1
|
Surekha S, Lamiyan AK, Gupta V. Antibiotic Resistant Biofilms and the Quest for Novel Therapeutic Strategies. Indian J Microbiol 2024; 64:20-35. [PMID: 38468748 PMCID: PMC10924852 DOI: 10.1007/s12088-023-01138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/03/2023] [Indexed: 03/13/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the major leading causes of death around the globe. Present treatment pipelines are insufficient to overcome the critical situation. Prominent biofilm forming human pathogens which can thrive in infection sites using adaptive features results in biofilm persistence. Considering the present scenario, prudential investigations into the mechanisms of resistance target them to improve antibiotic efficacy is required. Regarding this, developing newer and effective treatment options using edge cutting technologies in medical research is the need of time. The reasons underlying the adaptive features in biofilm persistence have been centred on different metabolic and physiological aspects. The high tolerance levels against antibiotics direct researchers to search for novel bioactive molecules that can help combat the problem. In view of this, the present review outlines the focuses on an opportunity of different strategies which are in testing pipeline can thus be developed into products ready to use.
Collapse
Affiliation(s)
- Saumya Surekha
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | - Varsha Gupta
- GMCH: Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
2
|
Thurman AL, Li X, Villacreses R, Yu W, Gong H, Mather SE, Romano-Ibarra GS, Meyerholz DK, Stoltz DA, Welsh MJ, Thornell IM, Zabner J, Pezzulo AA. A Single-Cell Atlas of Large and Small Airways at Birth in a Porcine Model of Cystic Fibrosis. Am J Respir Cell Mol Biol 2022; 66:612-622. [PMID: 35235762 PMCID: PMC9163647 DOI: 10.1165/rcmb.2021-0499oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Lack of CFTR (cystic fibrosis transmembrane conductance regulator) affects the transcriptome, composition, and function of large and small airway epithelia in people with advanced cystic fibrosis (CF); however, whether lack of CFTR causes cell-intrinsic abnormalities present at birth versus inflammation-dependent abnormalities is unclear. We performed a single-cell RNA-sequencing census of microdissected small airways from newborn CF pigs, which recapitulate CF host defense defects and pathology over time. Lack of CFTR minimally affected the transcriptome of large and small airways at birth, suggesting that infection and inflammation drive transcriptomic abnormalities in advanced CF. Importantly, common small airway epithelial cell types expressed a markedly different transcriptome than corresponding large airway cell types. Quantitative immunohistochemistry and electrophysiology of small airway epithelia demonstrated basal cells that reach the apical surface and a water and ion transport advantage. This single cell atlas highlights the archetypal nature of airway epithelial cells with location-dependent gene expression and function.
Collapse
Affiliation(s)
| | - Xiaopeng Li
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | | | | | | | | | | | | | - David A. Stoltz
- Department of Internal Medicine
- Pappajohn Biomedical Institute
- Department of Molecular Physiology and Biophysics, and
- Department of Biomedical Engineering, and
| | - Michael J. Welsh
- Department of Internal Medicine
- Pappajohn Biomedical Institute
- Department of Molecular Physiology and Biophysics, and
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa
| | | | - Joseph Zabner
- Department of Internal Medicine
- Pappajohn Biomedical Institute
| | | |
Collapse
|
3
|
Liu Q, Wang Z, Zhang W. The Multifunctional Roles of Short Palate, Lung, and Nasal Epithelium Clone 1 in Regulating Airway Surface Liquid and Participating in Airway Host Defense. J Interferon Cytokine Res 2021; 41:139-148. [PMID: 33885339 DOI: 10.1089/jir.2020.0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is a kind of secretory protein, and gets expressed abundantly in normal respiratory epithelium of humans. As a natural immune molecule, SPLUNC1 is proved to be involved in inflammatory response and airway host defense. This review focuses on summarizing and discussing the role of SPLUNC1 in regulating airway surface liquid (ASL) and participating in airway host defense. PubMed and MEDLINE were used for searching and identifying the data in this review. The domain of bactericidal/permeability-increasing protein in SPLUNC1 and the α-helix, α4, are essential for SPLUNC1 to exert biological activities. As a natural innate immune molecule, SPLUNC1 plays a significant role in inflammatory response and airway host defense. Its special expression patterns are not only observed in physiological conditions, but also in some respiratory diseases. The mechanisms of SPLUNC1 in airway host defense include modulating ASL volume, acting as a surfactant protein, inhibiting biofilm formation, as well as regulating ASL compositions, such as LL-37, mucins, Neutrophil elastase, and inflammatory cytokines. Besides, potential correlations are found among these different mechanisms, especially among different ASL compositions, which should be further explored in more systematical frameworks. In this review, we summarize the structural characteristics and expression patterns of SPLUNC1 briefly, and mainly discuss the mechanisms of SPLUNC1 exerted in host defense, aiming to provide a theoretical basis and a novel target for future studies and clinical treatments.
