1
|
Böttcher B, Kienast SD, Leufken J, Eggers C, Sharma P, Leufken CM, Morgner B, Drexler HCA, Schulz D, Allert S, Jacobsen ID, Vylkova S, Leidel SA, Brunke S. A highly conserved tRNA modification contributes to C. albicans filamentation and virulence. Microbiol Spectr 2024; 12:e0425522. [PMID: 38587411 PMCID: PMC11064501 DOI: 10.1128/spectrum.04255-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/18/2024] [Indexed: 04/09/2024] Open
Abstract
tRNA modifications play important roles in maintaining translation accuracy in all domains of life. Disruptions in the tRNA modification machinery, especially of the anticodon stem loop, can be lethal for many bacteria and lead to a broad range of phenotypes in baker's yeast. Very little is known about the function of tRNA modifications in host-pathogen interactions, where rapidly changing environments and stresses require fast adaptations. We found that two closely related fungal pathogens of humans, the highly pathogenic Candida albicans and its much less pathogenic sister species, Candida dubliniensis, differ in the function of a tRNA-modifying enzyme. This enzyme, Hma1, exhibits species-specific effects on the ability of the two fungi to grow in the hypha morphology, which is central to their virulence potential. We show that Hma1 has tRNA-threonylcarbamoyladenosine dehydratase activity, and its deletion alters ribosome occupancy, especially at 37°C-the body temperature of the human host. A C. albicans HMA1 deletion mutant also shows defects in adhesion to and invasion into human epithelial cells and shows reduced virulence in a fungal infection model. This links tRNA modifications to host-induced filamentation and virulence of one of the most important fungal pathogens of humans.IMPORTANCEFungal infections are on the rise worldwide, and their global burden on human life and health is frequently underestimated. Among them, the human commensal and opportunistic pathogen, Candida albicans, is one of the major causative agents of severe infections. Its virulence is closely linked to its ability to change morphologies from yeasts to hyphae. Here, this ability is linked-to our knowledge for the first time-to modifications of tRNA and translational efficiency. One tRNA-modifying enzyme, Hma1, plays a specific role in C. albicans and its ability to invade the host. This adds a so-far unknown layer of regulation to the fungal virulence program and offers new potential therapeutic targets to fight fungal infections.
Collapse
Affiliation(s)
- Bettina Böttcher
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Sandra D. Kienast
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Johannes Leufken
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Cristian Eggers
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Christine M. Leufken
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bianka Morgner
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Hannes C. A. Drexler
- Bioanalytical Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daniela Schulz
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Slavena Vylkova
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| | - Sebastian A. Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Research Group for Cellular RNA Biochemistry, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
| |
Collapse
|
2
|
Bras G, Satala D, Juszczak M, Kulig K, Wronowska E, Bednarek A, Zawrotniak M, Rapala-Kozik M, Karkowska-Kuleta J. Secreted Aspartic Proteinases: Key Factors in Candida Infections and Host-Pathogen Interactions. Int J Mol Sci 2024; 25:4775. [PMID: 38731993 PMCID: PMC11084781 DOI: 10.3390/ijms25094775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular proteases are key factors contributing to the virulence of pathogenic fungi from the genus Candida. Their proteolytic activities are crucial for extracting nutrients from the external environment, degrading host defenses, and destabilizing the internal balance of the human organism. Currently, the enzymes most frequently described in this context are secreted aspartic proteases (Saps). This review comprehensively explores the multifaceted roles of Saps, highlighting their importance in biofilm formation, tissue invasion through the degradation of extracellular matrix proteins and components of the coagulation cascade, modulation of host immune responses via impairment of neutrophil and monocyte/macrophage functions, and their contribution to antifungal resistance. Additionally, the diagnostic challenges associated with Candida infections and the potential of Saps as biomarkers were discussed. Furthermore, we examined the prospects of developing vaccines based on Saps and the use of protease inhibitors as adjunctive therapies for candidiasis. Given the complex biology of Saps and their central role in Candida pathogenicity, a multidisciplinary approach may pave the way for innovative diagnostic strategies and open new opportunities for innovative clinical interventions against candidiasis.
Collapse
Affiliation(s)
- Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Kamila Kulig
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Ewelina Wronowska
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Aneta Bednarek
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland (M.Z.); (J.K.-K.)
| |
Collapse
|
3
|
The Role of B-Cells and Antibodies against Candida Vaccine Antigens in Invasive Candidiasis. Vaccines (Basel) 2021; 9:vaccines9101159. [PMID: 34696267 PMCID: PMC8540628 DOI: 10.3390/vaccines9101159] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic candidiasis is an invasive fungal infection caused by members of the genus Candida. The recent emergence of antifungal drug resistance and increased incidences of infections caused by non-albicans Candida species merit the need for developing immune therapies against Candida infections. Although the role of cellular immune responses in anti-Candida immunity is well established, less is known about the role of humoral immunity against systemic candidiasis. This review summarizes currently available information on humoral immune responses induced by several promising Candida vaccine candidates, which have been identified in the past few decades. The protective antibody and B-cell responses generated by polysaccharide antigens such as mannan, β-glucan, and laminarin, as well as protein antigens like agglutinin-like sequence gene (Als3), secreted aspartyl proteinase (Sap2), heat shock protein (Hsp90), hyphally-regulated protein (Hyr1), hyphal wall protein (Hwp1), enolase (Eno), phospholipase (PLB), pyruvate kinase (Pk), fructose bisphosphate aldolase (Fba1), superoxide dismutase gene (Sod5) and malate dehydrogenase (Mdh1), are outlined. As per studies reviewed, antibodies induced in response to leading Candida vaccine candidates contribute to protection against systemic candidiasis by utilizing a variety of mechanisms such as opsonization, complement fixation, neutralization, biofilm inhibition, direct candidacidal activity, etc. The contributions of B-cells in controlling fungal infections are also discussed. Promising results using anti-Candida monoclonal antibodies for passive antibody therapy reinforces the need for developing antibody-based therapeutics including anti-idiotypic antibodies, single-chain variable fragments, peptide mimotopes, and antibody-derived peptides. Future research involving combinatorial immunotherapies using humanized monoclonal antibodies along with antifungal drugs/cytokines may prove beneficial for treating invasive fungal infections.
