1
|
Miyazaki H, Chang B, Ogawa M, Shibuya R, Takata M, Nakamura S, Ubukata K, Miyazaki Y, Matsumoto T, Akeda Y. Bacteriological characteristics and changes of Streptococcus pneumoniae serotype 35B after vaccine implementation in Japan. Epidemiol Infect 2024; 152:e114. [PMID: 39363586 PMCID: PMC11450500 DOI: 10.1017/s0950268824001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/25/2024] [Accepted: 06/25/2024] [Indexed: 10/05/2024] Open
Abstract
Streptococcus pneumoniae serotype 35B, a non-vaccine type, is a major contributor to the increase in pneumococcal infection post-vaccination. We aimed to understand the mechanism of its spread by characterizing 35B. The serotype, type 1 pilus (T1P) positivity, and antimicrobial susceptibility of 319 isolates in 2018-2022 were analysed and compared with those of isolates in 2014-2017 to find the changes. 35B accounted for 40 (12.5%) isolates. T1P positivity was notably higher in 35B (87.5%) than in the other serotypes. To confirm the role of T1P, an adhesion factor, we compared adherence to A549 cells between T1P-positive 35B isolates and their T1P-deficient mutants, showing contribution of T1P to adherence. Penicillin-non-susceptible rate of 35B was 87.5%, and meropenem-resistant 35B rate was 35.0%, which increased from 14.5% of 2014-2017 (p = 0.009). Multilocus sequence typing was performed in 35B strains. Prevalence of clonal complex 558, harbouring T1P and exhibiting multidrug non-susceptibility, suggested the advantages of 35B in attachment and survival in the host. The emergence of ST156 isolates, T1P-positive and non-susceptible to β-lactams, has raised concern about expansion in Japan. The increase of serotype 35B in pneumococcal diseases might have occurred due to its predominant colonizing ability after the elimination of the vaccine-serotypes.
Collapse
Affiliation(s)
- Haruko Miyazaki
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Bin Chang
- Department of Bacteriology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michinaga Ogawa
- Department of Bacteriology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Rie Shibuya
- Department of Clinical Laboratory, Saiseikai Yokohamashi Tobu Hospital, Kanagawa, Japan
| | - Misako Takata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Shigeki Nakamura
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Kimiko Ubukata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, International University of Health and Welfare, Chiba, Japan
| | - Yukihiro Akeda
- Department of Bacteriology 1, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
2
|
Wu X, Alibayov B, Xiang X, Lattar SM, Sakai F, Medders AA, Antezana BS, Keller LE, Vidal AGJ, Tzeng YL, Robinson DA, Stephens DS, Yu Y, Vidal JE. Ultrastructural, metabolic and genetic characteristics of determinants facilitating the acquisition of macrolide resistance by Streptococcus pneumoniae. Drug Resist Updat 2024; 77:101138. [PMID: 39167981 DOI: 10.1016/j.drup.2024.101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
AIMS To investigate the molecular events associated with acquiring macrolide resistance genes [mefE/mel (Mega) or ermB] in Streptococcus pneumoniae (Spn) during nasopharyngeal colonization. METHODS AND RESULTS Genomic analysis of 128 macrolide-resistant Spn isolates revealed recombination events in genes of the conjugation apparatus, or the competence system, in strains carrying Tn916-related elements. Studies using confocal and electron microscopy demonstrated that during the transfer of Tn916-related elements in nasopharyngeal cell biofilms, pneumococcal strains formed clusters facilitating their acquisition of resistance determinants at a high recombination frequency (rF). Remarkably, these aggregates comprise both encapsulated and nonencapsulated pneumococci that span extracellular and intracellular compartments. rF assessments showed similar rates regardless Mega was associated with large integrative and conjugative elements (ICEs) (>23 kb) or not (∼5.4 kb). The rF for Mega Class IV(c) insertion region (∼53 kb) was three orders of magnitude higher than the transformation of the capsule locus. Metabolomics studies of the microenvironment created by colonization of human nasopharyngeal cells revealed a link between the acquisition of ICEs and the pathways involving nicotinic acid and sucrose. CONCLUSIONS Pneumococcal clusters, both extracellular and intracellular, facilitate macrolide resistance acquisition, and ICEs were acquired at a higher frequency than the capsule locus. Metabolic changes could serve as intervention targets.
