1
|
Fukuda A, Kozaki Y, Kürekci C, Suzuki Y, Nakajima C, Usui M. Spreading Ability of Tet(X)-Harboring Plasmid and Effect of Tetracyclines as a Selective Pressure. Microb Drug Resist 2024; 30:489-501. [PMID: 39575688 DOI: 10.1089/mdr.2024.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Tigecycline is a last-resort antimicrobial in humans. Tetracyclines are the most widely used antimicrobials in livestock. Mobile tigecycline resistance genes [tet(X)] are disseminated worldwide, and tetracycline use may have promoted the selection of tet(X) genes. Thus, the selective pressure on tet(X) genes and their plasmids in livestock must be elucidated. We performed a retrospective study to clarify the prevalence of tigecycline-resistant Escherichia coli from pigs in Thailand. Screening for tigecycline resistance was performed on 107 E. coli strains from 25 samples, and tet(X)-carrying plasmids were characterized. tet(X) genes were cloned and expressed in E. coli. Bacterial growth rate in the presence of tetracycline as a result of the presence of tet(X) genes was also evaluated. Thirty-two tet(X4)-harboring tigecycline-resistant E. coli strains were detected in 10/25 samples (40%). The tet(X4) genes were carried on various Inc-type plasmids and flanked by ISCR2. The tet(X)-carrying plasmids were transferred to E. coli and Klebsiella pneumoniae. Acquisition of tet(X) genes and their plasmids improved bacterial growth in the presence of tetracycline. In summary, tetracycline use exerts selective pressure on tet(X) genes and their various backbone plasmids; therefore, a reduced amount of tetracycline use is important to limit the spreading of tet(X) genes.
Collapse
Affiliation(s)
- Akira Fukuda
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yuta Kozaki
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Cemil Kürekci
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Hatay Mustafa Kemal University, Antakya, Türkiye
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Research Support, Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Division of Division of Vaccinology for Clinical Development, Hokkaido University Institute for Vaccine Research and Development, Sapporo, Japan
| | - Masaru Usui
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
2
|
Zhang H, Chen W, Lu X, Liang Y, Quan X, Liu X, Shi T, Yu Y, Li R, Wu H. Emergence and Characterization of the High-Level Tigecycline Resistance Gene tet(X4) in Salmonella enterica Serovar Rissen from Food in China. Foodborne Pathog Dis 2024. [PMID: 39358321 DOI: 10.1089/fpd.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
The plasmid-mediated tet(X4) gene has exhibited a high-level resistance to tigecycline (TGC), which has raised concerns globally regarding antibiotic resistance. Although the widespread tet(X4) has been found widely in Escherichia coli, it is scarcely found in other Enterobacteriaceae. This study aimed to characterize a ST469 Salmonella enterica serovar Rissen (S. Rissen) isolate harboring tet(X4) from pork, which was identified and characterized via antimicrobial susceptibility testing, conjugation assays, plasmid curing testing, whole-genome sequencing, and bioinformatic analysis. Ten ST469 S. Rissen isolates of 223 Salmonella spp. isolates were isolated from food samples in China during 2021-2023. One of 10 S. Rissen isolates, SM2301, carrying tet(X4) conferred high-level resistance to TGC (minimum inhibitory concentration > 8 µg/mL). The tet(X4) could be conjugated into different recipients, including E. coli, S. enteritidis, and K. pneumoniae isolates. Plasmid curing confirmed that tet(X4) was plasmid-mediated. Genetic analysis revealed that the tet(X4) in the SM2301 isolate was located in the IncFIA(HI1)-IncHI1A-IncHI1B(R27) hybrid plasmid, and the structure of tet(X4) was abh-tet(X4)-ISCR2. To the best of our knowledge, this is the first report of a tet(X4)-positive food-derived S. Rissen isolate. The extending bacterial species of tet(X4)-bearing plasmids suggested the increasing transmission risk of the mobile TGC resistance gene tet(X4) beyond E. coli. This study highlights the emerging and evolution risk of novel resistance genes across various bacterial species. Therefore, further surveillance is warranted to monitor the prevalence of tet(X4) in Salmonella spp. and other bacterial species.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Wenjie Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Xiaoyu Lu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Yingying Liang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Xiao Quan
