1
|
Butler MS, Vollmer W, Goodall ECA, Capon RJ, Henderson IR, Blaskovich MAT. A Review of Antibacterial Candidates with New Modes of Action. ACS Infect Dis 2024; 10:3440-3474. [PMID: 39018341 PMCID: PMC11474978 DOI: 10.1021/acsinfecdis.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
There is a lack of new antibiotics to combat drug-resistant bacterial infections that increasingly threaten global health. The current pipeline of clinical-stage antimicrobials is primarily populated by "new and improved" versions of existing antibiotic classes, supplemented by several novel chemical scaffolds that act on traditional targets. The lack of fresh chemotypes acting on previously unexploited targets (the "holy grail" for new antimicrobials due to their scarcity) is particularly unfortunate as these offer the greatest opportunity for innovative breakthroughs to overcome existing resistance. In recognition of their potential, this review focuses on this subset of high value antibiotics, providing chemical structures where available. This review focuses on candidates that have progressed to clinical trials, as well as selected examples of promising pioneering approaches in advanced stages of development, in order to stimulate additional research aimed at combating drug-resistant infections.
Collapse
Affiliation(s)
- Mark S. Butler
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Waldemar Vollmer
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Emily C. A. Goodall
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Ian R. Henderson
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
2
|
Hawkins NJ. Assessing the predictability of fungicide resistance evolution through in vitro selection. JOURNAL OF PLANT DISEASES AND PROTECTION : SCIENTIFIC JOURNAL OF THE GERMAN PHYTOMEDICAL SOCIETY (DPG) 2024; 131:1257-1264. [PMID: 38947557 PMCID: PMC11213724 DOI: 10.1007/s41348-024-00906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/05/2024] [Indexed: 07/02/2024]
Abstract
Plant pathogens are highly adaptable, and have evolved to overcome control measures including multiple classes of fungicides. More effective management requires a thorough understanding of the evolutionary drivers leading to resistance. Experimental evolution can be used to investigate evolutionary processes over a compressed timescale. For fungicide resistance, applications include predicting resistance ahead of its emergence in the field, testing potential outcomes under multiple different fungicide usage scenarios or comparing resistance management strategies. This review considers different experimental approaches to in vitro selection, and their suitability for addressing different questions relating to fungicide resistance. When aiming to predict the evolution of new variants, mutational supply is especially important. When assessing the relative fitness of different variants under fungicide selection, growth conditions such as temperature may affect the results as well as fungicide choice and dose. Other considerations include population size, transfer interval, competition between genotypes and pathogen reproductive mode. However, resistance evolution in field populations has proven to be less repeatable for some fungicide classes than others. Therefore, even with optimal experimental design, in some cases the most accurate prediction from experimental evolution may be that the exact evolutionary trajectory of resistance will be unpredictable.
Collapse
|
3
|
Jones CR, Guaglianone G, Lai GH, Nowick JS. Isobactins: O-acyl isopeptide prodrugs of teixobactin and teixobactin derivatives. Chem Sci 2022; 13:13110-13116. [PMID: 36425497 PMCID: PMC9667932 DOI: 10.1039/d2sc02670h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
The antibiotic teixobactin is a promising drug candidate against drug-resistant pathogens, such as MRSA and VRE, but forms insoluble gels that may limit intravenous administration. O-Acyl isopeptide prodrug analogues of teixobactin circumvent the problem of gel formation while retaining antibiotic activity. The teixobactin prodrug analogues contain ester linkages between Ile6 and Ser7, Ile2 and Ser3, or between both Ile6 and Ser7 and Ile2 and Ser3. Upon exposure to physiological pH, the prodrug analogues undergo clean conversion to the corresponding amides, with half-lives between 13 and 115 min. Prodrug analogues containing lysine, arginine, or leucine at position 10 exhibit good antibiotic activity against a variety of Gram-positive bacteria while exhibiting little or no cytotoxicity or hemolytic activity. Because O-acyl isopeptide prodrug analogues of teixobactin exhibit clean conversion to the corresponding teixobactin analogues with reduced propensity to form gels, it is anticipated that teixobactin prodrugs will be superior to teixobactin as drug candidates.
Collapse
Affiliation(s)
- Chelsea R Jones
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
| | - Gretchen Guaglianone
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
| | - Grant H Lai
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
| | - James S Nowick
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
- Department of Pharmaceutical Sciences, University of California, Irvine Irvine California 92697 USA
| |
Collapse
|
4
|
Teixobactin kills bacteria by a two-pronged attack on the cell envelope. Nature 2022; 608:390-396. [PMID: 35922513 PMCID: PMC9365693 DOI: 10.1038/s41586-022-05019-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/23/2022] [Indexed: 01/08/2023]
Abstract
Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1–3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a β-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates. Using a combination of methods, the mechanism of the antibiotic teixobactin is revealed.
