1
|
Bani Melhim S, Douglas LE, Reihill JA, Downey DG, Martin SL. The effect of triple CFTR modulator therapy and azithromycin on ion channels and inflammation in cystic fibrosis. ERJ Open Res 2024; 10:00502-2024. [PMID: 39687397 PMCID: PMC11647873 DOI: 10.1183/23120541.00502-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/07/2024] [Indexed: 12/18/2024] Open
Abstract
Background Inflammation in cystic fibrosis (CF) airways is difficult to treat with well-established regimens often including azithromycin (AZ) as an immunomodulatory drug. As AZ has been reported to require CF transmembrane conductance regulator (CFTR) to be able to reduce interleukin (IL)-8 and given the emergence of highly effective CFTR "triple" modulator therapy (elexacaftor/tezacaftor/ivacaftor; ETI), the aim of this study was to investigate the effect of AZ and ETI, singly and in combination, on ion channel activity and to assess the potential anti-inflammatory effects. Methods Electrophysiological assessment of ETI and AZ was performed on three-dimensional cultures of primary CF human bronchial epithelial (HBE) cells using a Multi Trans-Epithelial Current Clamp. IL-8 from NuLi-1 (non-CF) and CuFi-1 (CF) cells treated with AZ was measured by ELISA. Inflammatory mediators from primary CF HBE cells exposed to tumour necrosis factor-α in the presence of AZ, ETI and their combination, were screened using the Proteome Profiler™ Human Cytokine Array Kit, with selected targets validated by ELISA. Results AZ did not alter CFTR chloride efflux, nor did it have any synergistic/antagonistic effect in combination with ETI. AZ reduced IL-8 in NuLi-1 but not CuFi-1 cells. The Proteome Profiler™ screen identified several disease-relevant cytokines that were modulated by treatment. Subsequent analysis by ELISA showed IL-8, IL-6, CXCL1 and granulocyte-macrophage colony-stimulating factor to be significantly reduced by treatment with ETI, but not by AZ. Conclusions Incorporating ETI into the standard of CF care provides an opportunity to re-evaluate therapeutic regimens to reduce treatment burden and safely discontinue chronic treatments such as AZ, without loss of clinical benefit. Identification of redundant treatments in the era of CFTR modulation may improve medication adherence and overcome potential adverse effects associated with the chronic use AZ and other drugs.
Collapse
Affiliation(s)
- Suhad Bani Melhim
- School of Pharmacy, Queen's University Belfast, Belfast, UK
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | | | | | - Damian G. Downey
- Wellcome-Wolfson Institute of Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Northern Ireland, UK
| | | |
Collapse
|
2
|
Tarique AA, Tuladhar N, Kelk D, Begum N, Lucas RM, Luo L, Stow JL, Wainwright CE, Bell SC, Sly PD, Fantino E. Azithromycin Augments Bacterial Uptake and Anti-Inflammatory Macrophage Polarization in Cystic Fibrosis. Cells 2024; 13:166. [PMID: 38247856 PMCID: PMC10813867 DOI: 10.3390/cells13020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Azithromycin (AZM) is widely being used for treating patients with cystic fibrosis (pwCF) following clinical trials demonstrating improved lung function and fewer incidents of pulmonary exacerba-tions. While the precise mechanisms remain elusive, immunomodulatory actions are thought to be involved. We previously reported impaired phagocytosis and defective anti-inflammatory M2 macrophage polarization in CF. This study systematically analyzed the effect of AZM on the functions of unpolarized and M1/M2 polarized macrophages in CF. METHODS Monocytes, isolated from the venous blood of patients with CF (pwCF) and healthy controls (HCs), were differentiated into monocyte-derived macrophages (MDMs) and subsequently infected with P. aeruginosa. P. aeruginosa uptake and killing by MDMs in the presence or absence of AZM was studied. M1 and M2 macrophage polarizations were induced and their functions and cytokine release were analyzed. RESULTS Following AZM treatment, both HC and CF MDMs exhibited a significant increase in P. aeruginosa uptake and killing, however, lysosomal acidification remained unchanged. AZM treatment led to higher activation of ERK1/2 in both HC and CF MDMs. Pharmacological inhibition of ERK1/2 using U0126 significantly reduced P. aeruginosa uptake in HC MDMs. M1 macrophage polarization remained unaffected; however, AZM treatment led to increased IL-6 and IL-10 release in both HC and CF M1 macrophages. AZM also significantly increased the phagocytic index for both pHrodo E. coli and S. aureus in CF M1 macrophages. In CF, AZM treatment promoted anti-inflammatory M2 macrophage polarization, with an increased percentage of CD209+ M2 macrophages, induction of the M2 gene CCL18, along with its secretion in the culture supernatant. However, AZM d'd not restore endocytosis in CF, another essential feature of M2 macrophages. CONCLUSIONS This study highlights the cellular functions and molecular targets of AZM which may involve an improved uptake of both Gram-positive and Gram-negative bacteria, restored anti-inflammatory macrophage polarization in CF. This may in turn shape the reduced lung inflammation observed in clinical trials. In addition, we confirmed the role of ERK1/2 activation for bacterial uptake.