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Xin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Tianqi Shi
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | - Ying Yu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| | | | - Huanyu Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Li Y, Fu Y, Qiu Y, Liu Q, Yin M, Zhang L. Genomic characterization of tigecycline-resistant Escherichia coli and Klebsiella pneumoniae isolates from hospital sewage. Front Microbiol 2023; 14:1282988. [PMID: 38029087 PMCID: PMC10667442 DOI: 10.3389/fmicb.2023.1282988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The tigecycline-resistant Enterobacterales have emerged as a great public concern, and the mobile tet(X) variants and tmexCD-toprJ efflux pump are mainly responsible for the spread of tigecycline resistance. Hospital sewage is considered as an important reservoir of antimicrobial resistance, while tigecycline resistance in this niche is under-researched. Methods In this study, five Escherichia coli and six Klebsiella pneumoniae strains were selected from a collection of tigecycline-resistant Enterobacterales for further investigation by antimicrobial susceptibility testing, conjugation, whole-genome sequencing, and bioinformatics analysis. Results All five E. coli strains harbored tet(X4), which was located on different plasmids, including a novel IncC/IncFIA(HI1)/IncHI1A/IncHI1B(R27) hybrid structure. In addition, tet(X4)-bearing plasmids were able to transfer by conjugation and be stabilized in the recipient in the absence of antibiotics. tmexCD1-toprJ1 was identified in two K. pneumoniae (LZSFT39 and LZSRT3) and it was carried by a novel multidrug-resistance transposon, designated Tn7368, on a novel IncR/IncU hybrid plasmid. In addition, we found that two K. pneumoniae (LZSFZT3 and LZSRT3) showed overexpression of efflux genes acrB and oqxB, respectively, which was most likely to be caused by mutations in ramR and oqxR. Discussion In conclusion, the findings in this study expand our knowledge of the genetic elements that carry tigecycline resistance genes, which establishes a baseline for investigating the structure diversity and evolutionary trajectories of human, animal, and environmental tigecycline resistomes.
Collapse
Affiliation(s)
- Ying Li
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Fu
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Yichuan Qiu
- Department of Clinical Laboratory, Hospital of Chengdu Office of People’s Government of Tibetan Autonomous Region, Chengdu, Sichuan, China
| | - Qian Liu
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Yin
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Luhua Zhang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Zhang G, Cui Q, Li J, Guo R, Leclercq SO, Du L, Tang N, Song Y, Wang C, Zhao F, Feng J. The integrase of genomic island GIsul2 mediates the mobilization of GIsul2 and ISCR-related element CR2-sul2 unit through site-specific recombination. Front Microbiol 2022; 13:905865. [PMID: 35979485 PMCID: PMC9376610 DOI: 10.3389/fmicb.2022.905865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
In the worldwide health threat posed by antibiotic-resistant bacterial pathogens, mobile genetic elements (MGEs) play a critical role in favoring the dissemination of resistance genes. Among them, the genomic island GIsul2 and the ISCR-related element CR2-sul2 unit are believed to participate in this dissemination. However, the mobility of the two elements has not yet been demonstrated. Here, we found that the GIsul2 and CR2-sul2 units can excise from the host chromosomal attachment site (attB) in Shigella flexneri. Through establishing a two-plasmid mobilization system composed of a donor plasmid bearing the GIsul2 and a trap plasmid harboring the attB in recA-deficient Escherichia coli, we reveal that the integrase of GIsul2 can perform the excision and integration of GIsul2 and CR2-sul2 unit by site-specific recombination between att core sites. Furthermore, we demonstrate that the integrase and the att sites are required for mobility through knockout experiments. Our findings provide the first experimental characterization of the mobility of GIsul2 and CR2-sul2 units mediated by integrase. They also suggest a potential and unappreciated role of the GIsul2 integrase family in the dissemination of CR2-sul2 units carrying various resistance determinants in between.
