1
|
Bhattacharjee A, Chaulya NC, Mukhopadhyay G, Chakraborty A, Mondal B. Optimization of Self-Double Emulsifying Drug Delivery System Using Design of Experiments for Enhanced Oral Bioavailability of Gentamicin: In-vitro, Ex-vivo and In-vivo Studies. J Pharm Sci 2024; 113:659-668. [PMID: 37607594 DOI: 10.1016/j.xphs.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
Water-in-oil-in-water (w/o/w) double emulsions have shown excellent capability in augmenting the enteral bioavailability of BCS class III drugs, besides being effective controlled-release formulations. However, the problem of thermodynamic instability has restrained their industrial applicability. The self-double emulsifying drug delivery system (SDEDDS) is one of several approaches used to improve the stability of double emulsions. SDEDDS is a mixture of primary emulsion and secondary surfactant that can spontaneously emulsify into double emulsions in an external aqueous environment with mild agitation. Here, we prepared SDEDDS of gentamicin sulfate by response surface methodology. Selected optimized formulations (ODS1 and ODS2) were evaluated for zeta potential (Y1), optical clarity (Y2), release at 420 min (Y3), emulsion stability index (Y4) and self-emulsification time (Y5). For ODS1, Y1=-35.45 (±1.06)mV, Y2=53.19 (±0.35)%, Y3=75.79 (±0.60)%, Y4=93.97(±0.15)% and Y5=0.631 (±0.014)min, whereas for ODS2, Y1=-35.70 (±0.56)mV, Y2=48.09 (±0.64)%, Y3=76.61 (±0.99)%, Y4=93.00(±0.94)% and Y5=0.687(±0.02)min. Furthermore, ex-vivo studies on intestinal permeability revealed that SDEDDS improved membrane permeability compared to drug solution. Histopathology investigations revealed that SDEDDS promoted permeation without causing significant local membrane distortion. In addition, in-vivo studies revealed a 2.84 -fold increase in AUC0-∞ of optimized SDEDD compared to pure drug oral solution.
Collapse
Affiliation(s)
- Arka Bhattacharjee
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, NH 12, Haringhata, West Bengal 741249, India.
| | - Nitai Chand Chaulya
- Department of Pharmaceutical Technology, Gupta College of Technological Sciences, Ashram More, G.T. Road, Asansol, West Bengal 713301, India
| | - Goutam Mukhopadhyay
- Department of Pharmaceutical Technology, BCDA College of pharmacy and Technology, Campus 2, Udairajpur, Madhyamgram, West Bengal 700129, India
| | - Arpan Chakraborty
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, NH 12, Haringhata, West Bengal 741249, India
| | - Baishakhi Mondal
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, NH 12, Haringhata, West Bengal 741249, India
| |
Collapse
|
2
|
Thorn CR, Carvalho-Wodarz CDS, Horstmann JC, Lehr CM, Prestidge CA, Thomas N. Tobramycin Liquid Crystal Nanoparticles Eradicate Cystic Fibrosis-Related Pseudomonas aeruginosa Biofilms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100531. [PMID: 33978317 DOI: 10.1002/smll.202100531] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Pseudomonas aeruginosa biofilms cause persistent and chronic infections, most known clinically in cystic fibrosis (CF). Tobramycin (TOB) is a standard anti-pseudomonal antibiotic; however, in biofilm infections, its efficacy severely decreases due to limited permeability across the biofilm matrix. Herewith, a biomimetic, nanostructured, lipid liquid crystal nanoparticle-(LCNP)-formulation is discovered to significantly enhance the efficacy of TOB and eradicate P. aeruginosa biofilm infections. Using an advanced, biologically-relevant co-culture model of human CF bronchial epithelial cells infected with P. aeruginosa biofilms at an air-liquid interface, nebulized TOB-LCNPs completely eradicated 1 × 109 CFU mL-1 of P. aeruginosa after two doses, a 100-fold improvement over the unformulated antibiotic. The enhanced activity of TOB is not observed with a liposomal formulation of TOB or with ciprofloxacin, an antibiotic that readily penetrates biofilms. It is demonstrated that the unique nanostructure of the LCNPs drives the enhanced penetration of TOB across the biofilm barrier, but not through the healthy lung epithelium barrier, significantly increasing the available antibiotic concentration at the site of infection. The LCNPs are an innovative strategy to improve the performance of TOB as a directed pulmonary therapy, enabling the administration of lower doses, reducing the toxicity, and amplifying the anti-biofilm activity of the anti-pseudomonal antibiotic.
