1
|
Morales-Yuste M, Martín-Sánchez J, Corpas-Lopez V. Canine Leishmaniasis: Update on Epidemiology, Diagnosis, Treatment, and Prevention. Vet Sci 2022; 9:vetsci9080387. [PMID: 36006301 PMCID: PMC9416075 DOI: 10.3390/vetsci9080387] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Dog are the main reservoir of Leishmania infantum, causing canine leishmaniasis, an incurable multisystemic disease that leads to death in symptomatic dogs, when not treated. This parasite causes visceral, cutaneous, and mucosal leishmaniasis in people in the Mediterranean Basin, North Africa, South America, and West Asia. This disease is mostly unknown by veterinarians outside the endemic areas, but the disease is expanding in the Northern Hemisphere due to travel and climate change. New methodologies to study the epidemiology of the disease have found new hosts of leishmaniasis and drawn a completely new picture of the parasite biological cycle. Canine leishmaniasis diagnosis has evolved over the years through the analysis of new samples using novel molecular techniques. Given the neglected nature of leishmaniasis, progress in drug discovery is slow, and the few drugs that reach clinical stages in humans are unlikely to be commercialised for dogs, but several approaches have been developed to support chemotherapy. New-generation vaccines developed during the last decade are now widely used, along with novel prevention strategies. The implications of the epidemiology, diagnosis, treatment, and prevention of canine leishmaniasis are fundamental to public health.
Collapse
|
2
|
Datta A, Podder I, Das A, Sil A, Das NK. Therapeutic Modalities in Post Kala-azar Dermal Leishmaniasis: A Systematic Review of the Effectiveness and Safety of the Treatment Options. Indian J Dermatol 2021; 66:34-43. [PMID: 33911291 PMCID: PMC8061474 DOI: 10.4103/ijd.ijd_264_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Post-kala-azar dermal Leishmaniasis (PKDL) is one of the important neglected tropical diseases, which has a tremendous epidemiological significance, being the reservoir of kala-azar. Relapse and resistance to treatment along with the lack of a drug of choice and consensus treatment guideline pose a significant problem in the management of PKDL. The aim of this article was to review the available therapeutic options for PKDL, with special emphasis on their pharmaco-dynamics, pharmaco-kinetics, effectiveness, safety, tolerability, and cost factor. A comprehensive English language literature search was done for therapeutic options in PKDL across multiple databases (PubMed, EMBASE, MEDLINE, and Cochrane) for keywords (alone and in combination). MeSH as well as non-MeSH terms such as “Kala-azar,” “Leishmaniasis” AND “Treatment,” “Management,” “Antimony Sodium Gluconate,” “Meglumine Antimoniate,” “Amphotericin B,” “Paromomycin,” “Miltefosine” were taken into consideration. Among 576 relevant articles, 15 were deemed relevant to this review. These articles were evaluated using “Oxford Centre for Evidence-Based Medicine (OCEBM)” AND “strength of recommendation taxonomy” (SORT) with respect to the level of evidence and grade of recommendation. The review includes 15 studies. The use of sodium stibogluconate is being discouraged because of multiple documented reports of treatment failure. Liposomal amphotericin B is emerging as a favorable option, owing to its superiority in terms of effectiveness and safety profile. Miltesfosine is the drug of choice in India because of the ease of oral administration and minimal risk of toxicity. Isolated Paromomycin alone is not effective in PKDL; however, combination therapy with sodium stibogluconate is found to be safe and effective. Combination of amphotericin B and miltefosine is one of the excellent options. Immunotherapy with combination of alum-precipitated autoclaved Leishmania major (Alum/ALM) vaccine + Bacille Calmette-Gu´erin (BCG) has shown promising results. Kala-azar continues to haunt the tropical countries and PKDL being its reservoir is threatening its elimination. With the availability of drugs such as liposomal amphotericin B and miltefosine, apart from the advent of immunotherapy, the future of treatment of this condition looks promising.
