1
|
Duffy S, Sleebs BE, Avery VM. An adaptable, fit-for-purpose screening approach with high-throughput capability to determine speed of action and stage specificity of anti-malarial compounds. Antimicrob Agents Chemother 2024; 68:e0074624. [PMID: 39264187 PMCID: PMC11459970 DOI: 10.1128/aac.00746-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
A revamped in vitro compound identification and activity profiling approach is required to meet the large unmet need for new anti-malarial drugs to combat parasite drug resistance. Although compound hit identification utilizing high-throughput screening of large compound libraries is well established, the ability to rapidly prioritize such large numbers for further development is limited. Determining the speed of action of anti-malarial drug candidates is a vital component of malaria drug discovery, which currently occurs predominantly in lead optimization and development. This is due in part to the capacity of current methods which have low throughput due to the complexity and labor intensity of the approaches. Here, we provide an adaptable screening paradigm utilizing automated high content imaging, including the development of an automated schizont maturation assay, which collectively can identify anti-malarial compounds, classify activity into fast and slow acting, and provide an indication of the parasite stage specificity, with high-throughput capability. By frontloading these critical biological parameters much earlier in the drug discovery pipeline, it has the potential to reduce lead compound attrition rates later in the development process. The capability of the approach in its alternative formats is demonstrated using three Medicines for Malaria Venture open access compound "boxes," namely Pathogen Box (malaria set-125 compounds), Global Health Priority Box [Malaria Box 2 (80 compounds) and zoonotic neglected diseases (80 compounds)], and the Pandemic Response Box (400 compounds). From a total of 685 compounds tested, 79 were identified as having fast ring-stage-specific activity comparable to that of artemisinin and therefore of high priority for further consideration and development.
Collapse
Affiliation(s)
- Sandra Duffy
- Discovery Biology, School of Environment and Science, Griffith University, Griffith, Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Parkville, Australia
- Department of Medical Biology, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Parkville, Australia
| | - Vicky M. Avery
- Discovery Biology, School of Environment and Science, Griffith University, Griffith, Australia
| |
Collapse
|
2
|
Tully MK, Dini S, Flegg JA, McCarthy JS, Price DJ, Simpson JA. Evaluation of a Bayesian hierarchical pharmacokinetic-pharmacodynamic model for predicting parasitological outcomes in Phase 2 studies of new antimalarial drugs. Antimicrob Agents Chemother 2024; 68:e0086324. [PMID: 39136464 PMCID: PMC11373224 DOI: 10.1128/aac.00863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/05/2024] Open
Abstract
The rise of multidrug-resistant malaria requires accelerated development of novel antimalarial drugs. Pharmacokinetic-pharmacodynamic (PK-PD) models relate blood antimalarial drug concentrations with the parasite-time profile to inform dosing regimens. We performed a simulation study to assess the utility of a Bayesian hierarchical mechanistic PK-PD model for predicting parasite-time profiles for a Phase 2 study of a new antimalarial drug, cipargamin. We simulated cipargamin concentration- and malaria parasite-profiles based on a Phase 2 study of eight volunteers who received cipargamin 7 days after inoculation with malaria parasites. The cipargamin profiles were generated from a two-compartment PK model and parasite profiles from a previously published biologically informed PD model. One thousand PK-PD data sets of eight patients were simulated, following the sampling intervals of the Phase 2 study. The mechanistic PK-PD model was incorporated in a Bayesian hierarchical framework, and the parameters were estimated. Population PK model parameters describing absorption, distribution, and clearance were estimated with minimal bias (mean relative bias ranged from 1.7% to 8.4%). The PD model was fitted to the parasitaemia profiles in each simulated data set using the estimated PK parameters. Posterior predictive checks demonstrate that our PK-PD model adequately captures the simulated PD profiles. The bias of the estimated population average PD parameters was low-moderate in magnitude. This simulation study demonstrates the viability of our PK-PD model to predict parasitological outcomes in Phase 2 volunteer infection studies. This work will inform the dose-effect relationship of cipargamin, guiding decisions on dosing regimens to be evaluated in Phase 3 trials.