Collapse
|
4
|
Jenull S, Mair T, Tscherner M, Penninger P, Zwolanek F, Silao FGS, de San Vicente KM, Riedelberger M, Bandari NC, Shivarathri R, Petryshyn A, Chauhan N, Zacchi LF, -Landmann SL, Ljungdahl PO, Kuchler K. The histone chaperone HIR maintains chromatin states to control nitrogen assimilation and fungal virulence. Cell Rep 2021; 36:109406. [PMID: 34289370 PMCID: PMC8493472 DOI: 10.1016/j.celrep.2021.109406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/10/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Adaptation to changing environments and immune evasion is pivotal for fitness of pathogens. Yet, the underlying mechanisms remain largely unknown. Adaptation is governed by dynamic transcriptional re-programming, which is tightly connected to chromatin architecture. Here, we report a pivotal role for the HIR histone chaperone complex in modulating virulence of the human fungal pathogen Candida albicans. Genetic ablation of HIR function alters chromatin accessibility linked to aberrant transcriptional responses to protein as nitrogen source. This accelerates metabolic adaptation and increases the release of extracellular proteases, which enables scavenging of alternative nitrogen sources. Furthermore, HIR controls fungal virulence, as HIR1 deletion leads to differential recognition by immune cells and hypervirulence in a mouse model of systemic infection. This work provides mechanistic insights into chromatin-coupled regulatory mechanisms that fine-tune pathogen gene expression and virulence. Furthermore, the data point toward the requirement of refined screening approaches to exploit chromatin modifications as antifungal strategies.
Collapse
Affiliation(s)
- Sabrina Jenull
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Theresia Mair
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Michael Tscherner
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Philipp Penninger
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Florian Zwolanek
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Fitz-Gerald S Silao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Kontxi Martinez de San Vicente
- Section of Immunology, Vetsuisse Faculty, University of Zürich, 8006 Zürich, Switzerland; Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| | - Michael Riedelberger
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Naga C Bandari
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Raju Shivarathri
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Andriy Petryshyn
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Neeraj Chauhan
- Public Health Research Institute, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Lucia F Zacchi
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Salomé LeibundGut -Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, 8006 Zürich, Switzerland; Institute of Experimental Immunology, University of Zürich, 8057 Zürich, Switzerland
| | - Per O Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Karl Kuchler
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, 1030 Vienna, Austria.
| |
Collapse
|
5
|
Mushi MF, Loi N, Mshana SE. Oral candidiasis in HIV-uninfected pediatric population in areas with limited fungal diagnosis: A case study from a tertiary hospital, Tanzania. Ther Adv Infect Dis 2021; 8:20499361211016964. [PMID: 34094534 PMCID: PMC8141982 DOI: 10.1177/20499361211016964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/21/2021] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Oral candidiasis (OC) is an indirect indicator of cell-mediated immunodeficiency with a high predictive value of disseminated candidiasis. Here, we report the prevalence and factors associated with laboratory-confirmed OC in human immunodeficiency virus (HIV)-uninfected children with clinical OC attending the outpatient clinic or admitted in pediatric wards of the Bugando Medical Center (BMC). METHODS A cross-sectional study was conducted between January and June 2017. Social demographic and clinical data were collected using a pre-tested data collection tool. Oral swabs were collected using a sterile cotton swab and mycological culture was done to detect Candida spp. followed by susceptibility testing as per European Committee on Antimicrobial Testing (EUCAST) guidelines. Data were analyzed using STATA version 13 following study objectives. RESULTS A total of 325 non-repetitive oral swabs from HIV-uninfected children aged between 2 and 156 months were collected. Candida spp. were detected in 123 (37.8%) children. One (1.8%) C. albicans isolate was resistant to fluconazole, voriconazole, and posaconazole with minimum inhibitory concentrations (MIC) of 256 μg/ml, 32 μg/ml, and 0.31 μg/ml, respectively. Upon multivariate logistic regression analysis, being a male child (OR 2, 95% CI 1.2-3.2, p = 0.008) and having a history of antibiotic use (OR 1.8, 95% CI 1.1-2.8, p = 0.017) independently predicted laboratory-confirmed OC among HIV-uninfected children. CONCLUSION Only a third of children with clinical OC were laboratory confirmed, and this was more likely in male children with a history of antibiotic use. Most of the isolates were highly susceptible to commonly used antifungal agents like fluconazole. Treatment of children at risk should be prioritized to reduce associated morbidity.
