1
|
Wallace RL, Dash KM, Araújo TQ, Walsh EJ, Das S, Hochberg R. Ultrastructural characterization of the putative defensive glands (warts) in the sessile, colonial rotifer Sinantherina socialis (Gnesiotrocha; Flosculariidae). ZOOL ANZ 2023; 304:10-20. [PMID: 37484813 PMCID: PMC10361403 DOI: 10.1016/j.jcz.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Female Sinantherina socialis are freshwater, sessile, colonial rotifers that possess two pairs of distinctive glands (warts) located below the corona. Previous studies demonstrated that colonies are unpalatable to many invertebrate and vertebrate predators; those authors suggested that the warts were a possible source of a chemical deterrent to predation. Here we explore wart ultrastructure and cytochemisty to determine whether the warts function as exocrine glands and if their contents display any allomone-like chemistry, respectively. Externally, the warts appear as elevated bulges without pores. Internally, the warts are specialized regions of the integumental syncytium and therefore acellular. The lipid stain Nile Red labels all four warts. Two lipid membrane probes (sphingomyelin and phosphatidylinositol) also bind the warts and may be staining internal secretion vesicle membranes. In fact, wart ultrastructure is defined by hundreds of membrane-bound secretion vesicles packed tightly together. The vesicles are mostly electron-lucent and crowded into a well-defined cytoplasmic space. The cytoplasm also contains abundant ribosomes, rough endoplasmic reticulum, mitochondria, and Golgi, but nuclei are generally positioned peripheral to the packed vesicles. Absence of muscles around the warts or any signs of direct innervation suggests expulsion of gland contents is forced by general body contraction. A single specimen with 'empty' warts implies that secretions are released en masse from all glands simultaneously. The identity of the chemical secretion remains to be determined, but the lack of osmium and uranyl acetate staining suggests a low abundance or absence of phenols, unsaturated lipids, or NH2 and -COOH groups. This absence, combined with the positive Nile Red staining, is interpreted as evidence that vesicles contain saturated fatty acids such as lactones that are unpalatable to predators.
Collapse
Affiliation(s)
| | | | | | | | | | - Rick Hochberg
- University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
2
|
Kunduri G, Acharya U, Acharya JK. Lipid Polarization during Cytokinesis. Cells 2022; 11:3977. [PMID: 36552741 PMCID: PMC9776629 DOI: 10.3390/cells11243977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The plasma membrane of eukaryotic cells is composed of a large number of lipid species that are laterally segregated into functional domains as well as asymmetrically distributed between the outer and inner leaflets. Additionally, the spatial distribution and organization of these lipids dramatically change in response to various cellular states, such as cell division, differentiation, and apoptosis. Division of one cell into two daughter cells is one of the most fundamental requirements for the sustenance of growth in all living organisms. The successful completion of cytokinesis, the final stage of cell division, is critically dependent on the spatial distribution and organization of specific lipids. In this review, we discuss the properties of various lipid species associated with cytokinesis and the mechanisms involved in their polarization, including forward trafficking, endocytic recycling, local synthesis, and cortical flow models. The differences in lipid species requirements and distribution in mitotic vs. male meiotic cells will be discussed. We will concentrate on sphingolipids and phosphatidylinositols because their transbilayer organization and movement may be linked via the cytoskeleton and thus critically regulate various steps of cytokinesis.