Collapse
Affiliation(s)
- Meg K Tully
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Saber Dini
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - James S McCarthy
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - David J Price
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Melbourne, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Achan J, Barry A, Leroy D, Kamara G, Duparc S, Kaszubska W, Gandhi P, Buffet B, Tshilab P, Ogutu B, Taylor T, Krishna S, Richardson N, Ramachandruni H, Rietveld H. Defining the next generation of severe malaria treatment: a target product profile. Malar J 2024; 23:174. [PMID: 38835069 DOI: 10.1186/s12936-024-04986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Severe malaria is a life-threatening infection, particularly affecting children under the age of 5 years in Africa. Current treatment with parenteral artemisinin derivatives is highly efficacious. However, artemisinin partial resistance is widespread in Southeast Asia, resulting in delayed parasite clearance after therapy, and has emerged independently in South America, Oceania, and Africa. Hence, new treatments for severe malaria are needed, and it is prudent to define their characteristics now. This manuscript focuses on the target product profile (TPP) for new treatments for severe malaria. It also highlights preparedness when considering ways of protecting the utility of artemisinin-based therapies. TARGET PRODUCT PROFILE Severe malaria treatments must be highly potent, with rapid onset of antiparasitic activity to clear the infection as quickly as possible to prevent complications. They should also have a low potential for drug resistance selection, given the high parasite burden in patients with severe malaria. Combination therapies are needed to deter resistance selection and dissemination. Partner drugs which are approved for uncomplicated malaria treatment would provide the most rapid development pathway for combinations, though new candidate molecules should be considered. Artemisinin combination approaches to severe malaria would extend the lifespan of current therapy, but ideally, completely novel, non-artemisinin-based combination therapies for severe malaria should be developed. These should be advanced to at least phase 2 clinical trials, enabling rapid progression to patient use should current treatment fail clinically. New drug combinations for severe malaria should be available as injectable formulations for rapid and effective treatment, or as rectal formulations for pre-referral intervention in resource-limited settings. CONCLUSION Defining the TPP is a key step to align responses across the community to proactively address the potential for clinical failure of artesunate in severe malaria. In the shorter term, artemisinin-based combination therapies should be developed using approved or novel drugs. In the longer term, novel combination treatments should be pursued. Thus, this TPP aims to direct efforts to preserve the efficacy of existing treatments while improving care and outcomes for individuals affected by this life-threatening disease.
Collapse
Affiliation(s)
| | - Aïssata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Didier Leroy
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - George Kamara
- Médecins Sans Frontières, Magburaka District Hospital, Freetown, Sierra Leone
| | - Stephan Duparc
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | - Wiweka Kaszubska
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bénédicte Buffet
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland
| | | | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Terrie Taylor
- Queen Elizabeth Central Hospital and Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sanjeev Krishna
- Institut Für Tropenmedizin, Eberhard Karls Universität Tübingen, and German Center for Infection Research (Dzif), Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Clinical Academic Group, Institute for Infection and Immunity, St. George's University of London, London, UK
- St George's University Hospitals NHS Foundation Trust, London, UK
| | | | - Hanu Ramachandruni
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| | - Hans Rietveld
- Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, CH-1215, Geneva 15, Switzerland.