Collapse
Affiliation(s)
- Martha F. Mushi
- Department of Microbiology/Immunology, Weill Bugando School of Medicine, The Catholic University of Health and Allied Sciences (CUHAS), PO BOX 1464, Mwanza, Tanzania
| | - Neema Loi
- Instutite of Allied Sciences, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Stephen E. Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| |
Collapse
|
6
|
Vaccination with Secreted Aspartyl Proteinase 2 Protein from Candida parapsilosis Can Enhance Survival of Mice during C. tropicalis-Mediated Systemic Candidiasis. Infect Immun 2020; 88:IAI.00312-20. [PMID: 32661125 DOI: 10.1128/iai.00312-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
The rising incidence of non-albicans Candida species globally, along with the emergence of drug resistance, is a cause for concern. This study investigated the protective efficacy of secreted aspartyl proteinase 2 (Sap2) in systemic C. tropicalis infection. Vaccination with recombinant Sap2 (rSap2) protein from C. parapsilosis enhanced survival of mice compared to rSap2 vaccinations from C. albicans (P = 0.02), C. tropicalis (P = 0.06), and sham immunization (P = 0.04). Compared to sham-immunized mice, the fungal CFU number was significantly reduced in organs of Sap2-parapsilosis-immunized mice. Histopathologically, increased neutrophilic recruitment was observed in Sap2-parapsilosis- and Sap2-tropicalis-immunized mice. Among different rSap2 proteins, Sap2-parapsilosis vaccination induced increased titers of Sap2-specific Ig, IgG, and IgM antibodies, which could bind whole fungus. Between different groups, sera from Sap2-parapsilosis-vaccinated mice exhibited increased C. tropicalis biofilm inhibition ability in vitro and enhanced neutrophil-mediated fungal killing. Passive transfer of anti-Sap2-parapsilosis immune serum in naive mice significantly reduced fungal burdens compared to those in mice receiving anti-sham immune serum. Higher numbers of plasma cells and Candida-binding B cells in Sap2-vaccinated mice suggest a role of B cells during early stages of Sap2-mediated immune response. Additionally, increased levels of Th1/Th2/Th17 cytokines observed in Sap2-parapsilosis-vaccinated mice indicate immunomodulatory properties of Sap2. Epitope analysis performed using identified B-cell epitopes provides a basis to understand differences in immunogenicity observed among Sap2-antigens and can aid the development of a multivalent or multiepitope anti-Candida vaccine(s). In summary, our results suggest that Sap2-parapsilosis vaccination can improve mouse survival during C. tropicalis infection by inducing both humoral and cellular immunity, and higher titers of Sap2-induced antibodies are beneficial during systemic candidiasis.
Collapse
|
7
|
Yeh SJ, Yeh CC, Lan CY, Chen BS. Investigating Common Pathogenic Mechanisms between Homo sapiens and Different Strains of Candida albicans for Drug Design: Systems Biology Approach via Two-Sided NGS Data Identification. Toxins (Basel) 2019; 11:toxins11020119. [PMID: 30769958 PMCID: PMC6409619 DOI: 10.3390/toxins11020119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 01/15/2023] Open
Abstract
Candida albicans (C. albicans) is the most prevalent fungal species. Although it is a healthy microbiota, genetic and epigenetic alterations in host and pathogen, and microenvironment changes would lead to thrush, vaginal yeast infection, and even hematogenously disseminated infection. Despite the fact that cytotoxicity is well-characterized, few studies discuss the genome-wide genetic and epigenetic molecular mechanisms between host and C. albicans. The aim of this study is to identify drug targets and design a multiple-molecule drug to prevent the infection from C. albicans. To investigate the common and specific pathogenic mechanisms in human oral epithelial OKF6/TERT-2 cells during the C. albicans infection in different strains, systems modeling and big databases mining were used to construct candidate host–pathogen genetic and epigenetic interspecies network (GEIN). System identification and system order detection are applied on two-sided next generation sequencing (NGS) data to build real host–pathogen cross-talk GEINs. Core host–pathogen cross-talk networks (HPCNs) are extracted by principal network projection (PNP) method. By comparing with core HPCNs in different strains of C. albicans, common pathogenic mechanisms were investigated and several drug targets were suggested as follows: orf19.5034 (YBP1) with the ability of anti-ROS; orf19.939 (NAM7), orf19.2087 (SAS2), orf19.1093 (FLO8) and orf19.1854 (HHF22) with high correlation to the hyphae growth and pathogen protein interaction; orf19.5585 (SAP5), orf19.5542 (SAP6) and orf19.4519 (SUV3) with the cause of biofilm formation. Eventually, five corresponding compounds—Tunicamycin, Terbinafine, Cerulenin, Tetracycline and Tetrandrine—with three known drugs could be considered as a potential multiple-molecule drug for therapeutic treatment of C. albicans.
Collapse
Affiliation(s)
- Shan-Ju Yeh
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chun-Chieh Yeh
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
- Department of Electrical Engineering, Yuan Ze University, Chungli 32003, Taiwan.
| |
Collapse
|
8
|
Propeptide genesis by Kex2-dependent cleavage of yeast wall protein 1 (Ywp1) of Candida albicans. PLoS One 2018; 13:e0207955. [PMID: 30475911 PMCID: PMC6258133 DOI: 10.1371/journal.pone.0207955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/08/2018] [Indexed: 02/01/2023] Open
Abstract
Candida albicans is a prevalent fungal resident and opportunistic pathogen of humans, exhibiting a variety of ovoid and filamentous morphologies. Anchored within the cell wall of the ovoid yeast form of C. albicans is an abundant glycoprotein termed yeast wall protein 1 (Ywp1). Ywp1 has an antiadhesive effect that may facilitate yeast cell dispersal; it also contributes to the masking of the glucan matrix of the yeast cell wall, potentially providing shielding from recognition by the human immune system. Mature Ywp1 consists of an O-glycosylated core of 378 amino acids associated with an N-glycosylated propeptide that originates from an N-terminal segment of Ywp1. A tribasic (-RRR-) sequence in the immature Ywp1 polypeptide is separated by 8 amino acids from a dibasic (-KR-) sequence that is a canonical site for cleavage by the intracellular endopeptidase Kex2, and cleavage occurs at both of these sites to generate an 11 kilodalton (kDa) propeptide that remains strongly associated with the mature core of Ywp1. Previous studies demonstrated an absence of the 11 kDa propeptide in strains lacking Kex2, but the presence of lesser amounts of a 12 kDa propeptide ostensibly (and paradoxically) arising from cleavage at the dibasic site. Subsequent studies of wild type strains, however, suggested that post-secretion cleavages were carried out in vitro by acid proteases in unbuffered cultures to generate the 12 kDa propeptide. Here, intact and Gfp-tagged Ywp1 are utilized to show that neither of the two multibasic sites is normally cleaved in the absence of Kex2, but that uncleaved Ywp1 is still N-glycosylated and subsequently anchored to the cell wall. This furthers our understanding of the multistep cleavage of this highly conserved sequence, as well as the possible contributions of the cleaved propeptide to the maturation and functioning of Ywp1.