Collapse
Affiliation(s)
- Abdullah A. Tarique
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, QLD 4101, Australia (P.D.S.); (E.F.)
| | - Neeraj Tuladhar
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4067, Australia
| | - Dean Kelk
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, QLD 4101, Australia (P.D.S.); (E.F.)
| | - Nelufa Begum
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, QLD 4101, Australia (P.D.S.); (E.F.)
| | - Richard M. Lucas
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4067, Australia
| | - Lin Luo
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4067, Australia
| | - Jennifer L. Stow
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4067, Australia
| | - Claire E. Wainwright
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, QLD 4101, Australia (P.D.S.); (E.F.)
- Respiratory and Sleep Medicine, Queensland Children’s Hospital, Brisbane, QLD 4101, Australia
| | - Scott C. Bell
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, QLD 4101, Australia (P.D.S.); (E.F.)
- Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD 4032, Australia
| | - Peter D. Sly
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, QLD 4101, Australia (P.D.S.); (E.F.)
| | - Emmanuelle Fantino
- Child Health Research Centre (CHRC), The University of Queensland, Brisbane, QLD 4101, Australia (P.D.S.); (E.F.)
| |
Collapse
|
3
|
Dysfunctional Inflammation in Cystic Fibrosis Airways: From Mechanisms to Novel Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22041952. [PMID: 33669352 PMCID: PMC7920244 DOI: 10.3390/ijms22041952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an ATP-gated chloride channel expressed on the apical surface of airway epithelial cells. CFTR absence/dysfunction results in defective ion transport and subsequent airway surface liquid dehydration that severely compromise the airway microenvironment. Noxious agents and pathogens are entrapped inside the abnormally thick mucus layer and establish a highly inflammatory environment, ultimately leading to lung damage. Since chronic airway inflammation plays a crucial role in CF pathophysiology, several studies have investigated the mechanisms responsible for the altered inflammatory/immune response that, in turn, exacerbates the epithelial dysfunction and infection susceptibility in CF patients. In this review, we address the evidence for a critical role of dysfunctional inflammation in lung damage in CF and discuss current therapeutic approaches targeting this condition, as well as potential new treatments that have been developed recently. Traditional therapeutic strategies have shown several limitations and limited clinical benefits. Therefore, many efforts have been made to develop alternative treatments and novel therapeutic approaches, and recent findings have identified new molecules as potential anti-inflammatory agents that may exert beneficial effects in CF patients. Furthermore, the potential anti-inflammatory properties of CFTR modulators, a class of drugs that directly target the molecular defect of CF, also will be critically reviewed. Finally, we also will discuss the possible impact of SARS-CoV-2 infection on CF patients, with a major focus on the consequences that the viral infection could have on the persistent inflammation in these patients.
Collapse
|
4
|
Mitri C, Xu Z, Bardin P, Corvol H, Touqui L, Tabary O. Novel Anti-Inflammatory Approaches for Cystic Fibrosis Lung Disease: Identification of Molecular Targets and Design of Innovative Therapies. Front Pharmacol 2020; 11:1096. [PMID: 32848733 PMCID: PMC7396676 DOI: 10.3389/fphar.2020.01096] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is the most common genetic disorder among Caucasians, estimated to affect more than 70,000 people in the world. Severe and persistent bronchial inflammation and chronic bacterial infection, along with airway mucus obstruction, are hallmarks of CF lung disease and participate in its progression. Anti-inflammatory therapies are, therefore, of particular interest for CF lung disease. Furthermore, a better understanding of the molecular mechanisms involved in airway infection and inflammation in CF has led to the development of new therapeutic approaches that are currently under evaluation by clinical trials. These new strategies dedicated to CF inflammation are designed to treat different dysregulated aspects such as oxidative stress, cytokine secretion, and the targeting of dysregulated pathways. In this review, we summarize the current understanding of the cellular and molecular mechanisms that contribute to abnormal lung inflammation in CF, as well as the new anti-inflammatory strategies proposed to CF patients by exploring novel molecular targets and novel drug approaches.