Collapse
Affiliation(s)
- Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | |
Collapse
|
3
|
Multimodal regulation of encystation in Giardia duodenalis revealed by deep proteomics. Int J Parasitol 2021; 51:809-824. [PMID: 34331939 DOI: 10.1016/j.ijpara.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/24/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
Cyst formation in the parasitic protist Giardia duodenalis is critical to its transmission. Existing proteomic data quantifies only 17% of coding genes transcribed during encystation and does not cover the complete process from trophozoite to mature cyst. Using high-resolution mass spectrometry, we have quantified proteomic changes across encystation and compared this with published transcriptomic data. We reproducibly identified 3863 (64.5% of Giardia proteins) and quantified 3382 proteins (56.5% of Giardia proteins) over standard trophozoite growth (TY), during low-bile encystation priming (LB), 16 h into encystation (EC), and at cyst maturation (C). This work provides the first known expanded observation of encystation at the proteomic level and triples the coverage of previous encystation proteomes. One-third (1169 proteins) of the quantified proteome is differentially expressed in the mature cyst relative to the trophozoite, including proteasomal machinery, metabolic pathways, and secretory proteins. Changes in lipid metabolism indicated a shift in lipid species dependency during encystation. Consistent with this, we identified the first, putative lipid transporters in this species, representing the steroidogenic acute regulatory protein-related lipid transfer (StARkin), oxysterol binding protein related protein (ORP/Osh) and glycosphingolipid transfer protein (GLTP) families, and follow their differential expression over cyst formation. Lastly, we undertook correlation analyses of the transcriptome and proteome of trophozoites and cysts, and found evidence of post-transcriptional regulation of key protein classes (RNA binding proteins) and stage-specific genes (encystation markers) implicating translation-repression in encystation. We provide the most extensive proteomic analysis of encystation in Giardia to date and the first known exploration across its complete duration. This work identifies encystation as highly coordinated, involving major changes in proteostasis, metabolism and membrane dynamics, and indicates a potential role for post-transcriptional regulation, mediated through RNA-binding proteins. Together our work provides a valuable resource for Giardia research and the development of transmission-blocking anti-giardials.
Collapse
|
4
|
Lagunas-Rangel FA, Yee J, Bermúdez-Cruz RM. An update on cell division of Giardia duodenalis trophozoites. Microbiol Res 2021; 250:126807. [PMID: 34130067 DOI: 10.1016/j.micres.2021.126807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Giardia duodenalis is a flagellated protozoan that is responsible for many cases of diarrheal disease worldwide and is characterized by its great divergence from the model organisms commonly used in studies of basic cellular processes. The life cycle of Giardia involves an infectious cyst form and a proliferative and mobile trophozoite form. Each Giardia trophozoite has two nuclei and a complex microtubule cytoskeleton that consists of eight flagellar axonemes, basal bodies, the adhesive disc, the funis and the median body. Since the success of Giardia infecting other organisms depends on its ability to divide and proliferate efficiently, Giardia must coordinate its cell division to ensure the duplication and partitioning of both nuclei and the multiple cytoskeletal structures. The purpose of this review is to summarize current knowledge about cell division and its regulation in this protist.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico; Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Janet Yee
- Department of Biology, Biochemistry and Molecular Biology Program, Trent University, Peterborough, ON, Canada
| | - Rosa María Bermúdez-Cruz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico.
| |
Collapse
|
5
|
Abstract
Outbreaks of trichinellosis caused by Trichinella papuae have been reported in South-East Asia. Mebendazole and thiabendazole are the treatments of choice for trichinellosis; however, both drugs result in significant side effects and are less effective for muscle-stage larvae (L1). An alternative therapeutic agent is needed to improve treatment. Information on lipid composition and metabolic pathways may bridge gaps in our knowledge and lead to new antiparasitics. The T. papuae L1 lipidome was analysed using a mass spectrometry-based approach, and 403 lipid components were identified. Eight lipid classes were found and glycerophospholipids were dominant, corresponding to 63% of total lipids, of which the glycerolipid DG (20:1[11Z]/22:4[7Z,10Z,13Z,16Z]/0:0) (iso2) was the most abundant. Overall, 57% of T. papuae lipids were absent in humans; therefore, lipid metabolism may be dissimilar in the two species. Proteins involved T. papuae lipid metabolism were explored using bioinformatics. We found that 4-hydroxybutyrate coenzyme A transferase, uncharacterized protein (A0A0V1MCB5) and ML-domain-containing protein are not present in humans. T. papuae glycerophospholipid metabolic and phosphatidylinositol dephosphorylation processes contain several proteins that are dissimilar to those in humans. These findings provide insights into T. papuae lipid composition and metabolism, which may facilitate the development of novel trichinellosis treatments.
