1
|
Pham D, Sivalingam V, Tang HM, Montgomery JM, Chen SCA, Halliday CL. Molecular Diagnostics for Invasive Fungal Diseases: Current and Future Approaches. J Fungi (Basel) 2024; 10:447. [PMID: 39057332 PMCID: PMC11278267 DOI: 10.3390/jof10070447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive fungal diseases (IFDs) comprise a growing healthcare burden, especially given the expanding population of immunocompromised hosts. Early diagnosis of IFDs is required to optimise therapy with antifungals, especially in the setting of rising rates of antifungal resistance. Molecular techniques including nucleic acid amplification tests and whole genome sequencing have potential to offer utility in overcoming limitations with traditional phenotypic testing. However, standardisation of methodology and interpretations of these assays is an ongoing undertaking. The utility of targeted Aspergillus detection has been well-defined, with progress in investigations into the role of targeted assays for Candida, Pneumocystis, Cryptococcus, the Mucorales and endemic mycoses. Likewise, whilst broad-range polymerase chain reaction assays have been in use for some time, pathology stewardship and optimising diagnostic yield is a continuing exercise. As costs decrease, there is also now increased access and experience with whole genome sequencing, including metagenomic sequencing, which offers unparalleled resolution especially in the investigations of potential outbreaks. However, their role in routine diagnostic use remains uncommon and standardisation of techniques and workflow are required for wider implementation.
Collapse
Affiliation(s)
- David Pham
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Varsha Sivalingam
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Helen M. Tang
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - James M. Montgomery
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| |
Collapse
|
2
|
Lee R, Kim WB, Cho SY, Nho D, Park C, Yoo IY, Park YJ, Lee DG. Clinical Implementation of β-Tubulin Gene-Based Aspergillus Polymerase Chain Reaction for Enhanced Aspergillus Diagnosis in Patients with Hematologic Diseases: A Prospective Observational Study. J Fungi (Basel) 2023; 9:1192. [PMID: 38132792 PMCID: PMC10744750 DOI: 10.3390/jof9121192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
The β-tubulin (benA) gene is a promising target for the identification of Aspergillus species. Assessment of the clinical implementation and performance of benA gene-based Aspergillus polymerase chain reaction (PCR) remains warranted. In this study, we assessed the analytical performance of the BenA probe PCR in comparison with the Aspergenius kit. We prospectively collected bronchoalveolar lavage (BAL) fluid via diagnostic bronchoscopy from adult patients with hematologic diseases. BenA gene-based multiplex real-time PCR and sequential melting temperature analysis were performed to detect the azole resistance of Aspergillus fumigatus. In total, 76 BAL fluids in 75 patients suspicious of invasive pulmonary aspergillosis (IPA) were collected. Before the application of PCR, the prevalence of proven and probable IPA was 32.9%. However, after implementing the benA gene-based PCR, 15.8% (12 out of 76) of potential IPA cases were reclassified as probable IPA. The analytical performance of the BenA probe PCR in BAL samples was comparable to that of the Aspergenius kit. The diagnostic performance was as follows: sensitivity, 52.0%; specificity, 64.7%; positive predictive value, 41.9%; negative predictive value, 73.3%; positive likelihood ratio, 1.473; and negative likelihood ratio, 0.741. Moreover, benA gene-based Aspergillus PCR discriminated all major sections of Aspergillus, including cryptic species such as Aspergillus tubingensis. Sequential melting temperature analysis successfully detected 2 isolates (15.4%) of A. fumigatus carrying resistant mutations. BenA gene-based Aspergillus PCR with melting temperature analysis enhances diagnostic accuracy and detects not only cryptic species but also resistant mutations of A. fumigatus. It shows promise for clinical applications in the diagnosis of IPA.
Collapse
Affiliation(s)
- Raeseok Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (R.L.); (S.-Y.C.); (D.N.)
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (W.-B.K.); (C.P.)
| | - Won-Bok Kim
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (W.-B.K.); (C.P.)
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung-Yeon Cho
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (R.L.); (S.-Y.C.); (D.N.)
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (W.-B.K.); (C.P.)
| | - Dukhee Nho
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (R.L.); (S.-Y.C.); (D.N.)
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (W.-B.K.); (C.P.)
| | - Chulmin Park
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (W.-B.K.); (C.P.)
| | - In Young Yoo
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.Y.Y.); (Y.-J.P.)
| | - Yeon-Joon Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (I.Y.Y.); (Y.-J.P.)