Collapse
Affiliation(s)
- Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qinna Cui
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jianjuan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ruiliang Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | | | - Lifeng Du
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Na Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqin Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jie Feng
| |
Collapse
|
5
|
Zhai W, Wang T, Yang D, Zhang Q, Liang X, Liu Z, Sun C, Wu C, Liu D, Wang Y. Clonal relationship of tet(X4)-positive Escherichia coli ST761 isolates between animals and humans. J Antimicrob Chemother 2022; 77:2153-2157. [PMID: 35678277 DOI: 10.1093/jac/dkac175] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/06/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To characterize the relationship of tet(X4)-positive isolates from different hosts and environments. METHODS PCR and MALDI-TOF MS were used to identify the tet(X4)-positive isolates. The MICs of 13 antimicrobial agents were determined by broth microdilution. Illumina technology was used to sequence all of the isolates. One isolate was randomly selected from Escherichia coli ST761 clones for long-read sequencing to obtain plasmid sequences. Bioinformatics analysis was used to determine the phylogeny of 46 tet(X4)-positive E. coli ST761 strains. RESULTS A total of 12 tet(X4)-positive isolates, 8 E. coli and 4 Aeromonas simiae, were obtained from six lairages of a slaughterhouse. These isolates exhibited resistance to at least three classes of antimicrobials, including tigecycline. The majority of them, seven E. coli and three A. simiae, represent separate clonal groups. Notably, the seven E. coli isolates belonged to ST761, a common ST carrying the tet(X4) gene that has been identified in 39 isolates from animals, meat, wastewater and humans from seven Chinese provinces. All 46 tet(X4)-positive E. coli ST761 strains from various sources have a close phylogenetic relationship (0-72 SNPs), with a high nucleotide sequence similarity of resistance genes and the tet(X4)-carrying IncX1-IncFIA(HI1)-IncFIB(K) hybrid plasmid, indicating a clonal relationship of tet(X4)-positive E. coli ST761 among animals, food, the environment and humans. CONCLUSIONS The clonal relationship of tet(X4)-positive E. coli ST761 between humans and animals poses a previously underestimated threat to public health. To the best of our knowledge, this is the first description of tet(X4)-positive A. simiae.
Collapse
Affiliation(s)
- Weishuai Zhai
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Tao Wang
- Department of Gastroenterology, The Fourth Medical Center of PLA General Hospital, 100048, China
| | - Dawei Yang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Qidi Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiao Liang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zhihai Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Chengtao Sun
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Congming Wu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Dejun Liu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yang Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
6
|
Mobilization of tet(X4) by IS 1 family elements in porcine Escherichia coli isolates. Antimicrob Agents Chemother 2021; 66:e0159721. [PMID: 34723627 DOI: 10.1128/aac.01597-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dissemination mechanism of the high-level tigecycline resistance gene tet(X4) in porcine Escherichia coli was investigated. tet(X4) and other antimicrobial resistance genes were located on the plasmids p1919D3-1 and p1919D62-1 and flanked by two or three copies of IS1 family elements, which can form one to three translocatable units (TUs). Using a reduced transposition model, IS1A was experimentally demonstrated to mediate the transposition of tet(X4) from a suicide plasmid into the E. coli chromosome.