Collapse
Affiliation(s)
- Qingluan Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhicheng Wang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Scialo F, Amato F, Cernera G, Gelzo M, Zarrilli F, Comegna M, Pastore L, Bianco A, Castaldo G. Lung Microbiome in Cystic Fibrosis. Life (Basel) 2021; 11:life11020094. [PMID: 33513903 PMCID: PMC7911450 DOI: 10.3390/life11020094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
The defective mucociliary clearance due to CFTR malfunctioning causes predisposition to the colonization of pathogens responsible for the recurrent inflammation and rapid deterioration of lung function in patients with cystic fibrosis (CF). This has also a profound effect on the lung microbiome composition, causing a progressive reduction in its diversity, which has become a common characteristic of patients affected by CF. Although we know that the lung microbiome plays an essential role in maintaining lung physiology, our comprehension of how the microbial components interact with each other and the lung, as well as how these interactions change during the disease's course, is still at an early stage. Many challenges exist and many questions still to be answered, but there is no doubt that manipulation of the lung microbiome could help to develop better therapies for people affected by CF.
Collapse
Affiliation(s)
- Filippo Scialo
- Dipartimento di Scienze Mediche Traslazionali, University of Campania “L. Vanvitelli”, 80131 Napoli, Italy;
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
- Correspondence:
| | - Felice Amato
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80145 Napoli, Italy
| | - Gustavo Cernera
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80145 Napoli, Italy
| | - Monica Gelzo
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80145 Napoli, Italy
| | - Federica Zarrilli
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80145 Napoli, Italy
| | - Marika Comegna
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80145 Napoli, Italy
| | - Lucio Pastore
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80145 Napoli, Italy
| | - Andrea Bianco
- Dipartimento di Scienze Mediche Traslazionali, University of Campania “L. Vanvitelli”, 80131 Napoli, Italy;
| | - Giuseppe Castaldo
- CEINGE, Biotecnologie Avanzate, 80145 Napoli, Italy; (F.A.); (G.C.); (M.G.); (F.Z.); (M.C.); (L.P.); (G.C.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80145 Napoli, Italy
| |
Collapse
|
5
|
Ahmad S, Kim CSK, Tarran R. The SPLUNC1-βENaC complex prevents Burkholderia cenocepacia invasion in normal airway epithelia. Respir Res 2020; 21:190. [PMID: 32680508 PMCID: PMC7368771 DOI: 10.1186/s12931-020-01454-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) patients are extremely vulnerable to Burkholderia cepacia complex (Bcc) infections. However, the underlying etiology is poorly understood. We tested the hypothesis that short palate lung and nasal epithelial clone 1 (SPLUNC1)-epithelial sodium channel (ENaC) interactions at the plasma membrane are required to reduce Bcc burden in normal airways. To determine if SPLUNC1 was needed to reduce Bcc burden in the airways, SPLUNC1 knockout mice and their wild-type littermates were infected with B. cenocepacia strain J2315. SPLUNC1 knockout mice had increased bacterial burden in the lungs compared to wild-type littermate mice. SPLUNC1-knockdown primary human bronchial epithelia (HBECs) were incubated with J2315, which resulted in increased bacterial burden compared to non-transduced HBECs. We next determined the interaction of the SPLUNC1-ENaC complex during J2315 infection. SPLUNC1 remained at the apical plasma membrane of normal HBECs but less was present at the apical plasma membrane of CF HBECs. Additionally, SPLUNC1-βENaC complexes reduced intracellular J2315 burden. Our data indicate that (i) secreted SPLUNC1 is required to reduce J2315 burden in the airways and (ii) its interaction with ENaC prevents cellular invasion of J2315.