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (R.L.); (S.-Y.C.); (D.N.)
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (W.-B.K.); (C.P.)
| |
Collapse
|
3
|
Jenks JD, White PL, Kidd SE, Goshia T, Fraley SI, Hoenigl M, Thompson GR. An update on current and novel molecular diagnostics for the diagnosis of invasive fungal infections. Expert Rev Mol Diagn 2023; 23:1135-1152. [PMID: 37801397 PMCID: PMC10842420 DOI: 10.1080/14737159.2023.2267977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Invasive fungal infections cause millions of infections annually, but diagnosis remains challenging. There is an increased need for low-cost, easy to use, highly sensitive and specific molecular assays that can differentiate between colonized and pathogenic organisms from different clinical specimens. AREAS COVERED We reviewed the literature evaluating the current state of molecular diagnostics for invasive fungal infections, focusing on current and novel molecular tests such as polymerase chain reaction (PCR), digital PCR, high-resolution melt (HRM), and metagenomics/next generation sequencing (mNGS). EXPERT OPINION PCR is highly sensitive and specific, although performance can be impacted by prior/concurrent antifungal use. PCR assays can identify mutations associated with antifungal resistance, non-Aspergillus mold infections, and infections from endemic fungi. HRM is a rapid and highly sensitive diagnostic modality that can identify a wide range of fungal pathogens, including down to the species level, but multiplex assays are limited and HRM is currently unavailable in most healthcare settings, although universal HRM is working to overcome this limitation. mNGS offers a promising approach for rapid and hypothesis-free diagnosis of a wide range of fungal pathogens, although some drawbacks include limited access, variable performance across platforms, the expertise and costs associated with this method, and long turnaround times in real-world settings.
Collapse
Affiliation(s)
- Jeffrey D Jenks
- Durham County Department of Public Health, Durham, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - P Lewis White
- Public Health Wales Microbiology Cardiff, UHW, United Kingdom and Centre for trials research/Division of Infection/Immunity, Cardiff University, Cardiff, UK
| | - Sarah E Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia
| | - Tyler Goshia
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Stephanie I Fraley
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - George R Thompson
- University of California Davis Center for Valley Fever, Sacramento, CA, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
4
|
The Evolving Landscape of Diagnostics for Invasive Fungal Infections in Lung Transplant Recipients. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-022-00433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
6
|
Fan Y, Wang Y, Korfanty GA, Archer M, Xu J. Genome-Wide Association Analysis for Triazole Resistance in Aspergillus fumigatus. Pathogens 2021; 10:701. [PMID: 34199862 PMCID: PMC8227032 DOI: 10.3390/pathogens10060701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous fungus and the main agent of aspergillosis, a common fungal infection in the immunocompromised population. Triazoles such as itraconazole and voriconazole are the common first-line drugs for treating aspergillosis. However, triazole resistance in A. fumigatus has been reported in an increasing number of countries. While most studies of triazole resistance have focused on mutations in the triazole target gene cyp51A, >70% of triazole-resistant strains in certain populations showed no mutations in cyp51A. To identify potential non-cyp51A mutations associated with triazole resistance in A. fumigatus, we analyzed the whole genome sequences and triazole susceptibilities of 195 strains from 12 countries. These strains belonged to three distinct clades. Our genome-wide association study (GWAS) identified a total of six missense mutations significantly associated with itraconazole resistance and 18 missense mutations with voriconazole resistance. In addition, to investigate itraconazole and pan-azole resistance, Fisher's exact tests revealed 26 additional missense variants tightly linked to the top 20 SNPs obtained by GWAS, of which two were consistently associated with triazole resistance. The large number of novel mutations related to triazole resistance should help further investigations into their molecular mechanisms, their clinical importance, and the development of a comprehensive molecular diagnosis toolbox for triazole resistance in A. fumigatus.