Collapse
Affiliation(s)
- Chelsea R Thorn
- Clinical and Health Science, University of South Australia, North Tce, Adelaide, SA, 5000, Australia
- The Basil Hetzel Institute for Translational Health Research, Woodville, SA, 5011, Australia
- ARC Centre for Excellence in Bio-Nano Science and Technology, Australia
- Adelaide Biofilm Test Facility, Cancer Research Institute, University of South Australia, North Tce, Adelaide, SA, 5000, Australia
| | | | - Justus C Horstmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Clive A Prestidge
- Clinical and Health Science, University of South Australia, North Tce, Adelaide, SA, 5000, Australia
- ARC Centre for Excellence in Bio-Nano Science and Technology, Australia
| | - Nicky Thomas
- Clinical and Health Science, University of South Australia, North Tce, Adelaide, SA, 5000, Australia
- The Basil Hetzel Institute for Translational Health Research, Woodville, SA, 5011, Australia
- ARC Centre for Excellence in Bio-Nano Science and Technology, Australia
- Adelaide Biofilm Test Facility, Cancer Research Institute, University of South Australia, North Tce, Adelaide, SA, 5000, Australia
| |
Collapse
|
3
|
Robaina Cabrera CL, Keir-Rudman S, Horniman N, Clarkson N, Page C. The anti-inflammatory effects of cannabidiol and cannabigerol alone, and in combination. Pulm Pharmacol Ther 2021; 69:102047. [PMID: 34082108 DOI: 10.1016/j.pupt.2021.102047] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/30/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION/BACKGROUND AND PURPOSE Studies with Cannabis Sativa plant extracts and endogenous agonists of cannabinoid receptors have demonstrated anti-inflammatory, bronchodilator, and antitussive properties in the airways of allergic and non-allergic animals. However, the potential therapeutic use of cannabis and cannabinoids for the treatment of respiratory diseases has not been widely investigated, in part because of local irritation of airways by needing to smoke the cannabis, poor bioavailability when administered orally due to the lipophilic nature of cannabinoids, and the psychoactive effects of Δ9-Tetrahydrocannabinol (Δ9-THC) found in cannabis. The primary purpose of this study was to investigate the anti-inflammatory effects of two of the non-psychotropic cannabinoids, cannabidiol (CBD) and cannabigerol (CBG) alone and in combination, in a model of pulmonary inflammation induced by bacterial lipopolysaccharide (LPS). The second purpose was to explore the effects of two different cannabinoid formulations administered orally (PO) and intraperitoneally (IP). Medium-chain triglyceride (MCT) oil was used as the sole solvent for one formulation, whereas the second formulation consisted of a Cremophor® EL (polyoxyl 35 castor oil, CrEL)-based micellar solution. RESULTS Exposure of guinea pigs to LPS induced a 97 ± 7% and 98 ± 3% increase in neutrophils found in bronchoalveolar lavage fluid (BAL) at 4 h and 24 h, respectively. Administration of CBD and CBG formulated with MCT oil did not show any significant effects on the LPS-induced neutrophilia measured in the BAL fluid when compared with the vehicle-treated groups. Conversely, the administration of either cannabinoid formulated with CrEL induced a significant attenuation of the LPS induced recruitment of neutrophils into the lung following both intraperitoneal (IP) and oral (PO) administration routes, with a 55-65% and 50-55% decrease in neutrophil cell recruitment with the highest doses of CBD and CBG respectively. A combination of CBD and CBG (CBD:CBG = 1:1) formulated in CrEL and administered orally was also tested to determine possible interactions between the cannabinoids. However, a mixture of CBD and CBG did not show a significant change in LPS-induced neutrophilia. Surfactants, such as CrEL, improves the dissolution of lipophilic drugs in an aqueous medium by forming micelles and entrapping the drug molecules within them, consequently increasing the drug dissolution rate. Additionally, surfactants increase permeability and absorption by disrupting the structural organisation of the cellular lipid bilayer. CONCLUSION In conclusion, this study has provided evidence that CBD and CBG formulated appropriately exhibit anti-inflammatory activity. Our observations suggest that these non-psychoactive cannabinoids may have beneficial effects in treating diseases characterised by airway inflammation.