Collapse
Affiliation(s)
- Adrija Datta
- Department of Dermatology, Institute of Post Graduate Medical Education and Research, Kamarhati, West Bengal, India
| | - Indrashis Podder
- Department of Dermatology, Venereology and Leprosy, College of Medicine and Sagore Dutta Hospital, Kamarhati, West Bengal, India
| | - Anupam Das
- Department of Dermatology, KPC Medical College and Hospital, Jadavpur, West Bengal, India
| | - Amrita Sil
- Department of Pharmacology, Rampurhat Government Medical College, Rampurhat, West Bengal, India
| | - Nilay Kanti Das
- Department of Dermatology, Bankura Sammilani Medical College, Bankura, West Bengal, India
| |
Collapse
|
3
|
Sabeti Azad M, Okuda M, Cyrenne M, Bourge M, Heck MP, Yoshizawa S, Fourmy D. Fluorescent Aminoglycoside Antibiotics and Methods for Accurately Monitoring Uptake by Bacteria. ACS Infect Dis 2020; 6:1008-1017. [PMID: 32195576 DOI: 10.1021/acsinfecdis.9b00421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Characterizing how multidrug-resistant bacteria circumvent the action of clinically used or novel antibiotics requires a detailed understanding of how the antibiotics interact with and cross bacterial membranes to accumulate in the cells and exert their action. When monitoring the interactions of drugs with bacteria, it remains challenging to differentiate functionally relevant internalized drug levels from nonspecific binding. Fluorescence is a method of choice for observing dynamics of biomolecules. In order to facilitate studies involving aminoglycoside antibiotics, we have generated fluorescently labeled aminoglycoside derivatives with uptake and bactericidal activities similar, albeit with a moderate loss, to those of the parent drug. The method combines fluorescence microscopy with fluorescence-activated cell sorting (FACS) using neomycin coupled to nonpermeable cyanine dyes. Fluorescence imaging allowed membrane-bound antibiotic to be distinguished from molecules in the cytoplasm. Patterns of uptake were assigned to different populations in the FACS analysis. Our study illustrates how fluorescent derivatives of an aminoglycoside enable a robust characterization of the three components of uptake: membrane binding, EDPI, and EDPII. Because EDPI levels are weak compared to the two other types of accumulation and critical for the action of these drugs, the three components of uptake must be taken into account separately when drawing conclusions about aminoglycoside function.
Collapse
Affiliation(s)
- Mahnaz Sabeti Azad
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Maho Okuda
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mélina Cyrenne
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mickael Bourge
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marie-Pierre Heck
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et de Marquage, 91191 Gif-sur-Yvette, France
| | - Satoko Yoshizawa
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Dominique Fourmy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Goyal A, Belardinelli R, Rodnina MV. Non-canonical Binding Site for Bacterial Initiation Factor 3 on the Large Ribosomal Subunit. Cell Rep 2018; 20:3113-3122. [PMID: 28954228 DOI: 10.1016/j.celrep.2017.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/25/2017] [Accepted: 09/03/2017] [Indexed: 01/01/2023] Open
Abstract
Canonical translation initiation in bacteria entails the assembly of the 30S initiation complex (IC), which binds the 50S subunit to form a 70S IC. IF3, a key initiation factor, is recruited to the 30S subunit at an early stage and is displaced from its primary binding site upon subunit joining. We employed four different FRET pairs to monitor IF3 relocation after 50S joining. IF3 moves away from the 30S subunit, IF1 and IF2, but can remain bound to the mature 70S IC. The secondary binding site is located on the 50S subunit in the vicinity of ribosomal protein L33. The interaction between IF3 and the 50S subunit is largely electrostatic with very high rates of IF3 binding and dissociation. The existence of the non-canonical binding site may help explain how IF3 participates in alternative initiation modes performed directly by the 70S ribosomes, such as initiation on leaderless mRNAs or re-initiation.
Collapse
Affiliation(s)
- Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Riccardo Belardinelli
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen 37077, Germany.
| |
Collapse
|
5
|
Pathak BK, Banerjee S, Mondal S, Chakraborty B, Sengupta J, Barat C. Unfolded protein exhibits antiassociation activity toward the 50S subunit facilitating 70S ribosome dissociation. FEBS J 2017; 284:3915-3930. [DOI: 10.1111/febs.14282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/05/2017] [Accepted: 09/26/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Bani K. Pathak
- Department of Biotechnology St Xavier's College KolkataIndia
- Structural Biology and Bio‐Informatics Division Indian Institute of Chemical Biology (Council of Scientific and Industrial Research) Kolkata India
| | | | - Surojit Mondal
- Department of Biotechnology St Xavier's College KolkataIndia
| | - Biprashekhar Chakraborty
- Structural Biology and Bio‐Informatics Division Indian Institute of Chemical Biology (Council of Scientific and Industrial Research) Kolkata India
| | - Jayati Sengupta
- Structural Biology and Bio‐Informatics Division Indian Institute of Chemical Biology (Council of Scientific and Industrial Research) Kolkata India
| | - Chandana Barat
- Department of Biotechnology St Xavier's College KolkataIndia
| |
Collapse
|
6
|
Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii. G3-GENES GENOMES GENETICS 2016; 6:4115-4125. [PMID: 27770025 PMCID: PMC5144980 DOI: 10.1534/g3.116.033035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs) has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins.