| |
Collapse
|
4
|
Nandal R, Kumar D, Aggarwal N, Kumar V, Narasimhan B, Marwaha RK, Sharma PC, Kumar S, Bansal N, Chopra H, Deep A. Recent advances, challenges and updates on the development of therapeutics for malaria. EXCLI JOURNAL 2024; 23:672-713. [PMID: 38887396 PMCID: PMC11180964 DOI: 10.17179/excli2023-6856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/03/2024] [Indexed: 06/20/2024]
Abstract
Malaria has developed as a serious worldwide health issue as a result of the introduction of resistant Plasmodium species strains. Because of the common chemo resistance to most of the existing drugs on the market, it poses a severe health problem and significant obstacles in drug research. Malaria treatment has evolved during the last two decades in response to Plasmodium falciparum drug sensitivity and a return of the disease in tropical areas. Plasmodium falciparum is now highly resistant to the majority of antimalarial drugs. The parasite resistance drew focus to developing novel antimalarials to combat parasite resistance. The requirement for many novel antimalarial drugs in the future year necessitates adopting various drug development methodologies. Different innovative strategies for discovering antimalarial drugs are now being examined here. This review is primarily concerned with the description of newly synthesized antimalarial compounds, i.e. Tafenoquine, Cipargamin, Ferroquine, Artefenomel, DSM265, MMV390048 designed to improve the activity of pure antimalarial enantiomers. In this review, we selected the representative malarial drugs in clinical trials, classified them with detailed targets according to their action, discussed the relationship within the human trials, and generated a summative discussion with prospective expectations.
Collapse
Affiliation(s)
- Rimmy Nandal
- Shri Baba MastNath Institute of Pharmaceutical Sciences and Research, Baba Mast Nath University, Asthal Bohar, Rohtak-124001, Haryana, India
| | - Davinder Kumar
- College of Pharmacy, PGIMS University of Health Sciences, Rohtak-124001, Haryana, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Virender Kumar
- College of Pharmacy, PGIMS University of Health Sciences, Rohtak-124001, Haryana, India
| | | | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak 124001 Haryana, India
| | - Prabodh Chander Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Surender Kumar
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani-127021, India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai - 602105, Tamil Nadu, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| |
Collapse
|
5
|
Schäfer TM, Pessanha de Carvalho L, Inoue J, Kreidenweiss A, Held J. The problem of antimalarial resistance and its implications for drug discovery. Expert Opin Drug Discov 2024; 19:209-224. [PMID: 38108082 DOI: 10.1080/17460441.2023.2284820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Malaria remains a devastating infectious disease with hundreds of thousands of casualties each year. Antimalarial drug resistance has been a threat to malaria control and elimination for many decades and is still of concern today. Despite the continued effectiveness of current first-line treatments, namely artemisinin-based combination therapies, the emergence of drug-resistant parasites in Southeast Asia and even more alarmingly the occurrence of resistance mutations in Africa is of great concern and requires immediate attention. AREAS COVERED A comprehensive overview of the mechanisms underlying the acquisition of drug resistance in Plasmodium falciparum is given. Understanding these processes provides valuable insights that can be harnessed for the development and selection of novel antimalarials with reduced resistance potential. Additionally, strategies to mitigate resistance to antimalarial compounds on the short term by using approved drugs are discussed. EXPERT OPINION While employing strategies that utilize already approved drugs may offer a prompt and cost-effective approach to counter antimalarial drug resistance, it is crucial to recognize that only continuous efforts into the development of novel antimalarial drugs can ensure the successful treatment of malaria in the future. Incorporating resistance propensity assessment during this developmental process will increase the likelihood of effective and enduring malaria treatments.
Collapse
Affiliation(s)
| | | | - Juliana Inoue
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
| |
Collapse
|
6
|
Siqueira-Neto JL, Wicht KJ, Chibale K, Burrows JN, Fidock DA, Winzeler EA. Antimalarial drug discovery: progress and approaches. Nat Rev Drug Discov 2023; 22:807-826. [PMID: 37652975 PMCID: PMC10543600 DOI: 10.1038/s41573-023-00772-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.