Collapse
|
7
|
He D, Wang L, Zhao S, Liu L, Liu J, Hu G, Pan Y. A novel tigecycline resistance gene, tet(X6), on an SXT/R391 integrative and conjugative element in a Proteus genomospecies 6 isolate of retail meat origin. J Antimicrob Chemother 2021; 75:1159-1164. [PMID: 32016288 DOI: 10.1093/jac/dkaa012] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/10/2019] [Accepted: 01/08/2020] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES To characterize a novel tigecycline resistance gene, tet(X6), and a novel SXT-related integrative and conjugative element (ICE), ICEPgs6Chn1, found in a tigecycline-resistant Proteus genomospecies 6 strain, T60. METHODS Strain T60 was identified by the VITEK 2 system, biochemical reactions and an SNP-based approach. The genetic profile of strain T60 was determined by WGS analysis. ICEPgs6Chn1 was analysed by PCR, conjugation experiments and bioinformatics tools. tet(X6) was characterized by cloning and protein structure prediction. RESULTS Strain T60 was resistant to ampicillin, tetracycline, tigecycline, florfenicol, colistin and kanamycin, but susceptible to cefotaxime; it also exhibited high MICs of eravacycline (32 mg/L) and omadacycline (>64 mg/L). Only one chromosome was identified and tet(X6) was located in chromosomal ICEPgs6Chn1, a member of the SXT/R391 ICE family, of 114 368 bp and encoding the antimicrobial resistance genes floR, strB, strA, aph(3')-Ia, aac(3)-IV, aph(4)-Ia, tet(X6) and sul2. The circular intermediate of ICEPgs6Chn1 was detected by PCR and sequencing, but conjugation experiments showed that it was not self-transmissible. Cloning of the novel gene tet(X6) and protein structure prediction revealed that Tet(X6) confers tigecycline resistance. CONCLUSIONS To our knowledge, this is the first report of a novel SXT/R391 ICE in a Proteus genomospecies 6 strain. Importantly, a novel high-level tigecycline resistance gene, tet(X6), emerged for the first time in the SXT/R391 element of Proteus genomospecies 6, revealing that ICEs may serve as an important platform for the accumulation of antibiotic resistance genes.
Collapse
Affiliation(s)
- Dandan He
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Liangliang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shiyu Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lanping Liu
- Animal Husbandry and Fishery Bureau, Nankang District, Ganzhou, China
| | - Jianhua Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gongzheng Hu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yushan Pan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
Pan Y, Awan F, Zhenbao M, Zhang X, Zeng J, Zeng Z, Xiong W. Preliminary view of the global distribution and spread of the tet(X) family of tigecycline resistance genes. J Antimicrob Chemother 2021; 75:2797-2803. [PMID: 32766786 DOI: 10.1093/jac/dkaa284] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The emergence of plasmid-mediated tet(X3)/tet(X4) genes is threatening the role of tigecycline as a last-resort antibiotic to treat clinical infections caused by XDR bacteria. Considering the possible public health threat posed by tet(X) and its variants [which we collectively call 'tet(X) genes' in this study], global monitoring and surveillance are urgently required. OBJECTIVES Here we conducted a worldwide survey of the global distribution and spread of tet(X) genes. METHODS We analysed a comprehensive dataset of bacterial genomes in conjunction with surveillance data from our laboratory and the NCBI database, as well as sufficient metadata to characterize the results. RESULTS The global distribution features of tet(X) genes were revealed. We clustered three types of genetic backbones of tet(X) genes embedded or transferred in bacterial genomes. Our pan-genome analyses revealed a large genetic pool composed of tet(X)-carrying sequences. Moreover, phylogenetic trees of tet(X) genes and tet(X)-like proteins were built. CONCLUSIONS To the best of our knowledge, our results provide the first view of the global distribution of tet(X) genes, demonstrate the features of tet(X)-carrying fragments and highlight the possible evolution of tigecycline-inactivation enzymes in diverse bacterial species and habitats.