Collapse
|
7
|
In-cell SHAPE reveals that free 30S ribosome subunits are in the inactive state. Proc Natl Acad Sci U S A 2015; 112:2425-30. [PMID: 25675474 DOI: 10.1073/pnas.1411514112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It was shown decades ago that purified 30S ribosome subunits readily interconvert between "active" and "inactive" conformations in a switch that involves changes in the functionally important neck and decoding regions. However, the physiological significance of this conformational change had remained unknown. In exponentially growing Escherichia coli cells, RNA SHAPE probing revealed that 16S rRNA largely adopts the inactive conformation in stably assembled, mature 30S subunits and the active conformation in translating (70S) ribosomes. Inactive 30S subunits bind mRNA as efficiently as active subunits but initiate translation more slowly. Mutations that inhibited interconversion between states compromised translation in vivo. Binding by the small antibiotic paromomycin induced the inactive-to-active conversion, consistent with a low-energy barrier between the two states. Despite the small energetic barrier between states, but consistent with slow translation initiation and a functional role in vivo, interconversion involved large-scale changes in structure in the neck region that likely propagate across the 30S body via helix 44. These findings suggest the inactive state is a biologically relevant alternate conformation that regulates ribosome function as a conformational switch.
Collapse
|
8
|
Kurata S, Shen B, Liu JO, Takeuchi N, Kaji A, Kaji H. Possible steps of complete disassembly of post-termination complex by yeast eEF3 deduced from inhibition by translocation inhibitors. Nucleic Acids Res 2012; 41:264-76. [PMID: 23087377 PMCID: PMC3592416 DOI: 10.1093/nar/gks958] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ribosomes, after one round of translation, must be recycled so that the next round of translation can occur. Complete disassembly of post-termination ribosomal complex (PoTC) in yeast for the recycling consists of three reactions: release of tRNA, release of mRNA and splitting of ribosomes, catalyzed by eukaryotic elongation factor 3 (eEF3) and ATP. Here, we show that translocation inhibitors cycloheximide and lactimidomycin inhibited all three reactions. Cycloheximide is a non-competitive inhibitor of both eEF3 and ATP. The inhibition was observed regardless of the way PoTC was prepared with either release factors or puromycin. Paromomycin not only inhibited all three reactions but also re-associated yeast ribosomal subunits. On the other hand, sordarin or fusidic acid, when applied together with eEF2/GTP, specifically inhibited ribosome splitting without blocking of tRNA/mRNA release. From these inhibitor studies, we propose that, in accordance with eEF3’s known function in elongation, the release of tRNA via exit site occurs first, then mRNA is released, followed by the splitting of ribosomes during the disassembly of post-termination complexes catalyzed by eEF3 and ATP.
Collapse
Affiliation(s)
- Shinya Kurata
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
9
|
Singh N, Kumar M, Singh RK. Leishmaniasis: current status of available drugs and new potential drug targets. ASIAN PAC J TROP MED 2012; 5:485-97. [PMID: 22575984 DOI: 10.1016/s1995-7645(12)60084-4] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/15/2012] [Accepted: 04/15/2012] [Indexed: 02/06/2023] Open
Abstract
The control of Leishmania infection relies primarily on chemotherapy till date. Resistance to pentavalent antimonials, which have been the recommended drugs to treat cutaneous and visceral leishmaniasis, is now widespread in Indian subcontinents. New drug formulations like amphotericin B, its lipid formulations, and miltefosine have shown great efficacy to treat leishmaniasis but their high cost and therapeutic complications limit their usefulness. In addition, irregular and inappropriate uses of these second line drugs in endemic regions like state of Bihar, India threaten resistance development in the parasite. In context to the limited drug options and unavailability of either preventive or prophylactic candidates, there is a pressing need to develop true antileishmanial drugs to reduce the disease burden of this debilitating endemic disease. Notwithstanding significant progress of leishmanial research during last few decades, identification and characterization of novel drugs and drug targets are far from satisfactory. This review will initially describe current drug regimens and later will provide an overview on few important biochemical and enzymatic machineries that could be utilized as putative drug targets for generation of true antileishmanial drugs.