Collapse
Affiliation(s)
| | - Kathryn J Wicht
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | | | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | |
Collapse
|
7
|
Rao SPS, Manjunatha UH, Mikolajczak S, Ashigbie PG, Diagana TT. Drug discovery for parasitic diseases: powered by technology, enabled by pharmacology, informed by clinical science. Trends Parasitol 2023; 39:260-271. [PMID: 36803572 DOI: 10.1016/j.pt.2023.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023]
Abstract
While prevention is a bedrock of public health, innovative therapeutics are needed to complement the armamentarium of interventions required to achieve disease control and elimination targets for neglected diseases. Extraordinary advances in drug discovery technologies have occurred over the past decades, along with accumulation of scientific knowledge and experience in pharmacological and clinical sciences that are transforming many aspects of drug R&D across disciplines. We reflect on how these advances have propelled drug discovery for parasitic infections, focusing on malaria, kinetoplastid diseases, and cryptosporidiosis. We also discuss challenges and research priorities to accelerate discovery and development of urgently needed novel antiparasitic drugs.
Collapse
Affiliation(s)
| | | | | | - Paul G Ashigbie
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA.
| | | |
Collapse
|
8
|
Recent approaches in the drug research and development of novel antimalarial drugs with new targets. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:1-27. [PMID: 36692468 DOI: 10.2478/acph-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Malaria is a serious worldwide medical issue that results in substantial annual death and morbidity. The availability of treatment alternatives is limited, and the rise of resistant parasite types has posed a significant challenge to malaria treatment. To prevent a public health disaster, novel antimalarial agents with single-dosage therapies, extensive curative capability, and new mechanisms are urgently needed. There are several approaches to developing antimalarial drugs, ranging from alterations of current drugs to the creation of new compounds with specific targeting abilities. The availability of multiple genomic techniques, as well as recent advancements in parasite biology, provides a varied collection of possible targets for the development of novel treatments. A number of promising pharmacological interference targets have been uncovered in modern times. As a result, our review concentrates on the most current scientific and technical progress in the innovation of new antimalarial medications. The protein kinases, choline transport inhibitors, dihydroorotate dehydrogenase inhibitors, isoprenoid biosynthesis inhibitors, and enzymes involved in the metabolism of lipids and replication of deoxyribonucleic acid, are among the most fascinating antimalarial target proteins presently being investigated. The new cellular targets and drugs which can inhibit malaria and their development techniques are summarised in this study.
Collapse
|
9
|
Panda SS, Girgis AS, Aziz MN, Bekheit MS. Spirooxindole: A Versatile Biologically Active Heterocyclic Scaffold. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020618. [PMID: 36677676 PMCID: PMC9861573 DOI: 10.3390/molecules28020618] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Spirooxindoles occupy an important place in heterocyclic chemistry. Many natural spirooxindole-containing compounds have been identified as bio-promising agents. Synthetic analogs have also been synthesized utilizing different pathways. The present article summarizes the recent development of both natural and synthetic spirooxindole-containing compounds prepared from isatin or its derivatives reported in the last five years. The spirooxindoles are categorized based on their mentioned biological properties.
Collapse
Affiliation(s)
- Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
- Correspondence: or
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Marian N. Aziz
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
10
|
de Vries LE, Jansen PAM, Barcelo C, Munro J, Verhoef JMJ, Pasaje CFA, Rubiano K, Striepen J, Abla N, Berning L, Bolscher JM, Demarta-Gatsi C, Henderson RWM, Huijs T, Koolen KMJ, Tumwebaze PK, Yeo T, Aguiar ACC, Angulo-Barturen I, Churchyard A, Baum J, Fernández BC, Fuchs A, Gamo FJ, Guido RVC, Jiménez-Diaz MB, Pereira DB, Rochford R, Roesch C, Sanz LM, Trevitt G, Witkowski B, Wittlin S, Cooper RA, Rosenthal PJ, Sauerwein RW, Schalkwijk J, Hermkens PHH, Bonnert RV, Campo B, Fidock DA, Llinás M, Niles JC, Kooij TWA, Dechering KJ. Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183. Nat Commun 2022; 13:2158. [PMID: 35444200 PMCID: PMC9021288 DOI: 10.1038/s41467-022-29688-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a > 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission. Here, de Vries et al. perform a pre-clinical characterization of the antimalarial compound MMV693183: the compound targets acetyl-CoA synthetase, has efficacy in humanized mice against Plasmodium falciparum infection, blocks transmission to mosquito vectors, is safe in rats, and pharmacokinetic-pharmacodynamic modeling informs about a potential oral human dosing regimen.