Collapse
Affiliation(s)
- Saira Ahmad
- Department of Cell Biology and Physiology, The University of North Carolina, Marsico Lung Insitute, 115 Mason Farm Rd CB 7545, UNC, Chapel Hill, NC, 27599, USA
| | - Christine Seul Ki Kim
- Department of Cell Biology and Physiology, The University of North Carolina, Marsico Lung Insitute, 115 Mason Farm Rd CB 7545, UNC, Chapel Hill, NC, 27599, USA
- Present address: Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Robert Tarran
- Department of Cell Biology and Physiology, The University of North Carolina, Marsico Lung Insitute, 115 Mason Farm Rd CB 7545, UNC, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Saferali A, Tang AC, Strug LJ, Quon BS, Zlosnik J, Sandford AJ, Turvey SE. Immunomodulatory function of the cystic fibrosis modifier gene BPIFA1. PLoS One 2020; 15:e0227067. [PMID: 31931521 PMCID: PMC6957340 DOI: 10.1371/journal.pone.0227067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is characterized by a progressive decline in lung function due to airway obstruction, infection, and inflammation. CF patients are particularly susceptible to respiratory infection by a variety of pathogens, and the inflammatory response in CF is dysregulated and prolonged. BPI fold containing family A, member 1 (BPIFA1) and BPIFB1 are proteins expressed in the upper airways that may have innate immune activity. We previously identified polymorphisms in the BPIFA1/BPIFB1 region associated with CF lung disease severity. METHODS We evaluated whether the BPIFA1/BPIFB1 associations with lung disease severity replicated in individuals with CF participating in the International CF Gene Modifier Consortium (n = 6,365). Furthermore, we investigated mechanisms by which the BPIFA1 and BPIFB1 proteins may modify lung disease in CF. RESULTS The association of the G allele of rs1078761 with reduced lung function was replicated in an independent cohort of CF patients (p = 0.001, n = 2,921) and in a meta-analysis of the full consortium (p = 2.39x10-5, n = 6,365). Furthermore, we found that rs1078761G which is associated with reduced lung function was also associated with reduced BPIFA1, but not BPIFB1, protein levels in saliva from CF patients. Functional assays indicated that BPIFA1 and BPIFB1 do not have an anti-bacterial role against P. aeruginosa but may have an immunomodulatory function in CF airway epithelial cells. Gene expression profiling using RNAseq identified Rho GTPase signaling pathways to be altered in CF airway epithelial cells in response to treatment with recombinant BPIFA1 and BPIFB1 proteins. CONCLUSIONS BPIFA1 and BPIFB1 have immunomodulatory activity and genetic variation associated with low levels of these proteins may increase CF lung disease severity.
Collapse
Affiliation(s)
- Aabida Saferali
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anthony C. Tang
- Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Lisa J. Strug
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Bradley S. Quon
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
| | - James Zlosnik
- Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Andrew J. Sandford
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
7
|
Ahmad S, Gilmore RC, Alexis NE, Tarran R. SPLUNC1 Loses Its Antimicrobial Activity in Acidic Cystic Fibrosis Airway Secretions. Am J Respir Crit Care Med 2019; 200:633-636. [PMID: 31013116 PMCID: PMC6727152 DOI: 10.1164/rccm.201812-2303le] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Saira Ahmad
- The University of North Carolina at Chapel HillChapel Hill, North Carolina
| | - Rodney C. Gilmore
- The University of North Carolina at Chapel HillChapel Hill, North Carolina
| | - Neil E. Alexis
- The University of North Carolina at Chapel HillChapel Hill, North Carolina
| | - Robert Tarran
- The University of North Carolina at Chapel HillChapel Hill, North Carolina
| |
Collapse
|
8
|
Moore PJ, Sesma J, Alexis NE, Tarran R. Tobacco exposure inhibits SPLUNC1-dependent antimicrobial activity. Respir Res 2019; 20:94. [PMID: 31113421 PMCID: PMC6530064 DOI: 10.1186/s12931-019-1066-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/06/2019] [Indexed: 11/24/2022] Open
Abstract
Background Tobacco smoke exposure impairs the lung’s innate immune response, leading to an increased risk of chronic infections. SPLUNC1 is a secreted, multifunctional innate defense protein that has antimicrobial activity against Gram negative organisms. We hypothesize that tobacco smoke-induced SPLUNC1 dysfunction contributes to the observed defect in innate immunity in tobacco smokers and that this dysfunction can be used as a potential biomarker of harm. Methods We collected sputum from never-smokers and otherwise healthy smokers. We performed Western blotting to determine SPLUNC1 levels and determined antimicrobial activity against nontypeable Haemophilus influenzae. An in vitro exposure model was utilized to measure the effect of tobacco exposure on human bronchial epithelial culture (HBEC) antimicrobial activity against H. influenzae. The direct effects of cigarette and little cigar smoke exposure on SPLUNC1 function was determined using 24 h growth measurements and LPS binding assays. Results H. influenzae growth in cigarette smoker’s sputum was significantly greater compared to never-smokers sputum over 24 h. HBEC supernatants and lysates contained significantly higher numbers of H. influenzae following chronic cigarette and little cigar smoke exposure compared to air-exposed controls. Furthermore, SPLUNC1’s antimicrobial activity and LPS-binding capability against both H. influenzae and P. aeruginosa was attenuated following cigarette and little cigar exposure. Conclusions These data suggest that cigarette and little cigar exposure impairs SPLUNC1’s antimicrobial ability and that this inhibition may serve as a novel biomarker of harm that can be used to assess the toxicity of commercial tobacco products.