Collapse
Affiliation(s)
- Nisha Singh
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, India
| | | | | |
Collapse
|
10
|
Mathieson W, Kirkland S, Leonard R, Thomas GA. Antimicrobials and in vitro systems: antibiotics and antimycotics alter the proteome of MCF-7 cells in culture. J Cell Biochem 2011; 112:2170-8. [PMID: 21480367 DOI: 10.1002/jcb.23143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cell culture is widely used to study gene or protein changes in response to experimental conditions. The value of such experiments depends on stringent control and understanding of the in vitro environment. Despite well-documented evidence describing toxic effects in the clinical setting, antibiotics and antimycotics are routinely used in cell culture without regard for their potential toxicity. We cultured MCF-7 breast cancer cells in the presence/absence of antibiotics (penicillin/streptomycin) and/or the antimycotic amphotericin B. Differential protein expression was assessed using 2D-DIGE and MALDI-MS/MS. Antibiotics caused 8/488 spots (1.3% of the protein) to be generally down-regulated. The affected proteins were principally chaperones and cytoskeletal. In marked contrast, amphotericin B induced a more dramatic response, with 33/488 spots (9.5% of the total protein) generally up-regulated. The proteins were mostly involved in chaperoning and protein turnover. Combining antibiotics and amphotericin B had little overall effect, with only one (unidentified) protein being up-regulated. As this study identifies differential protein expression attributable to antibiotics/antimycotics, we urge caution when comparing and interpreting proteomic results from different laboratories where antibiotics/antimycotics have been used. We conclude that as antibiotics and antimycotics alter the proteome of cultured cells in markedly different ways their use should be avoided where possible.
Collapse
Affiliation(s)
- William Mathieson
- Division of Surgery, Department of Surgery and Cancer, Imperial College London, DuCane Road, London W12 0NN, UK.
| | | | | | | |
Collapse
|
11
|
Chawla B, Jhingran A, Panigrahi A, Stuart KD, Madhubala R. Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin -susceptible -resistant Leishmania donovani. PLoS One 2011; 6:e26660. [PMID: 22046323 PMCID: PMC3203147 DOI: 10.1371/journal.pone.0026660] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/30/2011] [Indexed: 02/03/2023] Open
Abstract
Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis (VL) and is responsible for significant mortality and morbidity. Increasing resistance towards antimonial drugs poses a great challenge in chemotherapy of VL. Paromomycin is an aminoglycosidic antibiotic and is one of the drugs currently being used in the chemotherapy of cutaneous and visceral leishmaniasis. To understand the mode of action of this antibiotic at the molecular level, we have investigated the global proteome differences between the wild type AG83 strain and a paromomycin resistant (PRr) strain of L. donovani. Stable isotope labeling of amino acids in cell culture (SILAC) followed by quantitative mass spectrometry of the wild type AG83 strain and the paromomycin resistant (PRr) strain identified a total of 226 proteins at ≥95% confidence. Data analysis revealed upregulation of 29 proteins and down-regulation of 21 proteins in the PRr strain. Comparative proteomic analysis of the wild type and the paromomycin resistant strains showed upregulation of the ribosomal proteins in the resistant strain indicating role in translation. Elevated levels of glycolytic enzymes and stress proteins were also observed in the PRr strain. Most importantly, we observed upregulation of proteins that may have a role in intracellular survival and vesicular trafficking in the PRr strain. Furthermore, ultra-structural analysis by electron microscopy demonstrated increased number of vesicular vacuoles in PRr strain when compared to the wild-type strain. Drug affinity pull-down assay followed by mass spectrometery identified proteins in L. donovani wild type strain that were specifically and covalently bound to paromomycin. These results provide the first comprehensive insight into the mode of action and underlying mechanism of resistance to paromomycin in Leishmania donovani.