Collapse
|
6
|
Hammarton TC. Who Needs a Contractile Actomyosin Ring? The Plethora of Alternative Ways to Divide a Protozoan Parasite. Front Cell Infect Microbiol 2019; 9:397. [PMID: 31824870 PMCID: PMC6881465 DOI: 10.3389/fcimb.2019.00397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/06/2019] [Indexed: 01/21/2023] Open
Abstract
Cytokinesis, or the division of the cytoplasm, following the end of mitosis or meiosis, is accomplished in animal cells, fungi, and amoebae, by the constriction of an actomyosin contractile ring, comprising filamentous actin, myosin II, and associated proteins. However, despite this being the best-studied mode of cytokinesis, it is restricted to the Opisthokonta and Amoebozoa, since members of other evolutionary supergroups lack myosin II and must, therefore, employ different mechanisms. In particular, parasitic protozoa, many of which cause significant morbidity and mortality in humans and animals as well as considerable economic losses, employ a wide diversity of mechanisms to divide, few, if any, of which involve myosin II. In some cases, cell division is not only myosin II-independent, but actin-independent too. Mechanisms employed range from primitive mechanical cell rupture (cytofission), to motility- and/or microtubule remodeling-dependent mechanisms, to budding involving the constriction of divergent contractile rings, to hijacking host cell division machinery, with some species able to utilize multiple mechanisms. Here, I review current knowledge of cytokinesis mechanisms and their molecular control in mammalian-infective parasitic protozoa from the Excavata, Alveolata, and Amoebozoa supergroups, highlighting their often-underappreciated diversity and complexity. Billions of people and animals across the world are at risk from these pathogens, for which vaccines and/or optimal treatments are often not available. Exploiting the divergent cell division machinery in these parasites may provide new avenues for the treatment of protozoal disease.
Collapse
Affiliation(s)
- Tansy C Hammarton
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Pham JK, Nosala C, Scott EY, Nguyen KF, Hagen KD, Starcevich HN, Dawson SC. Transcriptomic Profiling of High-Density Giardia Foci Encysting in the Murine Proximal Intestine. Front Cell Infect Microbiol 2017; 7:227. [PMID: 28620589 PMCID: PMC5450421 DOI: 10.3389/fcimb.2017.00227] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Giardia is a highly prevalent, understudied protistan parasite causing significant diarrheal disease worldwide. Its life cycle consists of two stages: infectious cysts ingested from contaminated food or water sources, and motile trophozoites that colonize and attach to the gut epithelium, later encysting to form new cysts that are excreted into the environment. Current understanding of parasite physiology in the host is largely inferred from transcriptomic studies using Giardia grown axenically or in co-culture with mammalian cell lines. The dearth of information about the diversity of host-parasite interactions occurring within distinct regions of the gastrointestinal tract has been exacerbated by a lack of methods to directly and non-invasively interrogate disease progression and parasite physiology in live animal hosts. By visualizing Giardia infections in the mouse gastrointestinal tract using bioluminescent imaging (BLI) of tagged parasites, we recently showed that parasites colonize the gut in high-density foci. Encystation is initiated in these foci throughout the entire course of infection, yet how the physiology of parasites within high-density foci in the host gut differs from that of cells in laboratory culture is unclear. Here we use BLI to precisely select parasite samples from high-density foci in the proximal intestine to interrogate in vivo Giardia gene expression in the host. Relative to axenic culture, we noted significantly higher expression (>10-fold) of oxidative stress, membrane transporter, and metabolic and structural genes associated with encystation in the high-density foci. These differences in gene expression within parasite foci in the host may reflect physiological changes associated with high-density growth in localized regions of the gut. We also identified and verified six novel cyst-specific proteins, including new components of the cyst wall that were highly expressed in these foci. Our in vivo transcriptome data support an emerging view that parasites encyst early in localized regions in the gut, possibly as a consequence of nutrient limitation, and also impact local metabolism and physiology.