Collapse
Affiliation(s)
- Christie Mitri
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Zhengzhong Xu
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Yangzhou University, Yangzhou, China
| | - Pauline Bardin
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Département de Pédiatrie Respiratoire, Hôpital Trousseau, AP-HP, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Equipe Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Institut Pasteur, Paris, France
| | - Olivier Tabary
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| |
Collapse
|
5
|
Bush A. Azithromycin is the answer in paediatric respiratory medicine, but what was the question? Paediatr Respir Rev 2020; 34:67-74. [PMID: 31629643 DOI: 10.1016/j.prrv.2019.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023]
Abstract
The first clinical indication of non-antibiotic benefits of macrolides was in the Far East, in adults with diffuse panbronchiolitis. This condition is characterised by chronic airway infection, often with Pseudomonas aeruginosa, airway inflammation, bronchiectasis and a high mortality. Low dose erythromycin, and subsequently other macrolides, led in many cases to complete remission of the condition, and abrogated the neutrophilic airway inflammation characteristic of the disease. This dramatic finding sparked a flurry of interest in the many hundreds of macrolides in nature, especially their anti-inflammatory and immunomodulatory effects. The biggest subsequent trials of azithromycin were in cystic fibrosis, which has obvious similarities to diffuse panbronchiolitis. There were unquestionable improvements in lung function and pulmonary exacerbations, but compared to diffuse panbronchiolitis, the results were disappointing. Case reports, case series and some randomised controlled trials followed in other conditions. Three trials of azithromycin in preschool wheeze gave contradictory results; a trial in pauci-inflammatory adult asthma, and a trial in non-cystic fibrosis bronchiectasis both showed a significant reduction in exacerbations, but none matched the dramatic results in diffuse panbronchiolitis. There is clearly a huge risk of antibacterial resistance if macrolides are used widely and uncritically in the community. In summary, Azithromycin is not the answer to anything in paediatric respiratory medicine; the paediatric respiratory community needs to refocus on the dramatic benefits of macrolides in diffuse panbronchiolitis, use modern - omics technologies to determine the endotypes of inflammatory diseases and discover in nature or synthesise designer macrolides to replicate the diffuse panbronchiolitis results. We must now find out how to do better!
Collapse
Affiliation(s)
- Andrew Bush
- Professor of Paediatrics and Paediatric Respirology, Imperial College Consultant Paediatric Chest Physician, Royal Brompton & Harefield NHS Foundation Trust, National Heart and Lung Institute, UK; Paediatric Chest Physician, Royal Brompton Harefield NHS Foundation Trust, UK.
| |
Collapse
|
6
|
Samson C, Tamalet A, Thien HV, Taytard J, Perisson C, Nathan N, Clement A, Boelle PY, Corvol H. Long-term effects of azithromycin in patients with cystic fibrosis. Respir Med 2016; 117:1-6. [DOI: 10.1016/j.rmed.2016.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
|
7
|
Guerra L, Favia M, Castellani S, Barbuti G, Montemurro P, Diana A, Santostasi T, Polizzi AM, Mariggiò MA, Reshkin SJ, Manca A, Casavola V, Conese M. Antibiotic therapy affects functional behaviour in cystic fibrosis blood mononuclear cells. Eur Respir J 2015; 46:558-61. [PMID: 26065564 DOI: 10.1183/09031936.00230214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/17/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy These authors contributed equally to this work
| | - Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy These authors contributed equally to this work
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giovanna Barbuti
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari, Bari, Italy
| | - Pasqualina Montemurro
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari, Bari, Italy
| | - Anna Diana
- Cystic Fibrosis Regional Center, Department of Biomedical and Human Oncology, Section Pediatrics, U.O. "B. Trambusti", University of Bari, Bari, Italy
| | - Teresa Santostasi
- Cystic Fibrosis Regional Center, Department of Biomedical and Human Oncology, Section Pediatrics, U.O. "B. Trambusti", University of Bari, Bari, Italy
| | - Angela M Polizzi
- Cystic Fibrosis Regional Center, Department of Biomedical and Human Oncology, Section Pediatrics, U.O. "B. Trambusti", University of Bari, Bari, Italy
| | - Maria A Mariggiò
- Department of Biomedical Sciences and Human Oncology, Section of General Pathology, University of Bari, Bari, Italy
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Antonio Manca
- Cystic Fibrosis Regional Center, Department of Biomedical and Human Oncology, Section Pediatrics, U.O. "B. Trambusti", University of Bari, Bari, Italy
| | - Valeria Casavola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy These authors share senior authorship
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy These authors share senior authorship
| |
Collapse
|
8
|
Sonneville F, Ruffin M, Guillot L, Rousselet N, Le Rouzic P, Corvol H, Tabary O. New insights about miRNAs in cystic fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:897-908. [PMID: 25687559 DOI: 10.1016/j.ajpath.2014.12.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 01/08/2023]
Abstract
The molecular basis of cystic fibrosis (CF) is a mutation-related defect in the epithelial-cell chloride channel called CF transmembrane conductance regulator (CFTR). This defect alters chloride ion transport and impairs water transport across the cell membrane. Marked clinical heterogeneity occurs even among patients carrying the same mutation in the CFTR gene. Recent studies suggest that such heterogeneity could be related to epigenetic factors and/or miRNAs, which are small noncoding RNAs that modulate the expression of various proteins via post-transcriptional inhibition of gene expression. In the respiratory system, it has been shown that the dysregulation of miRNAs could participate in and lead to pathogenicity in several diseases. In CF airways, recent studies have proposed that miRNAs may modulate disease progression by affecting the production of either CFTR or various proteins that are dysregulated in the CF lung. Herein, we provide an overview of studies showing how miRNAs may modulate CF pathology and the efforts to develop miRNA-based treatments and/or to consider miRNAs as biomarkers. The identification of miRNAs involved in CF disease progression opens up new avenues toward treatments targeting selected clinical components of CF, independently from the CFTR mutation.