Collapse
Affiliation(s)
- Bhavna Chawla
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Anupam Jhingran
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Rentala Madhubala
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
12
|
Zhang Y, Inouye M. RatA (YfjG), an Escherichia coli toxin, inhibits 70S ribosome association to block translation initiation. Mol Microbiol 2011; 79:1418-29. [PMID: 21323758 DOI: 10.1111/j.1365-2958.2010.07506.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RatA (YfjG) is a toxin encoded by the ratA-ratB (yfjG-yfjF) operon on the Escherichia coli genome. Induction of RatA led to the inhibition of protein synthesis, while DNA and RNA synthesis was not affected. The stability of mRNAs was also unchanged as judged by in vivo primer extension experiments and by Northern blotting analysis. The ribosome profile of the cells overexpressing RatA showed that 70S ribosomes as well as polysomes significantly decreased with concomitant increase of 50S and 30S subunits. The addition of purified RatA to a cell-free system inhibited the formation of 70S ribosomes even in the presence of 6 mM Mg(2+) . RatA was specifically associated with 50S subunits, indicating that it binds to 50S subunits to block its association with 30S subunits leading to the inhibition of formation of 70S ribosomes. However, RatA did not cause dissociation of 70S ribosomes and its anti-association activity was blocked by paromomycin, an inhibitor for IF3, an essential initiation factor, having 21% sequence homology with RatA. Here we demonstrate that RatA is a new E. coli toxin, which effectively blocks the translation initiation step. We propose that this toxin of previously unknown function be renamed as RatA (Ribosome association toxin A).
Collapse
Affiliation(s)
- Yonglong Zhang
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry, Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
13
|
Houghton JL, Green KD, Chen W, Garneau-Tsodikova S. The future of aminoglycosides: the end or renaissance? Chembiochem 2010; 11:880-902. [PMID: 20397253 DOI: 10.1002/cbic.200900779] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Indexed: 11/05/2022]
Abstract
Although aminoglycosides have been used as antibacterials for decades, their use has been hindered by their inherent toxicity and the resistance that has emerged to these compounds. It seems that such issues have relegated a formerly front-line class of antimicrobials to the proverbial back shelf. However, recent advances have demonstrated that novel aminoglycosides have a potential to overcome resistance as well as to be used to treat HIV-1 and even human genetic disorders, with abrogated toxicity. It is not the end for aminoglycosides, but rather, the challenges faced by researchers have led to ingenuity and a change in how we view this class of compounds, a renaissance.
Collapse
Affiliation(s)
- Jacob L Houghton
- Department of Medicinal Chemistry in the College of Pharmacy, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
14
|
Scheunemann AE, Graham WD, Vendeix FAP, Agris PF. Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA. Nucleic Acids Res 2010; 38:3094-105. [PMID: 20110260 PMCID: PMC2875026 DOI: 10.1093/nar/gkp1253] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aminoglycosides antibiotics negate dissociation and recycling of the bacterial ribosome’s subunits by binding to Helix 69 (H69) of 23S rRNA. The differential binding of various aminoglycosides to the chemically synthesized terminal domains of the Escherichia coli and human H69 has been characterized using spectroscopy, calorimetry and NMR. The unmodified E. coli H69 hairpin exhibited a significantly higher affinity for neomycin B and tobramycin than for paromomycin (Kds = 0.3 ± 0.1, 0.2 ± 0.2 and 5.4 ± 1.1 µM, respectively). The binding of streptomycin was too weak to assess. In contrast to the E. coli H69, the human 28S rRNA H69 had a considerable decrease in affinity for the antibiotics, an important validation of the bacterial target. The three conserved pseudouridine modifications (Ψ1911, Ψ1915, Ψ1917) occurring in the loop of the E. coli H69 affected the dissociation constant, but not the stoichiometry for the binding of paromomycin (Kd = 2.6 ± 0.1 µM). G1906 and G1921, observed by NMR spectrometry, figured predominantly in the aminoglycoside binding to H69. The higher affinity of the E. coli H69 for neomycin B and tobramycin, as compared to paromomycin and streptomycin, indicates differences in the efficacy of the aminoglycosides.