Collapse
Affiliation(s)
| | | | | | | | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; (Y.F.); (Y.W.); (G.A.K.); (M.A.)
| |
Collapse
|
7
|
Xiu L, Li Y, Zhang C, Li Y, Zeng Y, Wang F, Peng J. A molecular screening assay to identify Chlamydia trachomatis and distinguish new variants of C. trachomatis from wild-type. Microb Biotechnol 2020; 14:668-676. [PMID: 33277967 PMCID: PMC7936308 DOI: 10.1111/1751-7915.13724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 01/13/2023] Open
Abstract
Chlamydia trachomatis is the most common sexually transmitted pathogen globally, causing serious health problems and representing a burden on public health. A new variant of C. trachomatis (nvCT) that carries mutations (C1514T, C1515T and G1523A) in the 23S rRNA gene has eluded detection in Aptima Combo 2 assays. This has led to false negatives in diagnostics tests and poses a challenge for C. trachomatis diagnostics on a global level. In this study, we developed a simple and cost‐effective assay to identify C. trachomatis, with a potential application to screen for nvCT. We developed a screening assay based on high‐resolution melting (HRM), targeting the 23S rRNA gene and cryptic plasmid. To evaluate the performance of the assay, 404 archived C. trachomatis DNA specimens and 570 extracted clinical specimens were analysed. Our HRM assay not only identified C. trachomatis in clinical specimens, but also correctly differentiated nvCT carrying C1514T, C1515T and G1523A mutations from the wild‐type. We observed no cross‐reactions with other clinically related agents, and the limit of detection was 11.26 (95% CI; 7.61–31.82) copies per reaction. Implementation of this screening assay could reduce detection times and costs for C. trachomatis diagnoses, and facilitate increased research on the presence and monitoring of nvCT.
Collapse
Affiliation(s)
- Leshan Xiu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yamei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chi Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yizhun Li
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Yaling Zeng
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Feng Wang
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Junping Peng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Bustamante B, Illescas LR, Posadas A, Campos PE. Azole resistance among clinical isolates of Aspergillus fumigatus in Lima-Peru. Med Mycol 2020; 58:54-60. [PMID: 31329931 DOI: 10.1093/mmy/myz032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 11/13/2022] Open
Abstract
Azole resistance among Aspergillus fumigatus isolates, which is mainly related to mutations in the cyp51A gene, is a concern because it is rising, worldwide disseminated, and associated with treatment failure and death. Data on azole resistance of aspergillus from Latin American countries is very scarce and do not exist for Peru. Two hundred and seven Aspergillus clinical isolates collected prospectively underwent mycology and molecular testing for specie identification, and 143 isolates were confirmed as A. fumigatus sensu stricto (AFSS). All AFSS were tested for in vitro azole susceptibility, and resistant isolates underwent PCR amplification and sequencing of the whole cyp51A gene and its promoter. The in vitro susceptibility showed a minimal inhibitory concentration (MIC) range, MIC50 and MIC90 of 0.125 to >16, 0.25, and 0.5 μg/ml for itraconazole; 0.25 to 2, 0.5, and 0.5 μg/ml for voriconazole; and 0.003 to 1, 0.06, and 0.125 μg/ml for posaconazole. Three isolates (2%) showed resistance to itraconazole and exhibited different mutations of the cyp51A gene. One isolate harbored the mutation M220K, while a second one exhibited the G54 mutation plus a modification in the cyp51A gene promoter. The third isolate, from an azole naive patient, presented an integration of a 34-bp tandem repeat (TR34) in the promoter region of the gene and a substitution of leucine 98 by histidine (L98H). The three source patients had a diagnosis or suspicion of chronic pulmonary aspergillosis.
Collapse
Affiliation(s)
- Beatriz Bustamante
- Nacional Cayetano Heredia, Lima, Perú, and Instituto de Medicina Tropical Alexander von Humboldt-Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Andrés Posadas
- Unidad de Epidemiología Molecular-Instituto de Medicina Tropical Alexander von Humboldt-Universidad Peruana Cayetano Heredia, Lima, Peru
| | | |
Collapse
|
9
|
A Simple Method To Detect Point Mutations in Aspergillus fumigatus cyp51A Gene Using a Surveyor Nuclease Assay. Antimicrob Agents Chemother 2020; 64:AAC.02271-19. [PMID: 32015034 DOI: 10.1128/aac.02271-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/22/2020] [Indexed: 11/20/2022] Open
Abstract
One of the main mechanisms of azole resistance of Aspergillus fumigatus is thought to be a reduction in the drug's affinity for the target molecule, Cyp51A, due to its amino acid mutation(s). It is known that the azole resistance pattern is closely related to the mutation site(s) of the molecule. In this study, we tried to develop a simple and rapid detection method for cyp51A mutations using the endonuclease Surveyor nuclease. The Surveyor nuclease assay was verified using several azole-resistant strains of A. fumigatus that possess point mutations in Cyp51A. For validation of the Surveyor nuclease assay, blind tests were conducted using 48 strains of A. fumigatus (17 azole-resistant and 31 azole-susceptible strains). The Surveyor nuclease assay could rapidly detect cyp51A mutations with one primer set. Also, all the tested strains harboring different cyp51A single point mutations could be clearly distinguished from the wild type. The Surveyor nuclease assay is a simple method that can detect cyp51A mutations rapidly.