Collapse
Affiliation(s)
- Florence Sonneville
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Manon Ruffin
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Loïc Guillot
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Nathalie Rousselet
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Philippe Le Rouzic
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France
| | - Harriet Corvol
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France; Paediatric Respiratory Department, Hôpital Trousseau, AP-HP, Paris, France
| | - Olivier Tabary
- Inserm UMR_S938, CDR Saint-Antoine, Paris, France; Sorbonne Universités, UPMC University Paris 06, Paris, France.
| |
Collapse
|
9
|
Chen M, Yang T, Meng X, Sun T. Azithromycin attenuates cigarette smoke extract-induced oxidative stress injury in human alveolar epithelial cells. Mol Med Rep 2015; 11:3414-22. [PMID: 25607112 PMCID: PMC4368079 DOI: 10.3892/mmr.2015.3226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 12/12/2014] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoking has been verified to be one of the most important etiological factors causing the development of bronchogenic carcinoma and chronic obstructive pulmonary disease. Azithromycin (AZM) has been demonstrated to have antioxidant capacity. In the present study, whether AZM is able to attenuate cigarette smoke extract (CSE)-induced A549 cell oxidative stress injury was investigated. Cells were incubated with CSE in the presence or absence of AZM. Cell viability was measured using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The expression of vascular endothelial growth factor (VEGF) was analyzed using western blotting and ELISA. The expression of epithelial cell structural proteins, zona occludens (ZO)-1 and occludin was determined using western blotting and immunofluorescence staining. Reactive oxygen species (ROS) production was examined by flow cytometry and fluorescence staining. The results demonstrated that the exposure of A549 cells to CSE decreased cell viability in a dose- and time-dependent manner. AZM significantly attenuated the CSE-induced decreases in the expression of VEGF and epithelial cell structural proteins, including ZO-1 and occludin. CSE also stimulated ROS production in the A549 cell, while AZM significantly reversed the effects of CSE. In addition, the inhibition of ROS by N-acetyl-L-cysteine had similar effects as AZM on the expression of VEGF and epithelial cell structural proteins and also enhanced cell proliferation. In conclusion, AZM attenuated CSE-induced oxidative stress injury in A549 cells and may be a promising therapeutic agent for smoking-associated pulmonary diseases.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Tuo Yang
- Department of Respiratory and Critical Care Medicine, Fifth School of Clinical Medicine, Peking University, Beijing Hospital Ministry of Health, Beijing 100730, P.R. China
| | - Xiangiyu Meng
- Department of Respiratory and Critical Care Medicine, Fifth School of Clinical Medicine, Peking University, Beijing Hospital Ministry of Health, Beijing 100730, P.R. China
| | - Tieying Sun
- Department of Respiratory and Critical Care Medicine, Fifth School of Clinical Medicine, Peking University, Beijing Hospital Ministry of Health, Beijing 100730, P.R. China
| |
Collapse
|
10
|
Enhanced F508del-CFTR Channel Activity Ameliorates Bone Pathology in Murine Cystic Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1132-1141. [DOI: 10.1016/j.ajpath.2013.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 11/23/2022]
|
11
|
Effets immunomodulateurs des macrolides au cours des pathologies respiratoires chroniques. MEDECINE INTENSIVE REANIMATION 2013. [DOI: 10.1007/s13546-012-0639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Azithromycin fails to reduce inflammation in cystic fibrosis airway epithelial cells. Eur J Pharmacol 2012; 674:1-6. [DOI: 10.1016/j.ejphar.2011.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/12/2011] [Accepted: 10/20/2011] [Indexed: 11/23/2022]
|