Collapse
Affiliation(s)
- Ann E Scheunemann
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | | | | | |
Collapse
|
15
|
Długosz M, Trylska J. Aminoglycoside Association Pathways with the 30S Ribosomal Subunit. J Phys Chem B 2009; 113:7322-30. [DOI: 10.1021/jp8112914] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maciej Długosz
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Joanna Trylska
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
16
|
A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrob Agents Chemother 2008; 53:1019-26. [PMID: 19104019 DOI: 10.1128/aac.00388-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified a novel paromomycin resistance-associated mutation in rpsL, caused by the insertion of a glycine residue at position 92, in Streptomyces coelicolor ribosomal protein S12. This insertion mutation (GI92) resulted in a 20-fold increase in the paromomycin resistance level. In combination with another S12 mutation, K88E, the GI92 mutation markedly enhanced the production of the blue-colored polyketide antibiotic actinorhodin and the red-colored antibiotic undecylprodigiosin. The gene replacement experiments demonstrated that the K88E-GI92 double mutation in the rpsL gene was responsible for the marked enhancement of antibiotic production observed. Ribosomes with the K88E-GI92 double mutation were characterized by error restrictiveness (i.e., hyperaccuracy). Using a cell-free translation system, we found that mutant ribosomes harboring the K88E-GI92 double mutation but not ribosomes harboring the GI92 mutation alone displayed sixfold greater translation activity relative to that of the wild-type ribosomes at late growth phase. This resulted in the overproduction of actinorhodin, caused by the transcriptional activation of the pathway-specific regulatory gene actII-orf4, possibly due to the increased translation of transcripts encoding activators of actII-orf4. The mutant with the K88E-GI92 double mutation accumulated a high level of ribosome recycling factor at late stationary phase, underlying the high level of protein synthesis activity observed.
Collapse
|
17
|
Hirokawa G, Iwakura N, Kaji A, Kaji H. The role of GTP in transient splitting of 70S ribosomes by RRF (ribosome recycling factor) and EF-G (elongation factor G). Nucleic Acids Res 2008; 36:6676-87. [PMID: 18948280 PMCID: PMC2588517 DOI: 10.1093/nar/gkn647] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ribosome recycling factor (RRF), elongation factor G (EF-G) and GTP split 70S ribosomes into subunits. Here, we demonstrated that the splitting was transient and the exhaustion of GTP resulted in re-association of the split subunits into 70S ribosomes unless IF3 (initiation factor 3) was present. However, the splitting was observed with sucrose density gradient centrifugation (SDGC) without IF3 if RRF, EF-G and GTP were present in the SDGC buffer. The splitting of 70S ribosomes causes the decrease of light scattering by ribosomes. Kinetic constants obtained from the light scattering studies are sufficient to account for the splitting of 70S ribosomes by RRF and EF-G/GTP during the lag phase for activation of ribosomes for the log phase. As the amount of 70S ribosomes increased, more RRF, EF-G and GTP were necessary to split 70S ribosomes. In the presence of a physiological amount of polyamines, GTP and factors, even 0.6 microM 70S ribosomes (12 times higher than the 70S ribosomes for routine assay) were split. Spermidine (2 mM) completely inhibited anti-association activity of IF3, and the RRF/EF-G/GTP-dependent splitting of 70S ribosomes.
Collapse
Affiliation(s)
- Go Hirokawa
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
18
|
Demeshkina N, Hirokawa G, Kaji A, Kaji H. Novel activity of eukaryotic translocase, eEF2: dissociation of the 80S ribosome into subunits with ATP but not with GTP. Nucleic Acids Res 2007; 35:4597-607. [PMID: 17586816 PMCID: PMC1950535 DOI: 10.1093/nar/gkm468] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ribosomes must dissociate into subunits in order to begin protein biosynthesis. The enzymes that catalyze this fundamental process in eukaryotes remained unknown. Here, we demonstrate that eukaryotic translocase, eEF2, which catalyzes peptide elongation in the presence of GTP, dissociates yeast 80S ribosomes into subunits in the presence of ATP but not GTP or other nucleoside triphosphates. Dissociation was detected by light scattering or ultracentrifugation after the split subunits were stabilized. ATP was hydrolyzed during the eEF2-dependent dissociation, while a non-hydrolyzable analog of ATP was inactive in ribosome splitting by eEF2. GTP inhibited not only ATP hydrolysis but also dissociation. Sordarin, a fungal eEF2 inhibitor, averted the splitting but stimulated ATP hydrolysis. Another elongation inhibitor, cycloheximide, also prevented eEF2/ATP-dependent splitting, while the inhibitory effect of fusidic acid on the splitting was nominal. Upon dissociation of the 80S ribosome, eEF2 was found on the subunits. We propose that the dissociation activity of eEF2/ATP plays a role in mobilizing 80S ribosomes for protein synthesis during the shift up of physiological conditions.
Collapse
Affiliation(s)
- Natalia Demeshkina
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Go Hirokawa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akira Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hideko Kaji
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107 and Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- *To whom correspondence should be addressed.+1 215 503 6547+1 215 923 7343
| |
Collapse
|