Collapse
|
5
|
Morris MA, Vallmitjana A, Grein F, Schneider T, Arts M, Jones CR, Nguyen BT, Hashemian MH, Malek M, Gratton E, Nowick JS. Visualizing the Mode of Action and Supramolecular Assembly of Teixobactin Analogues in Bacillus subtilis. Chem Sci 2022; 13:7747-7754. [PMID: 35865902 PMCID: PMC9258396 DOI: 10.1039/d2sc01388f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Teixobactin has been the source of intensive study and interest as a promising antibiotic, because of its excellent activity against drug-resistant Gram-positive pathogens and its novel but not yet fully understood mechanism of action that precludes drug resistance. Recent studies have demonstrated that the mode of action of teixobactin is more complicated than initially thought, with supramolecular assembly of the antibiotic appearing to play a critical role in the binding process. Further studies of the interactions of teixobactin with bacteria and its molecular targets offer the promise of providing deeper insights into its novel mechanism of action and guiding the design of additional drug candidates and analogues. The current study reports the preparation and study of teixobactin analogues bearing a variety of fluorophores. Structured illumination microscopy of the fluorescent teixobactin analogues with B. subtilis enables super-resolution visualization of the interaction of teixobactin with bacterial cell walls and permits the observation of aggregated clusters of the antibiotic on the bacteria. Förster resonance energy transfer (FRET) microscopy further elucidates the supramolecular assembly by showing that fluorescent teixobactin molecules co-localize within a few nanometers on B. subtilis. Fluorescence microscopy over time with a fluorescent teixobactin analogue and propidium iodide in B. subtilis reveals a correlation between cell death and binding of the antibiotic to cellular targets, followed by lysis of cells. Collectively, these studies provide new insights into the binding of teixobactin to Gram-positive bacteria, its supramolecular mechanism of action, and the lysis of bacteria that follows. FRET microscopy experiments demonstrate supramolecular assembly of teixobactin molecules on Bacillus subtilis, providing further evidence that teixobactin is a supramolecular antibiotic.![]()
Collapse
Affiliation(s)
- Michael A Morris
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
| | - Alexander Vallmitjana
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine Irvine California 92697 USA
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn Bonn 53115 Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne Bonn 53115 Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn Bonn 53115 Germany
| | - Melina Arts
- Institute for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn Bonn 53115 Germany
| | - Chelsea R Jones
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
| | - Betty T Nguyen
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
| | - Mohammad H Hashemian
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
| | - Melody Malek
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine Irvine California 92697 USA
| | - James S Nowick
- Department of Chemistry, University of California, Irvine Irvine California 92697 USA
- Department of Pharmaceutical Sciences, University of California, Irvine Irvine California 92697 USA
| |
Collapse
|
6
|
Hurst PJ, Morris MA, Graham AA, Nowick JS, Patterson JP. Visualizing Teixobactin Supramolecular Assemblies and Cell Wall Damage in B. Subtilis Using CryoEM. ACS OMEGA 2021; 6:27412-27417. [PMID: 34693162 PMCID: PMC8529686 DOI: 10.1021/acsomega.1c04331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/24/2021] [Indexed: 05/04/2023]
Abstract
The antibiotic teixobactin targets bacterial cell walls. Previous research has proposed that the active form of teixobactin is a nano-/micron-sized supramolecular assembly. Here, we use cryogenic transmission electron microscopy to show that at 1 mg/mL, teixobactin forms sheet-like assemblies that selectively act upon the cell wall. At 4 μg/mL, teixobactin is active, and aggregates are formed either transiently or sparingly at the cell surface.
Collapse
Affiliation(s)
- Paul Joshua Hurst
- Department
of Chemistry, University of California—Irvine, Irvine, California 92697-2025, United States
| | - Michael A. Morris
- Department
of Chemistry, University of California—Irvine, Irvine, California 92697-2025, United States
| | - Annissa A. Graham
- Department
of Chemistry, University of California—Irvine, Irvine, California 92697-2025, United States
| | - James S. Nowick
- Department
of Chemistry, University of California—Irvine, Irvine, California 92697-2025, United States
| | - Joseph P. Patterson
- Department
of Chemistry, University of California—Irvine, Irvine, California 92697-2025, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| |
Collapse
|