Collapse
|
9
|
Eugster PJ, Grouzmann E, Salamin K, Monod M. Production and characterization of two major Aspergillus oryzae secreted prolyl endopeptidases able to efficiently digest proline-rich peptides of gliadin. Microbiology (Reading) 2015; 161:2277-88. [DOI: 10.1099/mic.0.000198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Evolutionary Selection on Barrier Activity: Bar1 Is an Aspartyl Protease with Novel Substrate Specificity. mBio 2015; 6:e01604-15. [PMID: 26604258 PMCID: PMC4669382 DOI: 10.1128/mbio.01604-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Peptide-based pheromones are used throughout the fungal kingdom for coordinating sexual responses between mating partners. Here, we address the properties and function of Bar1, an aspartyl protease that acts as a “barrier” and antagonist to pheromone signaling in multiple species. Candida albicans Bar1 was purified and shown to exhibit preferential cleavage of native α pheromone over pheromones from related fungal species. This result establishes that protease substrate specificity coevolved along with changes in its pheromone target. Pheromone cleavage by Bar1 occurred between residues Thr-5 and Asn-6 in the middle of the tridecapeptide sequence. Surprisingly, proteolytic activity was independent of the amino acid residues present at the scissile bond and instead relied on residues at the C terminus of α pheromone. Unlike most aspartyl proteases, Bar1 also exhibited a near-neutral pH optimum and was resistant to the class-wide inhibitor pepstatin A. In addition, genetic analysis was performed on C. albicansBAR1 and demonstrated that the protease not only regulates endogenous pheromone signaling but also can limit interspecies pheromone signaling. We discuss these findings and propose that the unusual substrate specificity of Bar1 is a consequence of its coevolution with the α pheromone receptor Ste2 for their shared peptide target. Pheromones are important for intraspecies communication across the tree of life. In the fungal kingdom, extracellular proteases play a key role in antagonizing pheromone signaling in multiple species. This study examines the properties and function of Candida albicans Bar1, an aspartyl protease that cleaves and thereby inactivates α pheromone. We demonstrate that Bar1 plays important roles in regulating both intra- and interspecies pheromone signaling. The fungal protease shows preferential activity on the endogenous pheromone, but, surprisingly, cleavage activity is dependent on amino acid residues distal to the scissile bond. We propose that the unusual substrate specificity of Bar1 is a direct result of coevolution with Ste2, the receptor for α pheromone, for recognition of the same peptide target. The novel specificity of Bar1 reveals the complex forces shaping the evolution of mating pathways in fungi and uncovers a protease with potentially important applications in the biotechnology industry.
Collapse
|
11
|
Secreted aspartic protease 2 of Candida albicans inactivates factor H and the macrophage factor H-receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18). Immunol Lett 2015; 168:13-21. [DOI: 10.1016/j.imlet.2015.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/19/2015] [Indexed: 12/30/2022]
|
12
|
Zielińska P, Staniszewska M, Bondaryk M, Koronkiewicz M, Urbańczyk-Lipkowska Z. Design and studies of multiple mechanism of anti-Candida activity of a new potent Trp-rich peptide dendrimers. Eur J Med Chem 2015; 105:106-19. [PMID: 26479030 DOI: 10.1016/j.ejmech.2015.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Eight peptide dendrimers were designed as structural mimics of natural cationic amphiphilic peptides with antifungal activity and evaluated for their anti-Candida potential against the wild type strains and mutants. METHODS Dendrimer 14 containing four Trp residues and dodecyl tail and a slightly smaller dendrimer 9 decorated with four N-methylated Trp that displayed 100 and 99.7% of growth inhibition at 16 μg/mL respectively, were selected for evaluation against the Candida albicans mutants with disabled biosynthesis of aspartic proteases responsible for host tissue colonization and morphogenesis during biofilm formation (sessile model). Flow cytometry method was employed to detect apoptotic cells with membrane alterations (phosphatidylserine translocation), and differentiation of apoptotic from necrotic cells was also performed. Simultaneous staining of cell surface phosphatidylserine with Annexin-V-Fluorescein and necrotic cells with propidium iodide was conducted. RESULTS 14 at 16 μg/mL caused C. albicans cells to undergo cellular apoptosis but its increasing concentrations induced necrosis. 14 influenced C. albicans biofilm viability as well as hyphal and cell wall morphology. Confocal microscopy and cell wall staining with calcofluor white revealed that in epithelial model the cell surface structure was perturbed at MIC of peptide dendrimer. It appears that tryptophan or 1-methyltryptophan groups displayed at the surface and positive charges hidden in the dendrimer tree along with hydrocarbon tail located at C-terminus are important for the anti-Candida activity since dendrimers containing tryptamine at C-terminus showed only a moderate activity. CONCLUSIONS Our results suggest that membranolytic dendrimer 14, targeting cellular apoptotic pathway and impairing the cell wall formation in mature biofilm, may be a potential multifunctional antifungal lead compound for the control of C. albicans infections.
Collapse
Affiliation(s)
| | - Monika Staniszewska
- National Institute of Public Health - National Institute of Hygiene, 00-791, Warsaw, Poland.