Collapse
Affiliation(s)
- Patrick J Moore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, 7118A Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA.
| | - Juliana Sesma
- CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina at Chapel Hill, 7118A Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA.,Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
9
|
Hamilos DL. Biofilm Formations in Pediatric Respiratory Tract Infection : Part 1: Biofilm Structure, Role of Innate Immunity in Protection Against and Response to Biofilm, Methods of Biofilm Detection, Pediatric Respiratory Tract Diseases Associated with Mucosal Biofilm Formation. Curr Infect Dis Rep 2019; 21:6. [PMID: 30820766 DOI: 10.1007/s11908-019-0658-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW Biofilm represents an organized structure of microorganisms within an extracellular matrix attached to a surface. While the importance of biofilm in prosthetic heart valve and catheter-related infections has been known since the 1980s, the role of mucosal biofilm in human disease pathogenesis has only recently been elucidated. It is now clear that mucosal biofilm is present in both healthy and pathologic states. The purpose of this review is to examine the role of mucosal biofilm in pediatric respiratory infections. RECENT FINDINGS Mucosal biofilm has been implicated in relationship to several pediatric respiratory infections, including tonsillitis, adenoiditis, otitis media with effusion, chronic rhinosinusitis, persistent endobronchial infection, and bronchiectasis. In these conditions, core pathogens are detected in the biofilm, biofilm organisms are often detected by molecular techniques when conventional cultures are negative, and biofilm presence is more extensive in relation to disease than in healthy tissues. In chronic rhinosinusitis, the presence of polymicrobial biofilm is also a predictor of poorer outcome following sinus surgery. Biofilm in the tonsillar and adenoidal compartments plays a distinct role in contributing to disease in the middle ear and sinuses. Key observations regarding the relevance of biofilm to pediatric respiratory infections include (1) the association between the presence of biofilm and persistent/recurrent and more severe disease in these tissues despite antibiotic treatment, (2) linkage between biofilm core pathogens and acute infections, and (3) interrelationship between biofilm presence in one tissue and persistent or recurrent infection in an adjacent tissue. A greater understanding of the significance of mucosal biofilm will undoubtedly emerge with the development of effective means of eradicating mucosal biofilm.
Collapse
Affiliation(s)
- Daniel L Hamilos
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, 55 Fruit Street, Bulfinch-422, Boston, MA, 02114, USA. .,Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Webster MJ, Reidel B, Tan CD, Ghosh A, Alexis NE, Donaldson SH, Kesimer M, Ribeiro CMP, Tarran R. SPLUNC1 degradation by the cystic fibrosis mucosal environment drives airway surface liquid dehydration. Eur Respir J 2018; 52:13993003.00668-2018. [PMID: 30190268 DOI: 10.1183/13993003.00668-2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The multi-organ disease cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane regulator gene (CFTR) that lead to diminished transepithelial anion transport. CF lungs are characterised by airway surface liquid (ASL) dehydration, chronic infection/inflammation and neutrophilia. Dysfunctional CFTR may upregulate the epithelial Na+ channel (ENaC), further exacerbating dehydration. We previously demonstrated that short palate lung and nasal epithelial clone 1 (SPLUNC1) negatively regulates ENaC in normal airway epithelia.Here, we used pulmonary tissue samples, sputum and human bronchial epithelial cells (HBECs) to determine whether SPLUNC1 could regulate ENaC in a CF-like environment.We found reduced endogenous SPLUNC1 in CF secretions, and rapid degradation of recombinant SPLUNC1 (rSPLUNC1) by CF secretions. Normal sputum, containing SPLUNC1 and SPLUNC1-derived peptides, inhibited ENaC in both normal and CF HBECs. Conversely, CF sputum activated ENaC, and rSPLUNC1 could not reverse this phenomenon. Additionally, we observed upregulation of ENaC protein levels in human CF bronchi. Unlike SPLUNC1, the novel SPLUNC1-derived peptide SPX-101 resisted protease degradation, bound apically to HBECs, inhibited ENaC and prevented ASL dehydration following extended pre-incubation with CF sputum.Our data indicate that CF mucosal secretions drive ASL hyperabsorption and that protease-resistant peptides, e.g. SPX-101, can reverse this effect to rehydrate CF ASL.