Collapse
Affiliation(s)
- Jonathan K Pham
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Christopher Nosala
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Erica Y Scott
- Department of Animal Science, University of California, DavisDavis, CA, United States
| | - Kristofer F Nguyen
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Kari D Hagen
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Hannah N Starcevich
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| |
Collapse
|
8
|
Rout S, Zumthor JP, Schraner EM, Faso C, Hehl AB. An Interactome-Centered Protein Discovery Approach Reveals Novel Components Involved in Mitosome Function and Homeostasis in Giardia lamblia. PLoS Pathog 2016; 12:e1006036. [PMID: 27926928 PMCID: PMC5142787 DOI: 10.1371/journal.ppat.1006036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/01/2016] [Indexed: 12/23/2022] Open
Abstract
Protozoan parasites of the genus Giardia are highly prevalent globally, and infect a wide range of vertebrate hosts including humans, with proliferation and pathology restricted to the small intestine. This narrow ecological specialization entailed extensive structural and functional adaptations during host-parasite co-evolution. An example is the streamlined mitosomal proteome with iron-sulphur protein maturation as the only biochemical pathway clearly associated with this organelle. Here, we applied techniques in microscopy and protein biochemistry to investigate the mitosomal membrane proteome in association to mitosome homeostasis. Live cell imaging revealed a highly immobilized array of 30–40 physically distinct mitosome organelles in trophozoites. We provide direct evidence for the single giardial dynamin-related protein as a contributor to mitosomal morphogenesis and homeostasis. To overcome inherent limitations that have hitherto severely hampered the characterization of these unique organelles we applied a novel interaction-based proteome discovery strategy using forward and reverse protein co-immunoprecipitation. This allowed generation of organelle proteome data strictly in a protein-protein interaction context. We built an initial Tom40-centered outer membrane interactome by co-immunoprecipitation experiments, identifying small GTPases, factors with dual mitosome and endoplasmic reticulum (ER) distribution, as well as novel matrix proteins. Through iterative expansion of this protein-protein interaction network, we were able to i) significantly extend this interaction-based mitosomal proteome to include other membrane-associated proteins with possible roles in mitosome morphogenesis and connection to other subcellular compartments, and ii) identify novel matrix proteins which may shed light on mitosome-associated metabolic functions other than Fe-S cluster biogenesis. Functional analysis also revealed conceptual conservation of protein translocation despite the massive divergence and reduction of protein import machinery in Giardia mitosomes. Organelles with endosymbiotic origin are present in virtually all extant eukaryotes and have undergone considerable remodeling during > 1 billion years of evolution. Highly diverged organelles such as mitosomes or plastids in some parasitic protozoa are the product of extensive secondary reduction. They are sufficiently unique to generate interest as targets for pharmacological intervention, in addition to providing a rich ground for evolutionary cell biologists. The so-called mitochondria-related organelles (MROs) comprise mitosomes and hydrogenosomes, with the former having lost any role in energy metabolism along with the organelle genome. The mitosomes of the intestinal pathogen Giardia lamblia are the most highly reduced MROs known and have proven difficult to investigate because of their extreme divergence and their unique biophysical properties. Here, we implemented a novel strategy aimed at systematic analysis of the organelle proteome by iterative expansion of a protein-protein interaction network. We combined serial forward and reverse co-immunoprecipitations with mass spectrometry analysis, data mining, and validation by subcellular localization and/or functional analysis to generate an interactome network centered on a giardial Tom40 homolog. This iterative ab initio proteome reconstruction provided protein-protein interaction data in addition to identifying novel organelle proteins and functions. Building on this data we generated information on organelle replication, mitosome morphogenesis and organelle dynamics in living cells.
Collapse
Affiliation(s)
- Samuel Rout
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
| | - Jon Paulin Zumthor
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
| | | | - Carmen Faso
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
- * E-mail: (ABH); (CF)
| | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
- * E-mail: (ABH); (CF)
| |
Collapse
|
9
|
Sphingolipids, Lipid Rafts, and Giardial Encystation: The Show Must Go On. CURRENT TROPICAL MEDICINE REPORTS 2015; 2:136-143. [PMID: 26587369 DOI: 10.1007/s40475-015-0052-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sphingolipids are sphingosine-based phospholipids, which are present in the plasma and endomembranes of many eukaryotic cells. These lipids are involved in various cellular functions, including cell growth, differentiation, and apoptosis. In addition, sphingolipid and cholesterol-enriched membrane microdomains (also called "lipid rafts") contain a set of proteins and lipids, which take part in the signaling process in response to intra- or extracellular stimuli. Recent findings suggest that sphingolipids, especially glucosylceramide, play a critical role in inducing encystation and maintaining the cyst viability in Giardia. Similarly, the assembly/disassembly of lipid rafts modulates the encystation and cyst production of this ubiquitous enteric parasite. In this review article, we discuss the overall progress in the field and examine whether sphingolipids and lipid rafts can be used as novel targets for designing therapies to control infection by Giardia, which is rampant in developing countries, where children are especially vulnerable.
