc promoters that drive gene cassette transcription. The role and configurations of Pc are well known in class 1 integrons; however, this region has not yet been identified in class 2 integrons. This study aimed to characterize the Pc promoter from class 2 integrons and to determine the effect of gene cassette position on transcription driven by this promoter. METHODS The class 2 cassette arrays from Klebsiella pneumoniae and Vibrio cholerae strains were determined by sequencing. Transcription analyses were performed by real-time RT-PCR and relative quantification was carried out by comparing the transcripts of each normalized gene inserted in the integron to each other. The resistance profile was determined by the disc diffusion method. The class 2 Pc promoter was characterized by 5' rapid amplification of cDNA ends and promoter prediction programs. RESULTS Sequence analysis revealed the presence of the dfrA1-sat2-aadA1-ybeA and sat2-aadA1-ybeA arrangements in K. pneumoniae and V. cholerae strains, respectively. Real-time RT-PCR showed that the transcription of the first cassettes was higher than that of distal ones in wild-type and recombinant strains. All strains were resistant, indicating cassette expression. The Pc promoter of class 2 integrons (-35 TTTAAT |16 bp| -10 TAAAAT) was determined based on in silico analyses and on the transcription start site sequence of the class 2 integron cassette array. CONCLUSIONS The Pc from class 2 integrons was characterized for the first time and the cassette position effect on transcription was demonstrated.
Collapse
Affiliation(s)
- Érica Lourenço da Fonseca
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
32
|
Carbapenem-hydrolyzing GES-type extended-spectrum beta-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 2010; 55:349-54. [PMID: 20956589 DOI: 10.1128/aac.00773-10] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii isolate AP was recovered from a bronchial lavage of a patient hospitalized in Paris, France. A. baumannii AP was resistant to all β-lactams, including carbapenems, and produced the extended-spectrum β-lactamase (ESBL) GES-14, which differs from GES-1 by two substitutions, Gly170Ser and Gly243Ala. Cloning of the bla(GES-14) gene followed by its expression in Escherichia coli showed that GES-14 compromised significantly the efficacy of all β-lactams, including cephalosporins, aztreonam, and carbapenems. The carbapenemase activity of purified GES-14 was confirmed by kinetic studies. The bla(GES-14) gene was located into a class 1 integron structure and located onto a ca. 95-kb self-transferable plasmid. This study identified a very broad-spectrum β-lactamase in A. baumannii.
Collapse
|
33
|
Léon G, Quiroga C, Centrón D, Roy PH. Diversity and strength of internal outward-oriented promoters in group IIC-attC introns. Nucleic Acids Res 2010; 38:8196-207. [PMID: 20716518 PMCID: PMC3001079 DOI: 10.1093/nar/gkq709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Integrons are genetic elements that incorporate mobile gene cassettes by site-specific recombination and express them as an operon from a promoter (Pc) located upstream of the cassette insertion site. Most gene cassettes found in integrons contain only one gene followed by an attC recombination site. We have recently shown that a specific lineage of group IIC introns, named group IIC-attC introns, inserts into the bottom strand sequence of attC sites. Here, we show that S.ma.I2, a group IIC-attC intron inserted in an integron cassette array of Serratia marcescens, impedes transcription from Pc while allowing expression of the following antibiotic resistance cassette using an internal outward-oriented promoter (Pout). Bioinformatic analyses indicate that one or two putative Pout, which have sequence similarities with the Escherichia coli consensus promoters, are conserved in most group IIC-attC intron sequences. We show that Pout with different versions of the −35 and −10 sequences are functionally active in expressing a promoterless chloramphenicol acetyltransferase (cat) reporter gene in E. coli. Pout in group IIC-attC introns may therefore play a role in the expression of one or more gene cassettes whose transcription from Pc would otherwise be impeded by insertion of the intron.