Collapse
Affiliation(s)
- Xueqing Wu
- Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China
| | - Babek Alibayov
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Xi Xiang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Santiago M Lattar
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Fuminori Sakai
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, United States
| | - Austin A Medders
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Brenda S Antezana
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, United States; Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, GA 30322, United States
| | - Lance E Keller
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Ana G J Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Yih-Ling Tzeng
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, United States; Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, GA 30322, United States
| | - D Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - David S Stephens
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, United States; Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, GA 30322, United States
| | - Yunsong Yu
- Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China.
| | - Jorge E Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, United States; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, United States.
| |
Collapse
|
3
|
Wu X, Alibayov B, Xiang X, Lattar SM, Sakai F, Medders AA, Antezana B, Keller L, Vidal AGJ, Tzeng YL, Robinson DA, Stephens D, Yu Y, Vidal JE. Ultrastructural, metabolic and genetic determinants of the acquisition of macrolide resistance by Streptococcus pneumoniae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573471. [PMID: 38234816 PMCID: PMC10793443 DOI: 10.1101/2023.12.27.573471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Aim Streptococcus pneumoniae (Spn) acquires genes for macrolide resistance, MEGA or ermB, in the human host. These genes are carried either in the chromosome, or on integrative conjugative elements (ICEs). Here, we investigated molecular determinants of the acquisition of macrolide resistance. Methods and Results Whole genome analysis was conducted for 128 macrolide-resistant pneumococcal isolates to identify the presence of MEGA (44.5%, 57/128) or ermB (100%), and recombination events in Tn916-related elements or in the locus comCDE encoding competence genes. Confocal and electron microscopy studies demonstrated that, during the acquisition of macrolide resistance, pneumococcal strains formed clusters of varying size, with the largest aggregates having a median size of ~1600 μm2. Remarkably, these pneumococcal aggregates comprise both encapsulated and nonencapsulated pneumococci, exhibited physical interaction, and spanned extracellular and intracellular compartments. We assessed the recombination frequency (rF) for the acquisition of macrolide resistance by a recipient D39 strain, from pneumococcal strains carrying MEGA (~5.4 kb) in the chromone, or in large ICEs (>23 kb). Notably, the rF for the acquisition of MEGA, whether in the chromosome or carried on an ICE was similar. However, the rF adjusted to the acquisition of the full-length ICE (~52 kb), compared to that of the capsule locus (~23 kb) that is acquired by transformation, was three orders of magnitude higher. Finally, metabolomics studies revealed a link between the acquisition of ICE and the metabolic pathways involving nicotinic acid and sucrose. Conclusions Extracellular and intracellular pneumococcal clusters facilitate the acquisition of full-length ICE at a rF higher than that of typical transformation events, involving distinct metabolic changes that present potential targets for interventions.
Collapse
Affiliation(s)
- Xueqing Wu
- Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China
| | - Babek Alibayov
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| | - Xi Xiang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Santiago M. Lattar
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta GA 30322, United States
| | - Fuminori Sakai
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta GA 30322, United States
| | - Austin A. Medders
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| | - Brenda Antezana
- Department of Medicine, School of Medicine, Emory University, Atlanta GA 30322, United States
| | - Lance Keller
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| | - Ana G. J. Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| | - Yih-Ling Tzeng
- Department of Medicine, School of Medicine, Emory University, Atlanta GA 30322, United States
| | - D. Ashley Robinson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| | - David Stephens
- Department of Medicine, School of Medicine, Emory University, Atlanta GA 30322, United States
| | - Yunsong Yu
- Department of Infectious Diseases, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310052, China
| | - Jorge E. Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson MS 39056, United States
| |
Collapse
|
4
|
Yokota SI, Tsukamoto N, Sato T, Ohkoshi Y, Yamamoto S, Ogasawara N. Serotype replacement and an increase in non-encapsulated isolates among community-acquired infections of Streptococcus pneumoniae during post-vaccine era in Japan. IJID REGIONS 2023; 8:105-110. [PMID: 37554357 PMCID: PMC10404989 DOI: 10.1016/j.ijregi.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVES It is feared that the serotype replacement of Streptococcus pneumoniae occurred by the introduction of pneumococcal vaccines as periodical inoculation leads to reduced efficacy of the approved vaccines and altered antimicrobial susceptibility. METHODS We determined serotypes of 351 S. pneumoniae isolates collected at a commercial clinical laboratory in Hokkaido prefecture, Japan, from December 2018 to February 2019 by using the polymerase chain reaction procedure of the US Centers for Disease Control and Prevention. Antimicrobial susceptibility and resistance gene profiles were also examined. RESULTS Vaccine coverage rates were 7.9% for 13-valent conjugate vaccine, and 32.5% for 23-valent polysaccharide vaccine, respectively. Non-typable strains were 19.7%. cpsA-positive isolates (group I), and null capsule clade (NCC)1, NCC2 and NCC3 (group II) comprised 31.3%, 28.4%, 32.8%, and 7.5% of the 69 non-typable strains, respectively. No penicillin-resistant/intermediate isolates were found; however, serotypes 35B and 15A/F showed low susceptibility to β-lactams. Only five strains (1.4%) were levofloxacin-resistant, and all were from the older persons, and three strains were serotype 35B. CONCLUSION The progression of serotype replacement in non-invasive pneumococcal infections has occurred during the post-vaccine era in Japan, and non-encapsulated isolates, such as NCC, have increased. Antimicrobial susceptibility is not worsened.
Collapse
Affiliation(s)
- Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Toyotaka Sato
- Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Yasuo Ohkoshi
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Clinical Laboratory, NTT Medical Center Sapporo, Sapporo, Japan
| | - Soh Yamamoto
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriko Ogasawara
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Otolaryngology-Head and Neck Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|