Collapse
|
10
|
Einarsson E, Svärd SG. Encystation of Giardia intestinalis—a Journey from the Duodenum to the Colon. CURRENT TROPICAL MEDICINE REPORTS 2015. [DOI: 10.1007/s40475-015-0048-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Giardia intestinalis incorporates heme into cytosolic cytochrome b₅. EUKARYOTIC CELL 2013; 13:231-9. [PMID: 24297440 DOI: 10.1128/ec.00200-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The anaerobic intestinal pathogen Giardia intestinalis does not possess enzymes for heme synthesis, and it also lacks the typical set of hemoproteins that are involved in mitochondrial respiration and cellular oxygen stress management. Nevertheless, G. intestinalis may require heme for the function of particular hemoproteins, such as cytochrome b5 (cytb5). We have analyzed the sequences of eukaryotic cytb5 proteins and identified three distinct cytb5 groups: group I, which consists of C-tail membrane-anchored cytb5 proteins; group II, which includes soluble cytb5 proteins; and group III, which comprises the fungal cytb5 proteins. The majority of eukaryotes possess both group I and II cytb5 proteins, whereas three Giardia paralogs belong to group II. We have identified a fourth Giardia cytb5 paralog (gCYTb5-IV) that is rather divergent and possesses an unusual 134-residue N-terminal extension. Recombinant Giardia cytb5 proteins, including gCYTb5-IV, were expressed in Escherichia coli and exhibited characteristic UV-visible spectra that corresponded to heme-loaded cytb5 proteins. The expression of the recombinant gCYTb5-IV in G. intestinalis resulted in the increased import of extracellular heme and its incorporation into the protein, whereas this effect was not observed when gCYTb5-IV containing a mutated heme-binding site was expressed. The electrons for Giardia cytb5 proteins may be provided by the NADPH-dependent Tah18-like oxidoreductase GiOR-1. Therefore, GiOR-1 and cytb5 may constitute a novel redox system in G. intestinalis. To our knowledge, G. intestinalis is the first anaerobic eukaryote in which the presence of heme has been directly demonstrated.
Collapse
|
12
|
Mendez TL, De Chatterjee A, Duarte TT, Gazos-Lopes F, Robles-Martinez L, Roy D, Sun J, Maldonado RA, Roychowdhury S, Almeida IC, Das S. Glucosylceramide transferase activity is critical for encystation and viable cyst production by an intestinal protozoan, Giardia lamblia. J Biol Chem 2013; 288:16747-16760. [PMID: 23589290 DOI: 10.1074/jbc.m112.438416] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The production of viable cysts by Giardia is essential for its survival in the environment and for spreading the infection via contaminated food and water. The hallmark of cyst production (also known as encystation) is the biogenesis of encystation-specific vesicles (ESVs) that transport cyst wall proteins to the plasma membrane of the trophozoite before laying down the protective cyst wall. However, the molecules that regulate ESV biogenesis and maintain cyst viability have never before been identified. Here, we report that giardial glucosylceramide transferase-1 (gGlcT1), an enzyme of sphingolipid biosynthesis, plays a key role in ESV biogenesis and maintaining cyst viability. We find that overexpression of this enzyme induced the formation of aggregated/enlarged ESVs and generated clustered cysts with reduced viability. The silencing of gGlcT1 synthesis by antisense morpholino oligonucleotide abolished ESV production and generated mostly nonviable cysts. Interestingly, when gGlcT1-overexpressed Giardia was transfected with anti-gGlcT1 morpholino, the enzyme activity, vesicle biogenesis, and cyst viability returned to normal, suggesting that the regulated expression of gGlcT1 is important for encystation and viable cyst production. Furthermore, the overexpression of gGlcT1 increased the influx of membrane lipids and fatty acids without altering the fluidity of plasma membranes, indicating that the expression of gGlcT1 activity is linked to lipid internalization and maintaining the overall lipid balance in this parasite. Taken together, our results suggest that gGlcT1 is a key player of ESV biogenesis and cyst viability and therefore could be targeted for developing new anti-giardial therapies.