Collapse
|
10
|
van der Torre MH, Novak-Frazer L, Rautemaa-Richardson R. Detecting Azole-Antifungal Resistance in Aspergillus fumigatus by Pyrosequencing. J Fungi (Basel) 2020; 6:jof6010012. [PMID: 31936898 PMCID: PMC7151159 DOI: 10.3390/jof6010012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Guidelines on the diagnosis and management of Aspergillus disease recommend a multi-test approach including CT scans, culture, fungal biomarker tests, microscopy and fungal PCR. The first-line treatment of confirmed invasive aspergillosis (IA) consists of drugs in the azole family; however, the emergence of azole-resistant isolates has negatively impacted the management of IA. Failure to detect azole-resistance dramatically increases the mortality rates of azole-treated patients. Despite drug susceptibility tests not being routinely performed currently, we suggest including resistance testing whilst diagnosing Aspergillus disease. Multiple tools, including DNA sequencing, are available to screen for drug-resistant Aspergillus in clinical samples. This is particularly beneficial as a large proportion of IA samples are culture negative, consequently impeding susceptibility testing through conventional methods. Pyrosequencing is a promising in-house DNA sequencing method that can rapidly screen for genetic hotspots associated with antifungal resistance. Pyrosequencing outperforms other susceptibility testing methods due to its fast turnaround time, accurate detection of polymorphisms within critical genes, including simultaneous detection of wild type and mutated sequences, and—most importantly—it is not limited to specific genes nor fungal species. Here we review current diagnostic methods and highlight the potential of pyrosequencing to aid in a diagnosis complete with a resistance profile to improve clinical outcomes.
Collapse
Affiliation(s)
- Mireille H. van der Torre
- Mycology Reference Centre, Excellence Centre of Medical Mycology (ECMM), Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (L.N.-F.)
| | - Lilyann Novak-Frazer
- Mycology Reference Centre, Excellence Centre of Medical Mycology (ECMM), Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (L.N.-F.)
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, NIHR Manchester Biomedical Research Centre (BRC) at the Manchester Academic Health Science Centre, The University of Manchester, Manchester M23 9LT, UK
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre, Excellence Centre of Medical Mycology (ECMM), Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (L.N.-F.)
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, NIHR Manchester Biomedical Research Centre (BRC) at the Manchester Academic Health Science Centre, The University of Manchester, Manchester M23 9LT, UK
- Department of Infectious Diseases, Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK
- Correspondence: ; Tel.: +44-161-291-5941
| |
Collapse
|
11
|
|
12
|
Early diagnosis of fungal infections in lung transplant recipients, colonization versus invasive disease? Curr Opin Organ Transplant 2019; 23:381-387. [PMID: 29794553 DOI: 10.1097/mot.0000000000000543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The diagnosis of invasive aspergillosis remains challenging in solid organ transplants in general, and in lung transplant recipients, in particular, because of colonization. Lung transplant recipients may be over treated with antifungal drugs because of the lack of appropriate diagnostic tools. RECENT FINDINGS A review of the new developments of diagnostic tools and whether this help distinguishing colonization from invasive disease is presented. SUMMARY Efforts are being made to develop new tools that will allow us to identify which patients will develop IPA, and those who will be able to control the disease.