Collapse
Affiliation(s)
- Yu Pan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Furqan Awan
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Ma Zhenbao
- National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
| | - Xiufeng Zhang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China
| | - Jiaxiong Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China.,National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, China.,National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Investigation of tigecycline resistant Escherichia coli from raw meat reveals potential transmission among food-producing animals. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Lv H, Huang W, Lei G, Liu L, Zhang L, Yang X. Identification of Novel Plasmids Containing the Tigecycline Resistance Gene tet(X4) in Escherichia coli Isolated from Retail Chicken Meat. Foodborne Pathog Dis 2020; 17:792-794. [DOI: 10.1089/fpd.2020.2822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Hong Lv
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Weifeng Huang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Gaopeng Lei
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Li Liu
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Lin Zhang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| | - Xiaorong Yang
- Center for Disease Control and Prevention of Sichuan Province, Chengdu, China
| |
Collapse
|
11
|
Fang LX, Chen C, Cui CY, Li XP, Zhang Y, Liao XP, Sun J, Liu YH. Emerging High-Level Tigecycline Resistance: Novel Tetracycline Destructases Spread via the Mobile Tet(X). Bioessays 2020; 42:e2000014. [PMID: 32567703 DOI: 10.1002/bies.202000014] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/18/2020] [Indexed: 12/20/2022]
Abstract
Antibiotic resistance in bacteria has become a great threat to global public health. Tigecycline is a next-generation tetracycline that is the final line of defense against severe infections by pan-drug-resistant bacterial pathogens. Unfortunately, this last-resort antibiotic has been challenged by the recent emergence of the mobile Tet(X) orthologs that can confer high-level tigecycline resistance. As it is reviewed here, these novel tetracycline destructases represent a growing threat to the next-generation tetracyclines, and a basic framework for understanding the molecular epidemiology and resistance mechanisms of them is presented. However, further large-scale epidemiological and functional studies are urgently needed to better understand the prevalence and dissemination of these newly discovered Tet(X) orthologs among Gram-negative bacteria in both human and veterinary medicine.
Collapse
Affiliation(s)
- Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Chong Chen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
| | - Chao-Yue Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
| | - Xing-Ping Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, 510642, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
12
|
Novel IS26-mediated hybrid plasmid harbouring tet(X4) in Escherichia coli. J Glob Antimicrob Resist 2020; 21:162-168. [PMID: 32247809 DOI: 10.1016/j.jgar.2020.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES As the spread of antimicrobial resistance genes becomes an increasing global threat, improved understanding of genetic structure and transferability of the resistant plasmids becomes more critical. The newly description of several plasmid-mediated tet(X) variant genes, tet(X3), tet(X4) and tet(X5), poses a considerable risk for public health. This study aimed to investigate the recombination event that occurred during the conjugation process of a tet(X4)-bearing plasmid. METHODS A Tet(X4)-producing Escherichia coli isolate, 2019XSD11, was subjected to susceptibility testing, S1-PFGE and whole genome sequencing. The genetic features of plasmids and the recombination event were analysed by sequence comparison and annotation. We performed electrotransformation assay to further test the transferability of the tet(X4)-bearing plasmid. RESULTS A novel type of fusion tet(X4)-bearing plasmid was discovered from the transconjugant, plasmid p2019XSD11-TC2-284 (∼280kbp). The sequence of this plasmid consisted of a hybrid episome of two plasmids p2019XSD11-190 (∼190kbp) harbouring tet(X4) and p2019XSD11-92 (∼92kbp) harbouring blaCTX-M-55 originated from 2019XSD11. The two plasmids were concatenated by IS26 elements. Analyses of the genetic constitution of the plasmids essential for transmission showed the plasmid p2019XSD11-190 lacked an intact type IV secretion system. Beyond this, the origin of transfer region and relaxase genes in plasmid p2019XSD11-190 had no sequence similarity with those in plasmid p2019XSD11-92. CONCLUSIONS The fusion of the two plasmids probably formed through IS26 homologous recombination. Such recombination events presumably play an important role in the dissemination of the tet(X4). Molecular surveillance of tet(X) variant genes and genetic structures warrants further investigation to evaluate the underlying public health risk.
Collapse
|
13
|
Development of a Multiplex Real-Time PCR Assay for Rapid Detection of Tigecycline Resistance Gene tet(X) Variants from Bacterial, Fecal, and Environmental Samples. Antimicrob Agents Chemother 2020; 64:AAC.02292-19. [PMID: 32041710 DOI: 10.1128/aac.02292-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/20/2020] [Indexed: 11/20/2022] Open
Abstract
We developed a multiplex real-time SYBR green-based PCR assay for rapid detection of tet(X) and its variants, including tet(X1) and tet(X2) and high-level tigecycline resistance genes tet(X3), tet(X4), and tet(X5). We showed that the real-time PCR assay developed had high linearity (R 2 ≥ 0.996), sensitivity (low detection limit), and specificity (only the target gene could be amplified significantly) and further evaluated it using bacterial, fecal, and environmental samples.
Collapse
|