Collapse
Affiliation(s)
- Tavis L Mendez
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Atasi De Chatterjee
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Trevor T Duarte
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Felipe Gazos-Lopes
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Leobarda Robles-Martinez
- From Infectious Disease and Immunology; Neuroscience and Metabolic Disorder Clusters, Border Biomedical Research Center, El Paso, Texas 79968-5808
| | - Debarshi Roy
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Jianjun Sun
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Rosa A Maldonado
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Sukla Roychowdhury
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808; Neuroscience and Metabolic Disorder Clusters, Border Biomedical Research Center, El Paso, Texas 79968-5808
| | - Igor C Almeida
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Siddhartha Das
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808.
| |
Collapse
|
13
|
Atilla-Gokcumen GE, Bedigian AV, Sasse S, Eggert US. Inhibition of glycosphingolipid biosynthesis induces cytokinesis failure. J Am Chem Soc 2011; 133:10010-3. [PMID: 21668028 PMCID: PMC3131740 DOI: 10.1021/ja202804b] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although cells undergo dramatic shape changes during cytokinesis, the role of the plasma membrane and lipids is poorly understood. We report that inactivation of glucosyl ceramide synthase (GCS), either by RNAi or with the small molecule PPMP, causes failure of cleavage furrow ingression. Using mass-spectrometry-based global lipid profiling, we identify individual lipids that are enhanced or depleted due to GCS inhibition. We show that GCS inhibition results in the mislocalization of actin and the ERM proteins, key cytoskeletal proteins that connect the plasma membrane to the actin cortex. Our data suggest that ceramides participate in mediating the interactions between the membrane and the cortex.
Collapse
Affiliation(s)
- G. E. Atilla-Gokcumen
- Dana-Farber Cancer Institute and Dept. of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - A. V. Bedigian
- Dana-Farber Cancer Institute and Dept. of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - S. Sasse
- Dana-Farber Cancer Institute and Dept. of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
- Westfälische Wilhelms-University Münster, Institute for Neurobiology, Münster, Germany
| | - U. S. Eggert
- Dana-Farber Cancer Institute and Dept. of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
- Randall Division of Cell and Molecular Biophysics, King’s College London, London SE1 1UL, England, UK
| |
Collapse
|
14
|
Abstract
Giardia lamblia, a protozoan parasite, infects a wide variety of vertebrates, including humans. Studies indicate that this anaerobic protist possesses a limited ability to synthesize lipid molecules de novo and depends on supplies from its environment for growth and differentiation. It has been suggested that most lipids and fatty acids are taken up by endocytic and non-endocytic pathways and are used by Giardia for energy production and membrane/organelle biosynthesis. The purpose of this article is to provide an update on recent progress in the field of lipid research of this parasite and the validation of lipid metabolic pathways through recent genomic information. Based on current cellular, biochemical and genomic data, a comprehensive pathway has been proposed to facilitate our understanding of lipid and fatty acid metabolism/syntheses in this waterborne pathogen. We envision that the current review will be helpful in identifying targets from the pathways that could be used to design novel therapies to control giardiasis and related diseases.
Collapse
|
15
|
Stefanić S, Spycher C, Morf L, Fabriàs G, Casas J, Schraner E, Wild P, Hehl AB, Sonda S. Glucosylceramide synthesis inhibition affects cell cycle progression, membrane trafficking, and stage differentiation in Giardia lamblia. J Lipid Res 2010; 51:2527-45. [PMID: 20335568 DOI: 10.1194/jlr.m003392] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Synthesis of glucosylceramide via glucosylceramide synthase (GCS) is a crucial event in higher eukaryotes, both for the production of complex glycosphingolipids and for regulating cellular levels of ceramide, a potent antiproliferative second messenger. In this study, we explored the dependence of the early branching eukaryote Giardia lamblia on GCS activity. Biochemical analyses revealed that the parasite has a GCS located in endoplasmic reticulum (ER) membranes that is active in proliferating and encysting trophozoites. Pharmacological inhibition of GCS induced aberrant cell division, characterized by arrest of cytokinesis, incomplete cleavage furrow formation, and consequent block of replication. Importantly, we showed that increased ceramide levels were responsible for the cytokinesis arrest. In addition, GCS inhibition resulted in prominent ultrastructural abnormalities, including accumulation of cytosolic vesicles, enlarged lysosomes, and clathrin disorganization. Moreover, anterograde trafficking of the encystations-specific protein CWP1 was severely compromised and resulted in inhibition of stage differentiation. Our results reveal novel aspects of lipid metabolism in G. lamblia and specifically highlight the vital role of GCS in regulating cell cycle progression, membrane trafficking events, and stage differentiation in this parasite. In addition, we identified ceramide as a potent bioactive molecule, underscoring the universal conservation of ceramide signaling in eukaryotes.