Collapse
Affiliation(s)
- Carmen Lorena Robaina Cabrera
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, SE1 9NH, London, United Kingdom
| | - Sandra Keir-Rudman
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, SE1 9NH, London, United Kingdom
| | - Nick Horniman
- Sativa Wellness Group Inc., the Blue Building, Stubbs Lane, Beckington, BA11 6TE, Somerset, United Kingdom
| | - Nick Clarkson
- Sativa Wellness Group Inc., the Blue Building, Stubbs Lane, Beckington, BA11 6TE, Somerset, United Kingdom
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, SE1 9NH, London, United Kingdom.
| |
Collapse
|
4
|
Kim B, Yang Q, Chan LW, Bhatia SN, Ruoslahti E, Sailor MJ. Fusogenic porous silicon nanoparticles as a broad-spectrum immunotherapy against bacterial infections. NANOSCALE HORIZONS 2021; 6:330-340. [PMID: 33599221 PMCID: PMC8098644 DOI: 10.1039/d0nh00624f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial infections are re-emerging as substantial threats to global health due to the limited selection of antibiotics that are capable of overcoming antibiotic-resistant strains. By deterring such mutations whilst minimizing the need to develop new pathogen-specific antibiotics, immunotherapy offers a broad-spectrum therapeutic solution against bacterial infections. In particular, pathology resulting from excessive immune response (i.e. fibrosis, necrosis, exudation, breath impediment) contributes significantly to negative disease outcome. Herein, we present a nanoparticle that is targeted to activated macrophages and loaded with siRNA against the Irf5 gene. This formulation is able to induce >80% gene silencing in activated macrophages in vivo, and it inhibits the excessive inflammatory response, generating a significantly improved therapeutic outcome in mouse models of bacterial infection. The versatility of the approach is demonstrated using mice with antibiotic-resistant Gram-positive (methicillin-resistant Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) muscle and lung infections, respectively. Effective depletion of the Irf5 gene in macrophages is found to significantly improve the therapeutic outcome of infected mice, regardless of the bacteria strain and type.
Collapse
Affiliation(s)
- Byungji Kim
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Facile preparation of succinylated-zein-ZIF-8 hybrid for enhanced stability and pH-responsive drug delivery. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Liu J, Leng P, Liu Y. Oral drug delivery with nanoparticles into the gastrointestinal mucosa. Fundam Clin Pharmacol 2020; 35:86-96. [PMID: 32749731 DOI: 10.1111/fcp.12594] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
The oral route of protein and peptide drugs has been a popular method of drug delivery in recent years, although it is often a challenge to achieve effective drug release and minimize the barrier functions of the gastrointestinal tract. Gastrointestinal mucosa can capture and remove harmful substances; similarly, it can limit the absorption of drugs. Many drugs are effectively captured by the mucus and rapidly removed, making it difficult to control the release of drugs in the gastrointestinal tract. The use of drug carrier systems can overcome the mucosal barrier and significantly improve bioavailability. Nanoparticle drug carriers can protect the drug from degradation, transporting it to a predetermined location in the gastrointestinal tract to achieve more efficient and sustained drug delivery. It is becoming clearer that the characteristics of nanoparticles, such as particle size, charge, and hydrophobicity, are related to permeability of the mucosal barrier. This review focuses on the latest research progress of nanoparticles to penetrate the mucosal barrier, including the delivery methods of nanoparticles on the surface of gastrointestinal mucosa, and aims to summarize how successful oral nanoparticle delivery systems can overcome this biological barrier in the human body. In addition, the in vitro model based on gastrointestinal mucus is an important tool for drug research and development. Here, we discuss different types of drug delivery systems and their advantages and disadvantages in design and potential applications. Similarly, we reviewed and summarized various methods for evaluating oral nanoparticles in in vitro and in vivo models.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Ping Leng