| | - Małgorzata Bondaryk
- National Institute of Public Health - National Institute of Hygiene, 00-791, Warsaw, Poland
| | | | | |
Collapse
|
13
|
Gil-Bona A, Monteoliva L, Gil C. Global Proteomic Profiling of the Secretome of Candida albicans ecm33 Cell Wall Mutant Reveals the Involvement of Ecm33 in Sap2 Secretion. J Proteome Res 2015; 14:4270-81. [DOI: 10.1021/acs.jproteome.5b00411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ana Gil-Bona
- Departamento de
Microbiología
II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón
y Cajal s/n, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. de Colmenar Viejo, 28034 Madrid, Spain
| | - Lucía Monteoliva
- Departamento de
Microbiología
II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón
y Cajal s/n, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. de Colmenar Viejo, 28034 Madrid, Spain
| | - Concha Gil
- Departamento de
Microbiología
II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón
y Cajal s/n, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. de Colmenar Viejo, 28034 Madrid, Spain
| |
Collapse
|
14
|
Csr1/Zap1 Maintains Zinc Homeostasis and Influences Virulence in Candida dubliniensis but Is Not Coupled to Morphogenesis. EUKARYOTIC CELL 2015; 14:661-70. [PMID: 26002718 PMCID: PMC4486669 DOI: 10.1128/ec.00078-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/09/2015] [Indexed: 01/10/2023]
Abstract
The supply and intracellular homeostasis of trace metals are essential for every living organism. Therefore, the struggle for micronutrients between a pathogen and its host is an important determinant in the infection process. In this work, we focus on the acquisition of zinc by Candida dubliniensis, an emerging pathogen closely related to Candida albicans. We show that the transcription factor Csr1 is essential for C. dubliniensis to regulate zinc uptake mechanisms under zinc limitation: it governs the expression of the zinc transporter genes ZRT1, ZRT2, and ZRT3 and of the zincophore gene PRA1. Exclusively, artificial overexpression of ZRT2 partially rescued the growth defect of a csr1Δ/Δ mutant in a zinc-restricted environment. Importantly, we found that, in contrast to what is seen in C. albicans, Csr1 (also called Zap1) is not a major regulator of dimorphism in C. dubliniensis. However, although a csr1Δ/Δ strain showed normal germ tube formation, we detected a clear attenuation in virulence using an embryonated chicken egg infection model. We conclude that, unlike in C. albicans, Csr1 seems to be a virulence factor of C. dubliniensis that is not coupled to filamentation but is strongly linked to zinc acquisition during pathogenesis.
Collapse
|
15
|
Chen YL, de Bernardis F, Yu SJ, Sandini S, Kauffman S, Tams RN, Bethea E, Reynolds TB. Candida albicans OPI1 regulates filamentous growth and virulence in vaginal infections, but not inositol biosynthesis. PLoS One 2015; 10:e0116974. [PMID: 25602740 PMCID: PMC4300220 DOI: 10.1371/journal.pone.0116974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 12/17/2014] [Indexed: 11/23/2022] Open
Abstract
ScOpi1p is a well-characterized transcriptional repressor and master regulator of inositol and phospholipid biosynthetic genes in the baker’s yeast Saccharomyces cerevisiae. An ortholog has been shown to perform a similar function in the pathogenic fungus Candida glabrata, but with the distinction that CgOpi1p is essential for growth in this organism. However, in the more distantly related yeast Yarrowia lipolytica, the OPI1 homolog was not found to regulate inositol biosynthesis, but alkane oxidation. In Candida albicans, the most common cause of human candidiasis, its Opi1p homolog, CaOpi1p, has been shown to complement a S. cerevisiae opi1∆ mutant for inositol biosynthesis regulation when heterologously expressed, suggesting it might serve a similar role in this pathogen. This was tested in the pathogen directly in this report by disrupting the OPI1 homolog and examining its phenotypes. It was discovered that the OPI1 homolog does not regulate INO1 expression in C. albicans, but it does control SAP2 expression in response to bovine serum albumin containing media. Meanwhile, we found that CaOpi1 represses filamentous growth at lower temperatures (30°C) on agar, but not in liquid media. Although, the mutant does not affect virulence in a mouse model of systemic infection, it does affect virulence in a rat model of vaginitis. This may be because Opi1p regulates expression of the SAP2 protease, which is required for rat vaginal infections.
Collapse
Affiliation(s)
- Ying-Lien Chen
- Department of Plant Pathology & Microbiology, National Taiwan University, Taipei, Taiwan
| | - Flavia de Bernardis
- Department of Infectious, Parasitic and Immunomediated Diseases, Rome, Italy
| | - Shang-Jie Yu
- Department of Plant Pathology & Microbiology, National Taiwan University, Taipei, Taiwan
| | - Silvia Sandini
- Department of Infectious, Parasitic and Immunomediated Diseases, Rome, Italy
| | - Sarah Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Robert N Tams
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Emily Bethea
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
16
|
|
17
|
Wu H, Downs D, Ghosh K, Ghosh AK, Staib P, Monod M, Tang J. Candida albicans secreted aspartic proteases 4-6 induce apoptosis of epithelial cells by a novel Trojan horse mechanism. FASEB J 2013; 27:2132-44. [PMID: 23430844 PMCID: PMC6188231 DOI: 10.1096/fj.12-214353] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 02/04/2013] [Indexed: 11/11/2022]
Abstract
Systemic infection by the pathogenic yeast Candida albicans produces high mortality in immune-compromised people. Such infection starts with the penetration of the organism at the mucosal surfaces, facilitated by the secreted aspartic proteases (Saps) 4, 5, and 6. The functional mechanism of these virulence factors is unclear. We discovered that Saps 4-6 each contains amino acid motifs RGD/KGD to bind integrins on epithelial cell A549 and are internalized to endosomes and lysosomes. These processes are inhibited by RGD-containing peptides or by substituting RGD motifs of these Saps. The internalization of Saps 4-6 results in partial permeabilization of lysosomal membranes, measured by the redistribution of the lysosomal tropic dye acridine orange to the cytosol, and the triggering of apoptosis via caspase activation. Sap 2 and mutated Saps 4-6 contain no RGD motif, are ineffective in these processes, and a proteolytic inhibitor abolished Sap 4 activity in lysosome permeabilization. Same results were also seen for human tongue keratinocyte SCC-15 cells. Mucosal lesions from this fundamental new mechanism may permit C. albicans to enter the body and may be used to attack cells in immune defense during systemic infections. RGD-motif may also be incorporated in Sap inhibitors for Candidiasis drugs targeting to lysosomes.