Collapse
Affiliation(s)
- Sasa Stefanić
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sonda S, Morf L, Bottova I, Baetschmann H, Rehrauer H, Caflisch A, Hakimi MA, Hehl AB. Epigenetic mechanisms regulate stage differentiation in the minimized protozoan Giardia lamblia. Mol Microbiol 2010; 76:48-67. [PMID: 20132448 DOI: 10.1111/j.1365-2958.2010.07062.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Histone modification is an important mechanism regulating both gene expression and the establishment and maintenance of cellular phenotypes during development. Regulation of histone acetylation via histone acetylases and deacetylases (HDACs) appears to be particularly crucial in determining gene expression patterns. In this study we explored the effect of HDAC inhibition on the life cycle of the human pathogen Giardia lamblia, a highly reduced parasitic protozoan characterized by minimized cellular processes. We found that the HDAC inhibitor FR235222 increased the level of histone acetylation and induced transcriptional regulation of approximately 2% of genes in proliferating and encysting parasites. In addition, our analyses showed that the levels of histone acetylation decreased during differentiation into cysts, the infective stage of the parasite. Importantly, FR235222 treatment during encystation reversed this histone hypo-acetylation and potently blocked the formation of cysts. These results provide the first direct evidence for epigenetic regulation of gene expression in this simple eukaryote. This suggests that regulation of histone acetylation is involved in the control of Giardia stage differentiation, and identifies epigenetic mechanisms as a promising target to prevent Giardia transmission.
Collapse
Affiliation(s)
- Sabrina Sonda
- Institute of Parasitology, University of Zürich, Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang K, Bangs JD, Beverley SM. Sphingolipids in Parasitic Protozoa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:238-48. [DOI: 10.1007/978-1-4419-6741-1_17] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Ortega-Pierres G, Smith HV, Cacciò SM, Thompson RA. New tools provide further insights into Giardia and Cryptosporidium biology. Trends Parasitol 2009; 25:410-6. [DOI: 10.1016/j.pt.2009.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 06/02/2009] [Accepted: 06/12/2009] [Indexed: 12/12/2022]
|
19
|
Novel role of sphingolipid synthesis genes in regulating giardial encystation. Infect Immun 2008; 76:2939-49. [PMID: 18426892 DOI: 10.1128/iai.00116-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although encystation (cyst formation) is important for the survival of Giardia lamblia outside its human host, the molecular events that prompt encystation have not been fully elucidated. Here, we demonstrate that sphingolipids (SLs), which are important for the growth and differentiation of many eukaryotes, play key roles in giardial encystation. Transcriptional analyses showed that only three genes in the SL biosynthesis pathways are expressed and transcribed differentially in nonencysting and encysting Giardia trophozoites. While the putative homologues of giardial serine palmitoyltransferase (gSPT) subunit genes (gspt-1 and -2) are differentially expressed in nonencysting and encysting trophozoites, the giardial ceramide glucosyltransferase 1 gene (gglct-1) is transcribed only in encysting cells. l-Cycloserine, an inhibitor of gSPT, inhibited the endocytosis and endoplasmic reticulum/perinuclear targeting of bodipy-ceramide in trophozoites, and this could be reversed by 3-ketosphinganine. On the other hand, D-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP), an inhibitor of glucosylceramide synthesis, blocked karyokinesis and reduced cyst production in culture. PPMP also altered the expression of cyst wall protein transcripts in encysting cells. Phylogenetic analyses revealed that the gspt genes are paralogs derived from an ancestral spt sequence that underwent gene duplication early in eukaryotic history. This ancestral sequence, in turn, was probably derived from prokaryotic aminoacyl transferases. In contrast, gglct-1 is found in both prokaryotes and eukaryotes without any evidence of gene duplication. These studies indicate that SL synthesis genes are involved in key events in giardial biology and could serve as potential targets for developing new therapies against giardiasis.
Collapse
|