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Yujun Liu
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| |
Collapse
|
7
|
Raut A, Dhapare S, Venitz J, Sakagami M. Pharmacokinetic profile analyses for inhaled drugs in humans using the lung delivery and disposition model. Biopharm Drug Dispos 2019; 41:32-43. [PMID: 31691979 DOI: 10.1002/bdd.2210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/27/2019] [Indexed: 11/09/2022]
Abstract
The kinetic clarification of lung disposition for inhaled drugs in humans via pharmacokinetic (PK) modeling aids in their development and regulation for systemic and local delivery, but remains challenging due to its multiplex nature. This study exercised our lung delivery and disposition kinetic model to derive the kinetic descriptors for the lung disposition of four drugs [calcitonin, tobramycin, ciprofloxacin and fluticasone propionate (FP)] inhaled via different inhalers from the published PK profile data. With the drug dose delivered to the lung (DTL) estimated from the corresponding γ-scintigraphy or in vivo predictive cascade impactor data, the model-based curve-fitting and statistical moment analyses derived the rate constants of lung absorption (ka ) and non-absorptive disposition (knad ). The ka values differed substantially between the drugs (0.05-1.00 h-1 ), but conformed to the lung partition-based membrane diffusion except for FP, and were inhaler/delivery/deposition-independent. The knad values also varied widely (0.03-2.32 h-1 ), yet appeared to be explained by the presence or absence of non-absorptive disposition in the lung via mucociliary clearance, local tissue degradation, binding/sequestration and/or phagocytosis, and to be sensitive to differences in lung deposition. For FP, its ka value of 0.2 h-1 was unusually low, suggesting solubility/dissolution-limited slow lung absorption, but was comparable between two inhaler products. Thus, the difference in the PK profile was attributed to differences in the DTL and the knad value, the latter likely originating from different aerosol sizes and regional deposition in the lung. Overall, this empirical, rather simpler model-based analysis provided a quantitative kinetic understanding of lung absorption and non-absorptive disposition for four inhaled drugs from PK profiles in humans.
Collapse
Affiliation(s)
- Anuja Raut
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, VA, 23298, USA
| | - Sneha Dhapare
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, VA, 23298, USA
| | - Jürgen Venitz
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, VA, 23298, USA
| | - Masahiro Sakagami
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, VA, 23298, USA
| |
Collapse
|
8
|
Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release 2016; 240:504-526. [PMID: 27292178 DOI: 10.1016/j.jconrel.2016.06.016] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
The oral route is a preferred method of drug administration, though achieving effective drug delivery and minimizing off-target side effects is often challenging. Formulation into nanoparticles can improve drug stability in the harsh gastrointestinal (GI) tract environment, providing opportunities for targeting specific sites in the GI tract, increasing drug solubility and bioavailability, and providing sustained release in the GI tract. However, the unique and diverse physiology throughout the GI tract, including wide variation in pH, mucus that varies in thickness and structure, numerous cell types, and various physiological functions are both a barrier to effective delivery and an opportunity for nanoparticle design. Here, nanoparticle design aspects to improve delivery to particular sites in the GI tract are discussed. We then review new methods for evaluating oral nanoparticle formulations, including a short commentary on data interpretation and translation. Finally, the state-of-the-art in preclinical targeted nanoparticle design is reviewed.