Collapse
|
13
|
Xanthopoulou A, Ganopoulos I, Tryfinopoulou P, Panagou EZ, Osanthanunkul M, Madesis P, Kizis D. Rapid and accurate identification of black aspergilli from grapes using high-resolution melting (HRM) analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:309-314. [PMID: 29876941 DOI: 10.1002/jsfa.9189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Aspergillus is a diverse genus of fungi with high economic and social impact. Various species that belong to section Nigri (black aspergilli) are common agents of grape spoilage and potent producers of ochratoxin A (OTA), a mycotoxin associated with various nephrotoxic and immunotoxic effects in humans. Black aspergilli are difficult to classify following only phenotypic criteria; thus chemotaxonomic and molecular methods are employed in parallel with phenotypic ones for species characterization. These approaches, though accurate and replicable, require more than one individual step and are to a certain extent laborious when a rapid identification of these species is required. RESULTS The aim of this study was to develop a high-resolution melting polymerase chain reaction (HRM-PCR) assay as a rapid method for identification of Aspergillus spp. section Nigri isolates and their detection in grape samples. Melt curve analysis of amplicons originating from the internal transcribed spacer 2 (ITS2) ribosomal region generated species-specific HRM curve profiles, enabling the accurate differentiation of the analyzed genotypes. Furthermore, the assay was able to identify A. carbonarius, A. tubingensis, A. niger, A. ibericus and A. japonicus in grape samples artificially inoculated with conidia of these fungi. CONCLUSION To our knowledge this is the first report on the development of an HRM-PCR assay for the identification of black Aspergillus species in grape samples. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources ELGO-DEMETER, Thessaloniki, Greece
| | - Paschalitsa Tryfinopoulou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Efstathios Z Panagou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Maslin Osanthanunkul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Dimosthenis Kizis
- Laboratory of Mycology, Department of Phytopathology, Benaki Phytopathological Institute, Athens, Greece
| |
Collapse
|
14
|
Herrera S, Husain S. Current State of the Diagnosis of Invasive Pulmonary Aspergillosis in Lung Transplantation. Front Microbiol 2019; 9:3273. [PMID: 30687264 PMCID: PMC6333628 DOI: 10.3389/fmicb.2018.03273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/17/2018] [Indexed: 01/06/2023] Open
Abstract
As the number of lung transplants performed worldwide each year continues to grow, the success of this procedure is threatened by the incidence of non-CMV infections such as invasive aspergillosis. Despite tremendous efforts and the availability of numerous diagnostic tests (especially in hematological malignancies) the diagnosis of invasive aspergillosis continues to be a challenge. Lung transplantation remains a unique clinical scenario, where additional host defenses are immunocompromized, making many of the available tests unsuitable. In this review we will navigate through the myriad of diagnostic tests currently available and how they apply to this unique patient population, as well as have a look into what the future holds.
Collapse
Affiliation(s)
- Sabina Herrera
- Transplant Infectious Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Shahid Husain
- Transplant Infectious Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Method-Dependent Epidemiological Cutoff Values for Detection of Triazole Resistance in Candida and Aspergillus Species for the Sensititre YeastOne Colorimetric Broth and Etest Agar Diffusion Methods. Antimicrob Agents Chemother 2018; 63:AAC.01651-18. [PMID: 30323038 DOI: 10.1128/aac.01651-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022] Open
Abstract
Although the Sensititre Yeast-One (SYO) and Etest methods are widely utilized, interpretive criteria are not available for triazole susceptibility testing of Candida or Aspergillus species. We collected fluconazole, itraconazole, posaconazole, and voriconazole SYO and Etest MICs from 39 laboratories representing all continents for (method/agent-dependent) 11,171 Candida albicans, 215 C. dubliniensis, 4,418 C. glabrata species complex, 157 C. guilliermondii (Meyerozyma guilliermondii), 676 C. krusei (Pichia kudriavzevii), 298 C. lusitaniae (Clavispora lusitaniae), 911 C. parapsilosis sensu stricto, 3,691 C. parapsilosis species complex, 36 C. metapsilosis, 110 C. orthopsilosis, 1,854 C. tropicalis, 244 Saccharomyces cerevisiae, 1,409 Aspergillus fumigatus, 389 A. flavus, 130 A. nidulans, 233 A. niger, and 302 A. terreus complex isolates. SYO/Etest MICs for 282 confirmed non-wild-type (non-WT) isolates were included: ERG11 (C. albicans), ERG11 and MRR1 (C. parapsilosis), cyp51A (A. fumigatus), and CDR2 and CDR1 overexpression (C. albicans and C. glabrata, respectively). Interlaboratory modal agreement was superior by SYO for yeast species and by the Etest for Aspergillus spp. Distributions fulfilling CLSI criteria for epidemiological cutoff value (ECV) definition were pooled, and we proposed SYO ECVs for S. cerevisiae and 9 yeast and 3 Aspergillus species and Etest ECVs for 5 yeast and 4 Aspergillus species. The posaconazole SYO ECV of 0.06 µg/ml for C. albicans and the Etest itraconazole ECV of 2 µg/ml for A. fumigatus were the best predictors of non-WT isolates. These findings support the need for method-dependent ECVs, as, overall, the SYO appears to perform better for susceptibility testing of yeast species and the Etest appears to perform better for susceptibility testing of Aspergillus spp. Further evaluations should be conducted with more Candida mutants.
Collapse
|