Collapse
Affiliation(s)
- Hao Wu
- Protein Studies Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Deborah Downs
- Protein Studies Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Koena Ghosh
- Department of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Inidana, USA
| | - Arun K. Ghosh
- Department of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Inidana, USA
| | - Peter Staib
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany; and
| | - Michel Monod
- Laboratoire de Mycologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jordan Tang
- Protein Studies Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| |
Collapse
|
18
|
Factors supporting cysteine tolerance and sulfite production in Candida albicans. EUKARYOTIC CELL 2013; 12:604-13. [PMID: 23417561 DOI: 10.1128/ec.00336-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeast Candida albicans excretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine in C. albicans relies on cysteine dioxygenase Cdg1, an enzyme with similar functions in humans. Environmental cysteine induced not only the expression of the CDG1 gene in C. albicans, but also the expression of SSU1, encoding a putative sulfite efflux pump. Accordingly, the deletion of SSU1 resulted in enhanced sensitivity of the fungal cells to both cysteine and sulfite. To study the regulation of sulfite/cysteine tolerance in more detail, we screened a C. albicans library of transcription factor mutants in the presence of sulfite. This approach and subsequent independent mutant analysis identified the zinc cluster transcription factor Zcf2 to govern sulfite/cysteine tolerance, as well as cysteine-inducible SSU1 and CDG1 gene expression. cdg1Δ and ssu1Δ mutants displayed reduced hypha formation in the presence of cysteine, indicating a possible role of the newly proposed mechanisms of cysteine tolerance and sulfite secretion in the pathogenicity of C. albicans. Moreover, cdg1Δ mutants induced delayed mortality in a mouse model of disseminated infection. Since sulfite is toxic and a potent reducing agent, its production by C. albicans suggests diverse roles during host adaptation and pathogenicity.
Collapse
|
19
|
Papon N, Courdavault V, Clastre M, Simkin AJ, Crèche J, Giglioli-Guivarc’h N. Deus ex Candida genetics: overcoming the hurdles for the development of a molecular toolbox in the CTG clade. Microbiology (Reading) 2012; 158:585-600. [DOI: 10.1099/mic.0.055244-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Nicolas Papon
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, France
| | - Vincent Courdavault
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, France
| | - Marc Clastre
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, France
| | - Andrew J. Simkin
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, France
| | - Joël Crèche
- EA2106, Biomolécules et Biotechnologies Végétales, Université François-Rabelais de Tours, France
| | | |
Collapse
|
20
|
Sasse C, Morschhäuser J. Gene deletion in Candida albicans wild-type strains using the SAT1-flipping strategy. Methods Mol Biol 2012; 845:3-17. [PMID: 22328364 DOI: 10.1007/978-1-61779-539-8_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Targeted gene inactivation is an important method to investigate gene function. In the diploid yeast Candida albicans, the generation of homozygous knock-out mutants requires the sequential replacement of both alleles of a gene by a selection marker. Targeted gene deletion is often performed in auxotrophic host strains, which are rendered prototrophic after the insertion of appropriate nutritional marker genes into the target locus. The SAT1-flipping strategy described in this chapter allows gene deletion in prototrophic C. albicans wild-type strains with the help of a recyclable dominant selection marker. The SAT1 flipper cassette used for this purpose consists of the caSAT1 marker, which confers resistance to the antibiotic nourseothricin, and the caFLP gene, which encodes the site-specific recombinase FLP. The addition of flanking sequences of the target gene allows specific genomic insertion of the SAT1 flipper cassette by homologous recombination and selection of nourseothricin-resistant transformants. Expression of the FLP recombinase results in subsequent excision of the cassette, which is bordered by direct repeats of the FLP recognition sequence FRT, from the genome. The homozygous mutants obtained after two rounds of insertion and recycling of the SAT1 flipper cassette differ from the wild-type parental strain only by the absence of the target gene and can be used for the inactivation of additional genes and the generation of complemented strains using the same strategy.
Collapse
Affiliation(s)
- Christoph Sasse
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | | |
Collapse
|
21
|
Abstract
In addition to gene inactivation, the manipulation of gene expression is another highly useful tool for the analysis of gene function. Several regulatable promoters are available that enable researchers to shut off or turn on the expression of a target gene in Candida albicans, usually by growing the cells in inducing or repressing media. In this chapter, we describe a tetracycline-inducible gene expression system (Tet-On) that allows forced expression of endogenous or heterologous genes in C. albicans by the addition of the small-molecule inducer doxycycline in a growth medium-independent manner. The system is based on a cassette in which a gene of interest can be placed under the control of a Tet-inducible promoter in a single cloning step and integrated into the C. albicans genome with the help of a dominant selection marker. As the cassette contains all necessary components for Tet-inducible gene expression, it can be used to study the effect of forced gene expression on the phenotype of C. albicans cells in any strain without a requirement of additional genetic manipulations.
Collapse
Affiliation(s)
- Michael Weyler
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | | |
Collapse
|
22
|
Rhb1 regulates the expression of secreted aspartic protease 2 through the TOR signaling pathway in Candida albicans. EUKARYOTIC CELL 2011; 11:168-82. [PMID: 22194462 DOI: 10.1128/ec.05200-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans is a major fungal pathogen in humans. In C. albicans, secreted aspartyl protease 2 (Sap2) is the most highly expressed secreted aspartic protease in vitro and is a virulence factor. Recent research links the small GTPase Rhb1 to C. albicans target of rapamycin (TOR) signaling in response to nitrogen availability. The results of this study show that Rhb1 is related to cell growth through the control of SAP2 expression when protein is the major nitrogen source. This process involves various components of the TOR signaling pathway, including Tor1 kinase and its downstream effectors. TOR signaling not only controls SAP2 transcription but also affects Sap2 protein levels, possibly through general amino acid control. DNA microarray analysis identifies other target genes downstream of Rhb1 in addition to SAP2. These findings provide new insight into nutrients, Rhb1-TOR signaling, and expression of C. albicans virulence factor.