Collapse
Affiliation(s)
- Abhijit A Date
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; Departments of Biomedical Engineering, Environmental and Health Sciences, Oncology, Neurosurgery, Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Laura M Ensign
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
9
|
Chae JW, Song BJ, Baek IH, Yun HY, Ma JY, Kwon KI. Effects of food intake on pharmacokinetics of mosapride in beagle dogs. J Vet Pharmacol Ther 2015; 38:497-9. [DOI: 10.1111/jvp.12200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/07/2014] [Indexed: 11/29/2022]
Affiliation(s)
- J.-W. Chae
- College of Pharmacy; Chungnam National University; Daejeon Korea
| | - B.-J. Song
- College of Pharmacy; Chungnam National University; Daejeon Korea
| | - I.-H. Baek
- College of Pharmacy; Kyungsung University; Busan Korea
| | - H.-Y. Yun
- College of Pharmacy; Chungnam National University; Daejeon Korea
| | - J. Y. Ma
- Korean Medicine (KM)-Based Herbal Drug Development Group; Korea Institute of Oriental Medicine; Daejeon Korea
| | - K.-I. Kwon
- College of Pharmacy; Chungnam National University; Daejeon Korea
| |
Collapse
|
10
|
Deiana S, Watanabe A, Yamasaki Y, Amada N, Arthur M, Fleming S, Woodcock H, Dorward P, Pigliacampo B, Close S, Platt B, Riedel G. Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ⁹-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive-compulsive behaviour. Psychopharmacology (Berl) 2012; 219:859-73. [PMID: 21796370 DOI: 10.1007/s00213-011-2415-0] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 07/08/2011] [Indexed: 12/17/2022]
Abstract
RATIONALE Phytocannabinoids are useful therapeutics for multiple applications including treatments of constipation, malaria, rheumatism, alleviation of intraocular pressure, emesis, anxiety and some neurological and neurodegenerative disorders. Consistent with these medicinal properties, extracted cannabinoids have recently gained much interest in research, and some are currently in advanced stages of clinical testing. Other constituents of Cannabis sativa, the hemp plant, however, remain relatively unexplored in vivo. These include cannabidiol (CBD), cannabidivarine (CBDV), Δ(9)-tetrahydrocannabivarin (Δ(9)-THCV) and cannabigerol (CBG). OBJECTIVES AND METHODS We here determined pharmacokinetic profiles of the above phytocannabinoids after acute single-dose intraperitoneal and oral administration in mice and rats. The pharmacodynamic-pharmacokinetic relationship of CBD (120 mg/kg, ip and oral) was further assessed using a marble burying test in mice. RESULTS All phytocannabinoids readily penetrated the blood-brain barrier and solutol, despite producing moderate behavioural anomalies, led to higher brain penetration than cremophor after oral, but not intraperitoneal exposure. In mice, cremophor-based intraperitoneal administration always attained higher plasma and brain concentrations, independent of substance given. In rats, oral administration offered higher brain concentrations for CBD (120 mg/kg) and CBDV (60 mg/kg), but not for Δ(9)-THCV (30 mg/kg) and CBG (120 mg/kg), for which the intraperitoneal route was more effective. CBD inhibited obsessive-compulsive behaviour in a time-dependent manner matching its pharmacokinetic profile. CONCLUSIONS These data provide important information on the brain and plasma exposure of new phytocannabinoids and guidance for the most efficacious administration route and time points for determination of drug effects under in vivo conditions.
Collapse
Affiliation(s)
- Serena Deiana
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Turner PV, Brabb T, Pekow C, Vasbinder MA. Administration of substances to laboratory animals: routes of administration and factors to consider. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2011; 50:600-13. [PMID: 22330705 PMCID: PMC3189662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/26/2011] [Accepted: 03/21/2011] [Indexed: 05/31/2023]
Abstract
Administration of substances to laboratory animals requires careful consideration and planning to optimize delivery of the agent to the animal while minimizing potential adverse experiences from the procedure. For all species, many different routes are available for administration of substances. The research team and IACUC members should be aware of reasons for selecting specific routes and of training and competency necessary for personnel to use these routes effectively. Once a route is selected, issues such as volume of administration, site of delivery, pH of the substance, and other factors must be considered to refine the technique. Inadequate training or inattention to detail during this aspect of a study may result in unintentional adverse effects on experimental animals and confounded results.
Collapse
|
12
|
Acute renal failure due to tobramycin intoxication during selective digestive tract decontamination. Intensive Care Med 2011; 37:1386-7. [PMID: 21590348 PMCID: PMC3136690 DOI: 10.1007/s00134-011-2242-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2011] [Indexed: 10/31/2022]
|