Collapse
Affiliation(s)
- Megan J Webster
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Boris Reidel
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Chong D Tan
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Arunava Ghosh
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Neil E Alexis
- Center for Asthma and Lung Biology, The University of North Carolina, Chapel Hill, NC, USA
| | - Scott H Donaldson
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA.,Division of Pulmonary and Critical Care Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA
| | - Carla M P Ribeiro
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA.,Dept of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA
| | - Robert Tarran
- Marsico Lung Institute, The University of North Carolina, Chapel Hill, NC, USA .,Dept of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Webster MJ, Tarran R. Slippery When Wet: Airway Surface Liquid Homeostasis and Mucus Hydration. CURRENT TOPICS IN MEMBRANES 2018; 81:293-335. [PMID: 30243435 DOI: 10.1016/bs.ctm.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to regulate cell volume is crucial for normal physiology; equally the regulation of extracellular fluid homeostasis is of great importance. Alteration of normal extracellular fluid homeostasis contributes to the development of several diseases including cystic fibrosis. With regard to the airway surface liquid (ASL), which lies apically on top of airway epithelia, ion content, pH, mucin and protein abundance must be tightly regulated. Furthermore, airway epithelia must be able to switch from an absorptive to a secretory state as required. A heterogeneous population of airway epithelial cells regulate ASL solute and solvent composition, and directly secrete large mucin molecules, antimicrobials, proteases and soluble mediators into the airway lumen. This review focuses on how epithelial ion transport influences ASL hydration and ASL pH, with a specific focus on the roles of anion and cation channels and exchangers. The role of ions and pH in mucin expansion is also addressed. With regard to fluid volume regulation, we discuss the roles of nucleotides, adenosine and the short palate lung and nasal epithelial clone 1 (SPLUNC1) as soluble ASL mediators. Together, these mechanisms directly influence ciliary beating and in turn mucociliary clearance to maintain sterility and to detoxify the airways. Whilst all of these components are regulated in normal airways, defective ion transport and/or mucin secretion proves detrimental to lung homeostasis as such we address how defective ion and fluid transport, and a loss of homeostatic mechanisms, contributes to the development of pathophysiologies associated with cystic fibrosis.
Collapse
Affiliation(s)
- Megan J Webster
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Moore PJ, Tarran R. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease. Expert Opin Ther Targets 2018; 22:687-701. [PMID: 30028216 DOI: 10.1080/14728222.2018.1501361] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that codes for the CFTR anion channel. In the absence of functional CFTR, the epithelial Na+ channel is also dysregulated. Airway surface liquid (ASL) hydration is maintained by a balance between epithelial sodium channel (ENaC)-led Na+ absorption and CFTR-dependent anion secretion. This finely tuned homeostatic mechanism is required to maintain sufficient airway hydration to permit the efficient mucus clearance necessary for a sterile lung environment. In CF airways, the lack of CFTR and increased ENaC activity lead to ASL/mucus dehydration that causes mucus obstruction, neutrophilic infiltration, and chronic bacterial infection. Rehydration of ASL/mucus in CF airways can be achieved by inhibiting Na+ absorption with pharmacological inhibitors of ENaC. Areas covered: In this review, we discuss ENaC structure and function and its role in CF lung disease and focus on ENaC inhibition as a potential therapeutic target to rehydrate CF mucus. We also discuss the failure of the first generation of pharmacological inhibitors of ENaC and recent alternate strategies to attenuate ENaC activity in the CF lung. Expert opinion: ENaC is an attractive therapeutic target to rehydrate CF ASL that may serve as a monotherapy or function in parallel with other treatments. Given the increased number of strategies being employed to inhibit ENaC, this is an exciting and optimistic time to be in this field.