Collapse
|
23
|
Davis MM, Alvarez FJ, Ryman K, Holm ÅA, Ljungdahl PO, Engström Y. Wild-type Drosophila melanogaster as a model host to analyze nitrogen source dependent virulence of Candida albicans. PLoS One 2011; 6:e27434. [PMID: 22110651 PMCID: PMC3215725 DOI: 10.1371/journal.pone.0027434] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/17/2011] [Indexed: 12/21/2022] Open
Abstract
The fungal pathogen Candida albicans is a common cause of opportunistic infections in humans. We report that wild-type Drosophila melanogaster (OrR) flies are susceptible to virulent C. albicans infections and have established experimental conditions that enable OrR flies to serve as model hosts for studying C. albicans virulence. After injection into the thorax, wild-type C. albicans cells disseminate and invade tissues throughout the fly, leading to lethality. Similar to results obtained monitoring systemic infections in mice, well-characterized cph1Δ efg1Δ and csh3Δ fungal mutants exhibit attenuated virulence in flies. Using the OrR fly host model, we assessed the virulence of C. albicans strains individually lacking functional components of the SPS sensing pathway. In response to extracellular amino acids, the plasma membrane localized SPS-sensor (Ssy1, Ptr3, and Ssy5) activates two transcription factors (Stp1 and Stp2) to differentially control two distinct modes of nitrogen acquisition (host protein catabolism and amino acid uptake, respectively). Our results indicate that a functional SPS-sensor and Stp1 controlled genes required for host protein catabolism and utilization, including the major secreted aspartyl protease SAP2, are required to establish virulent infections. By contrast, Stp2, which activates genes required for amino acid uptake, is dispensable for virulence. These results indicate that nutrient availability within infected hosts directly influences C. albicans virulence.
Collapse
Affiliation(s)
- Monica M. Davis
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | | | - Kicki Ryman
- Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Åsa A. Holm
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | - Per O. Ljungdahl
- Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- * E-mail: (YE); (POL)
| | - Ylva Engström
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
- * E-mail: (YE); (POL)
| |
Collapse
|
24
|
Büchold C, Hemberger Y, Heindl C, Welker A, Degel B, Pfeuffer T, Staib P, Schneider S, Rosenthal PJ, Gut J, Morschhäuser J, Bringmann G, Schirmeister T. New cis-configured aziridine-2-carboxylates as aspartic acid protease inhibitors. ChemMedChem 2011; 6:141-52. [PMID: 21082722 DOI: 10.1002/cmdc.201000370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A series of 52 cis-configured 1-alkyl-3-phenylaziridine-2-carboxylates were synthesized as new pseudo-irreversible inhibitors of Candida albicans secreted aspartic acid protease 1 (SAP1), SAP2, SAP3, and SAP8. Some of the compounds, which were obtained as diastereomers with S,S- and R,R-configured aziridine rings by Cromwell synthesis of racemic (2R,3S+2S,3R)-dibromophenylpropionic acid ester with amines, followed by ester hydrolysis and coupling to hydrophobic amino acid esters, were separated by preparative HPLC. The absolute configuration of the aziridine ring was assigned by a combination of experimental circular dichroism (CD) investigations and quantum chemical CD calculations. In agreement with previous docking studies, the diastereomers all exhibit similar activity. The compounds were found to be more active against the related mammalian enzyme cathepsin D, presumably due to productive interactions of the N-alkyl substituent with the highly lipophilic S2 pocket. The most active inhibitors (5, 9, 10, 21, and 28), characterized by benzyl, cyclohexylmethyl, tert-butyl, or 1,4-dimethylpentyl moieties at the aziridine nitrogen atom, exhibit k(2nd) values between 500 and 900×10³ M⁻¹ min⁻¹ and K(i) values near or below 1 μM for cathepsin D.
Collapse
Affiliation(s)
- Christian Büchold
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Morschhäuser J. Nitrogen regulation of morphogenesis and protease secretion in Candida albicans. Int J Med Microbiol 2011; 301:390-4. [PMID: 21555241 DOI: 10.1016/j.ijmm.2011.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the pathogenic yeast Candida albicans, nitrogen availability regulates phenotypes that contribute to the virulence of the fungus, including filamentous growth and protease secretion. Under limiting nitrogen conditions, the ammonium permease Mep2 induces the switch from yeast to filamentous growth. Mep2 is a cytoplasmic membrane protein that mediates uptake of the preferred nitrogen source ammonium. It contains a signaling domain in its C-terminal cytoplasmic tail that induces morphogenesis in response to ammonium availability, presumably by activating the cAMP-PKA pathway and the Cph1-dependent MAP kinase pathway. MEP2 expression itself is regulated by the GATA transcription factors Gat1 and Gln3. These central regulators also control expression of the secreted aspartic protease Sap2, which is induced when proteins are the only available nitrogen source. Under these conditions, Gat1 and Gln3 upregulate the expression of STP1, which encodes a proteolytically activated transcription factor that in turn mediates the expression of SAP2 and several oligopeptide transporters required for growth on proteins. In this way, C. albicans integrates the expression of different virulence-associated phenotypes into the regulatory network controlling nitrogen metabolism.
Collapse
Affiliation(s)
- Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
| |
Collapse
|
26
|
Loss of heterozygosity at an unlinked genomic locus is responsible for the phenotype of a Candida albicans sap4Δ sap5Δ sap6Δ mutant. EUKARYOTIC CELL 2010; 10:54-62. [PMID: 21097666 DOI: 10.1128/ec.00281-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The diploid genome of the pathogenic yeast Candida albicans exhibits a high degree of heterozygosity. Genomic alterations that result in a loss of heterozygosity at specific loci may affect phenotypes and confer a selective advantage under certain conditions. Such genomic rearrangements can also occur during the construction of C. albicans mutants and remain undetected. The SAP2 gene on chromosome R encodes a secreted aspartic protease that is induced and required for growth of C. albicans when proteins are the only available nitrogen source. In strain SC5314, the two SAP2 alleles are functionally divergent because of differences in their regulation. Basal expression of the SAP2-2 allele, but not the SAP2-1 allele, provides the proteolytic degradation products that serve as inducers for full SAP2 induction. A triple mutant lacking the SAP4, SAP5, and SAP6 genes, which are located on chromosome 6, has previously been reported to have a growth defect on proteins, suggesting that one of the encoded proteases is required for SAP2 expression. Here we show that this sap4Δ sap5Δ sap6Δ mutant has become homozygous for chromosome R and lost the SAP2-2 allele. Replacement of one of the SAP2-1 copies in this strain by SAP2-2 and its regulatory region restored the ability of the sap4Δ sap5Δ sap6Δ mutant to utilize proteins as the sole nitrogen source. This is an illustrative example of how loss of heterozygosity at a different genomic locus can cause the mutant phenotype attributed to targeted deletion of a specific gene in C. albicans.