Collapse
Affiliation(s)
- Grégory Léon
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | | | |
Collapse
|
34
|
Comparative biochemical and computational study of the role of naturally occurring mutations at Ambler positions 104 and 170 in GES β-lactamases. Antimicrob Agents Chemother 2010; 54:4864-71. [PMID: 20696873 DOI: 10.1128/aac.00771-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In GES-type β-lactamases, positions 104 and 170 are occupied by Glu or Lys and by Gly, Asn, or Ser, respectively. Previous studies have indicated an important role of these amino acids in the interaction with β-lactams, although their precise role, especially that of residue 104, remains uncertain. In this study, we constructed GES-1 (Glu104, Gly170), GES-2 (Glu104, Asn170), GES-5 (Glu104, Ser170), GES-6 (Lys104, Ser170), GES-7 (Lys104, Gly170), and GES-13 (Lys104, Asn170) by site-specific mutagenesis and compared their hydrolytic properties. Isogenic comparisons of β-lactam resistance levels conferred by these GES variants were also performed. Data indicated the following patterns: (i) Lys104-containing enzymes exhibited enhanced hydrolysis of oxyimino-cephalosporins and reduced efficiency against imipenem in relation to enzymes possessing Glu104, (ii) Asn170-containing enzymes showed reduced hydrolysis rates of penicillins and older cephalosporins, (iii) Ser170 enabled GES to hydrolyze cefoxitin efficiently, and (iv) Asn170 and Ser170 increased the carbapenemase character of GES enzymes but reduced their activity against ceftazidime. Molecular dynamic simulations of GES apoenzyme models, as well as construction of GES structures complexed with cefoxitin and an achiral ceftazidime-like boronic acid, provided insights into the catalytic behavior of the studied mutants. There were indications that an increased stability of the hydrogen bonding network of Glu166-Lys73-Ser70 and an altered positioning of Trp105 correlated with the substrate spectra, especially with acylation of GES by imipenem. Furthermore, likely effects of Ser170 on GES interactions with cefoxitin and of Lys104 on interactions with oxyimino-cephalosporins were revealed. Overall, the data unveiled the importance of residues 104 and 170 in the function of GES enzymes.
Collapse
|
35
|
GES-13, a beta-lactamase variant possessing Lys-104 and Asn-170 in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2010; 54:1331-3. [PMID: 20065056 DOI: 10.1128/aac.01561-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GES-13 beta-lactamase, a novel GES variant possessing Lys-104 and Asn-170, was identified in Pseudomonas aeruginosa. bla(GES-13) was the single gene cassette of a class 1 integron probably located in the chromosome. GES-13 efficiently hydrolyzed broad-spectrum cephalosporins and aztreonam. Imipenem was a potent inhibitor of GES-13 but was not hydrolyzed at measurable rates.
Collapse
|
36
|
Inverse correlation between promoter strength and excision activity in class 1 integrons. PLoS Genet 2010; 6:e1000793. [PMID: 20066027 PMCID: PMC2791841 DOI: 10.1371/journal.pgen.1000793] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 11/27/2009] [Indexed: 01/24/2023] Open
Abstract
Class 1 integrons are widespread genetic elements that allow bacteria to capture and express gene cassettes that are usually promoterless. These integrons play a major role in the dissemination of antibiotic resistance among Gram-negative bacteria. They typically consist of a gene (intI) encoding an integrase (that catalyzes the gene cassette movement by site-specific recombination), a recombination site (attI1), and a promoter (Pc) responsible for the expression of inserted gene cassettes. The Pc promoter can occasionally be combined with a second promoter designated P2, and several Pc variants with different strengths have been described, although their relative distribution is not known. The Pc promoter in class 1 integrons is located within the intI1 coding sequence. The Pc polymorphism affects the amino acid sequence of IntI1 and the effect of this feature on the integrase recombination activity has not previously been investigated. We therefore conducted an extensive in silico study of class 1 integron sequences in order to assess the distribution of Pc variants. We also measured these promoters' strength by means of transcriptional reporter gene fusion experiments and estimated the excision and integration activities of the different IntI1 variants. We found that there are currently 13 Pc variants, leading to 10 IntI1 variants, that have a highly uneven distribution. There are five main Pc-P2 combinations, corresponding to five promoter strengths, and three main integrases displaying similar integration activity but very different excision efficiency. Promoter strength correlates with integrase excision activity: the weaker the promoter, the stronger the integrase. The tight relationship between the aptitude of class 1 integrons to recombine cassettes and express gene cassettes may be a key to understanding the short-term evolution of integrons. Dissemination of integron-driven drug resistance is therefore more complex than previously thought.
Collapse
|
37
|
Partridge SR, Tsafnat G, Coiera E, Iredell JR. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 2009; 33:757-84. [PMID: 19416365 DOI: 10.1111/j.1574-6976.2009.00175.x] [Citation(s) in RCA: 466] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Gene cassettes are small mobile elements, consisting of little more than a single gene and recombination site, which are captured by larger elements called integrons. Several cassettes may be inserted into the same integron forming a tandem array. The discovery of integrons in the chromosome of many species has led to the identification of thousands of gene cassettes, mostly of unknown function, while integrons associated with transposons and plasmids carry mainly antibiotic resistance genes and constitute an important means of spreading resistance. An updated compilation of gene cassettes found in sequences of such 'mobile resistance integrons' in GenBank was facilitated by a specially developed automated annotation system. At least 130 different (<98% identical) cassettes that carry known or predicted antibiotic resistance genes were identified, along with many cassettes of unknown function. We list exemplar GenBank accession numbers for each and address some nomenclature issues. Various modifications to cassettes, some of which may be useful in tracking cassette epidemiology, are also described. Despite potential biases in the GenBank dataset, preliminary analysis of cassette distribution suggests interesting differences between cassettes and may provide useful information to direct more systematic studies.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, University of Sydney, Westmead Hospital, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|