Collapse
Affiliation(s)
- Patrick J Moore
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA
| | - Robert Tarran
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
13
|
Little MS, Redinbo MR. Crystal structure of the mouse innate immunity factor bacterial permeability-increasing family member A1. Acta Crystallogr F Struct Biol Commun 2018; 74:268-276. [PMID: 29717993 PMCID: PMC5931138 DOI: 10.1107/s2053230x18004600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/20/2018] [Indexed: 01/14/2023] Open
Abstract
Bacterial permeability-increasing family member A1 (BPIFA1) is an innate immunity factor and one of the most abundantly secreted proteins in the upper airways. BPIFA1 is multifunctional, with antimicrobial, surfactant and lipopolysaccharide-binding activities, as well as established roles in lung hydration. Here, the 2.5 Å resolution crystal structure of BPIFA1 from Mus musculus (mBPIFA1) is presented and compared with those of human BPIFA1 (hBPIFA1) and structural homologs. Structural distinctions between mBPIFA1 and hBPIFA1 suggest potential differences in biological function, including the regulation of a key pulmonary ion channel.
Collapse
Affiliation(s)
- Michael S. Little
- Department of Chemistry, University of North Carolina, 4350 Genome Sciences Building, Chapel Hill, NC 27599-3290, USA
| | - Matthew R. Redinbo
- Department of Chemistry, University of North Carolina, 4350 Genome Sciences Building, Chapel Hill, NC 27599-3290, USA
- Department of Biochemistry and Biophysics, University of North Carolina, 4350 Genome Sciences Building, Chapel Hill, NC 27599-3290, USA
- Department of Microbiology and Immunology and the Integrated Program for Biological and Genome Science, University of North Carolina, 4350 Genome Sciences Building, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
14
|
Mulay A, Hood DW, Williams D, Russell C, Brown SDM, Bingle L, Cheeseman M, Bingle CD. Loss of the homeostatic protein BPIFA1, leads to exacerbation of otitis media severity in the Junbo mouse model. Sci Rep 2018; 8:3128. [PMID: 29449589 PMCID: PMC5814562 DOI: 10.1038/s41598-018-21166-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/30/2018] [Indexed: 02/02/2023] Open
Abstract
Otitis Media (OM) is characterized by epithelial abnormalities and defects in innate immunity in the middle ear (ME). Although, BPIFA1, a member of the BPI fold containing family of putative innate defence proteins is abundantly expressed by the ME epithelium and SNPs in Bpifa1 have been associated with OM susceptibility, its role in the ME is not well characterized. We investigated the role of BPIFA1 in protection of the ME and the development of OM using murine models. Loss of Bpifa1 did not lead to OM development. However, deletion of Bpifa1 in Evi1Jbo/+ mice, a model of chronic OM, caused significant exacerbation of OM severity, thickening of the ME mucosa and increased collagen deposition, without a significant increase in pro-inflammatory gene expression. Our data suggests that BPIFA1 is involved in maintaining homeostasis within the ME under steady state conditions and its loss in the presence of inflammation, exacerbates epithelial remodelling leading to more severe OM.
Collapse
Affiliation(s)
- Apoorva Mulay
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Derek W Hood
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Debbie Williams
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Catherine Russell
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Steve D M Brown
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Lynne Bingle
- Oral and Maxillofacial Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Michael Cheeseman
- Roslin Institute, University of Edinburgh, Edinburgh, UK.,Division of Pathology, University of Edinburgh, Edinburgh, UK
| | - Colin D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK. .,Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield, UK.