Collapse
|
27
|
The glycosylphosphatidylinositol-anchored protease Sap9 modulates the interaction of Candida albicans with human neutrophils. Infect Immun 2009; 77:5216-24. [PMID: 19805528 DOI: 10.1128/iai.00723-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human polymorphonuclear neutrophils (PMNs) play a major role in the immune defense against invasive Candida albicans infection. This fungal pathogen produces a set of aspartic proteases that directly contributes to virulence properties such as adhesion, tissue invasion, and immune evasion. We show here that, in contrast to other secreted proteases, the cell surface-associated isoform Sap9 has a major impact on the recognition of C. albicans by PMNs. SAP9 is required for the induction of PMN chemotaxis toward C. albicans filaments, an essential prerequisite of effective PMN activation. Furthermore, deletion of SAP9 leads to a mitigated release of reactive oxygen intermediates (ROI) in human PMNs and decreases C. albicans-induced apoptosis triggered by ROI formation. In confrontation assays, killing of a SAP9 deletion mutant is reduced in comparison to wild-type C. albicans. These data clearly implicate Sap9 protease activity in the initiation of protective innate immunity and suggest novel molecular mechanisms in C. albicans-host interaction leading to neutrophil activation.
Collapse
|
28
|
Eckert SE, Mühlschlegel FA. Promoter regulation inCandida albicansand related species. FEMS Yeast Res 2009; 9:2-15. [DOI: 10.1111/j.1567-1364.2008.00455.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
29
|
Zhou J, Dong Z, Liu L, Du G, Chen J. A reusable method for construction of non-marker large fragment deletion yeast auxotroph strains: A practice in Torulopsis glabrata. J Microbiol Methods 2009; 76:70-4. [DOI: 10.1016/j.mimet.2008.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 09/02/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
|
30
|
Lermann U, Morschhäuser J. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. MICROBIOLOGY-SGM 2008; 154:3281-3295. [PMID: 18957582 DOI: 10.1099/mic.0.2008/022525-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A well-known virulence attribute of the human-pathogenic yeast Candida albicans is the secretion of aspartic proteases (Saps), which may contribute to colonization and infection of different host niches by degrading tissue barriers, destroying host defence molecules, or digesting proteins for nutrient supply. The role of individual Sap isoenzymes, which are encoded by a large gene family, for the pathogenicity of C. albicans has been investigated by assessing the virulence of mutants lacking specific SAP genes and by studying the expression pattern of the SAP genes in various models of superficial and systemic infections. We used a recombination-based genetic reporter system to detect the induction of the SAP1-SAP6 genes during infection of reconstituted human vaginal epithelium. Only SAP5, but none of the other tested SAP genes, was detectably activated in this in vitro infection model. To directly address the importance of the SAP1-SAP6 genes for invasion of reconstituted human epithelia (RHE), we constructed a set of mutants of the wild-type C. albicans model strain SC5314 in which either single or multiple SAP genes were specifically deleted. Even mutants lacking all of the SAP1-SAP3 or the SAP4-SAP6 genes displayed the same capacity to invade and damage both oral and vaginal RHE as their wild-type parental strain, in contrast to a nonfilamentous efg1Delta mutant that was avirulent under these conditions. We therefore conclude from these results that the secreted aspartic proteases Sap1p-Sap6p are not required for invasion of RHE by C. albicans.
Collapse
Affiliation(s)
- Ulrich Lermann
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| |
Collapse
|
31
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
32
|
Dabas N, Morschhäuser J. A transcription factor regulatory cascade controls secreted aspartic protease expression in Candida albicans. Mol Microbiol 2008; 69:586-602. [PMID: 18547391 DOI: 10.1111/j.1365-2958.2008.06297.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Secreted aspartic proteases (Saps) contribute to the virulence of Candida albicans, a major fungal pathogen of humans. One function of the Saps, which is specifically mediated by the Sap2p isoenzyme, is the degradation of proteins for use as a nitrogen source. The utilization of alternative nitrogen sources in fungi is controlled by GATA transcription factors and we found that C. albicans mutants lacking the GATA transcription factors Gln3p and Gat1p were unable to grow in a medium containing bovine serum albumin (BSA) as the sole nitrogen source. The growth defect was mainly caused by the inability of gln3Deltagat1Delta mutants to express the SAP2 gene, as SAP2 expression from the constitutive ADH1 promoter restored the ability of the mutants to grow on BSA. Expression of STP1, which encodes a transcription factor that is required for SAP2 induction in the presence of proteins, was regulated by Gln3p and Gat1p, and forced expression of STP1 from a tetracycline-inducible promoter bypassed the requirement of the GATA transcription factors for growth of C. albicans on proteins. SAP2 is repressed when preferred nitrogen sources are available and this nitrogen catabolite repression of SAP2 was correlated with downregulation of STP1 in the presence of high concentrations of ammonium, glutamine or urea. Tetracycline-induced STP1 expression abolished nitrogen catabolite repression of SAP2, demonstrating that the control of STP1 expression levels by the GATA transcription factors is a key aspect of both positive and negative regulation of SAP2 expression. Therefore, secreted aspartic protease expression, a long-known virulence attribute of C. albicans, is controlled by a regulatory cascade in which the general regulators Gln3p and Gat1p control the expression of the transcription factor Stp1p, which in turn mediates SAP2 expression.
Collapse
Affiliation(s)
- Neelam Dabas
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | |
Collapse
|