| |
Collapse
|
15
|
Terryah ST, Fellner RC, Ahmad S, Moore PJ, Reidel B, Sesma JI, Kim CS, Garland AL, Scott DW, Sabater JR, Carpenter J, Randell SH, Kesimer M, Abraham WM, Arendshorst WJ, Tarran R. Evaluation of a SPLUNC1-derived peptide for the treatment of cystic fibrosis lung disease. Am J Physiol Lung Cell Mol Physiol 2017; 314:L192-L205. [PMID: 28982737 DOI: 10.1152/ajplung.00546.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In cystic fibrosis (CF) lungs, epithelial Na+ channel (ENaC) hyperactivity causes a reduction in airway surface liquid volume, leading to decreased mucocilliary clearance, chronic bacterial infection, and lung damage. Inhibition of ENaC is an attractive therapeutic option. However, ENaC antagonists have failed clinically because of off-target effects in the kidney. The S18 peptide is a naturally occurring short palate lung and nasal epithelial clone 1 (SPLUNC1)-derived ENaC antagonist that restores airway surface liquid height for up to 24 h in CF human bronchial epithelial cultures. However, its efficacy and safety in vivo are unknown. To interrogate the potential clinical efficacy of S18, we assessed its safety and efficacy using human airway cultures and animal models. S18-mucus interactions were tested using superresolution microscopy, quartz crystal microbalance with dissipation, and confocal microscopy. Human and murine airway cultures were used to measure airway surface liquid height. Off-target effects were assessed in conscious mice and anesthetized rats. Morbidity and mortality were assessed in the β-ENaC-transgenic (Tg) mouse model. Restoration of normal mucus clearance was measured in cystic fibrosis transmembrane conductance regulator inhibitor 172 [CFTR(inh)-172]-challenged sheep. We found that S18 does not interact with mucus and rapidly penetrated dehydrated CF mucus. Compared with amiloride, an early generation ENaC antagonist, S18 displayed a superior ability to slow airway surface liquid absorption, reverse CFTR(inh)-172-induced reduction of mucus transport, and reduce morbidity and mortality in the β-ENaC-Tg mouse, all without inducing any detectable signs of renal toxicity. These data suggest that S18 is the first naturally occurring ENaC antagonist to show improved preclinical efficacy in animal models of CF with no signs of renal toxicity.
Collapse
Affiliation(s)
- Shawn T Terryah
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Robert C Fellner
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Saira Ahmad
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Patrick J Moore
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Boris Reidel
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | | | - Christine S Kim
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Alaina L Garland
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | | | - Juan R Sabater
- Department of Research, Mount Sinai Medical Center , Miami Beach, Florida
| | - Jerome Carpenter
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Scott H Randell
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,Cell Biology and Physiology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Mehmet Kesimer
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - William M Abraham
- Department of Research, Mount Sinai Medical Center , Miami Beach, Florida
| | - William J Arendshorst
- Cell Biology and Physiology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,Cell Biology and Physiology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| |
Collapse
|
16
|
Malik E, Dennison SR, Harris F, Phoenix DA. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents. Pharmaceuticals (Basel) 2016; 9:ph9040067. [PMID: 27809281 PMCID: PMC5198042 DOI: 10.3390/ph9040067] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel delivery systems. Nonetheless, many pH dependent AMPs and antimicrobial proteins have yet to be fully characterized and these molecules, as a whole, represent an untapped source of novel biologically active agents that could aid fulfillment of the urgent need for alternatives to conventional antibiotics, helping to avert a return to the pre-antibiotic era.
Collapse
Affiliation(s)
- Erum Malik
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Sarah R Dennison
- School of Pharmacy and Biological Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Frederick Harris
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK.
| |
Collapse
|
17
|
Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci 2016; 74:93-115. [PMID: 27714410 PMCID: PMC5209439 DOI: 10.1007/s00018-016-2391-y] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
Salt and fluid absorption and secretion are two processes that are fundamental to epithelial function and whole body fluid homeostasis, and as such are tightly regulated in epithelial tissues. The CFTR anion channel plays a major role in regulating both secretion and absorption in a diverse range of epithelial tissues, including the airways, the GI and reproductive tracts, sweat and salivary glands. It is not surprising then that defects in CFTR function are linked to disease, including life-threatening secretory diarrhoeas, such as cholera, as well as the inherited disease, cystic fibrosis (CF), one of the most common life-limiting genetic diseases in Caucasian populations. More recently, CFTR dysfunction has also been implicated in the pathogenesis of acute pancreatitis, chronic obstructive pulmonary disease (COPD), and the hyper-responsiveness in asthma, underscoring its fundamental role in whole body health and disease. CFTR regulates many mechanisms in epithelial physiology, such as maintaining epithelial surface hydration and regulating luminal pH. Indeed, recent studies have identified luminal pH as an important arbiter of epithelial barrier function and innate defence, particularly in the airways and GI tract. In this chapter, we will illustrate the different operational roles of CFTR in epithelial function by describing its characteristics in three different tissues: the airways, the pancreas, and the sweat gland.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Michael A. Gray
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|