Collapse
Affiliation(s)
- Laura E de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Patrick A M Jansen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Justin Munro
- Department of Chemistry and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA
| | - Julie M J Verhoef
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Kelly Rubiano
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Josefine Striepen
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nada Abla
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Luuk Berning
- TropIQ Health Sciences, Nijmegen, The Netherlands
| | | | | | | | - Tonnie Huijs
- TropIQ Health Sciences, Nijmegen, The Netherlands
| | | | | | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna C C Aguiar
- Sao Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil, São Carlos, SP, Brazil
| | | | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | | | - Aline Fuchs
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | - Rafael V C Guido
- Sao Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil, São Carlos, SP, Brazil
| | | | - Dhelio B Pereira
- Research Center for Tropical Medicine of Rondonia, Porto Velho, Brazil
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Laura M Sanz
- Global Health, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Translational Research Unit, Institut Pasteur, Paris & Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Roland A Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,TropIQ Health Sciences, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA.,Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Manuel Llinás
- Department of Chemistry and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA.,Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | |
Collapse
|
11
|
Yang J, Wang Y, Guan W, Su W, Li G, Zhang S, Yao H. Spiral molecules with antimalarial activities: A review. Eur J Med Chem 2022; 237:114361. [DOI: 10.1016/j.ejmech.2022.114361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/04/2022]
|
12
|
Consalvi S, Tammaro C, Appetecchia F, Biava M, Poce G. Malaria transmission blocking compounds: a patent review. Expert Opin Ther Pat 2022; 32:649-666. [PMID: 35240899 DOI: 10.1080/13543776.2022.2049239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite substantial progress in the field, malaria remains a global health issue and currently available control strategies are not sufficient to achieve eradication. Agents able to prevent transmission are likely to have a strong impact on malaria control and have been prioritized as a primary objective to reduce the number of secondary infections. Therefore, there is an increased interest in finding novel drugs targeting sexual stages of Plasmodium and innovative methods to target malaria transmission from host to vector, and vice versa. AREAS COVERED This review covers innovative transmission-blocking inventions patented between 2015 and October 2021. The focus is on chemical interventions which could be used as "chemical vaccines" to prevent transmission (small molecules, carbohydrates, and polypeptides). EXPERT OPINION Even though the development of novel strategies to block transmission still requires fundamental additional research and a deeper understanding of parasite sexual stages biology, the research in this field has significantly accelerated. Among innovative inventions patented over the last six years, the surface-delivery of antimalarial drugs to kill transmission-stages parasites in mosquitoes holds the highest promise for success in malaria control strategies, opening completely new scenarios in malaria transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Chiara Tammaro
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Federico Appetecchia
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Mariangela Biava
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
13
|
Assessment
in vitro
of the antimalarial and transmission blocking activities of Cipargamin and Ganaplacide in artemisinin resistant
Plasmodium falciparum. Antimicrob Agents Chemother 2022; 66:e0148121. [DOI: 10.1128/aac.01481-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artemisinin resistance in
Plasmodium falciparum
has emerged and spread widely in the Greater Mekong Subregion threatening current first line artemisinin combination treatments. New antimalarial drugs are needed urgently. Cipargamin (KAE609) and ganaplacide (KAF156) are promising novel antimalarial compounds in advanced stages of development. Both compounds have potent asexual blood stage activities, inhibit
P. falciparum
gametocytogenesis and reduce oocyst development in anopheline mosquitoes. In this study, we compared the asexual and sexual stage activities of cipargamin, ganaplacide and artesunate in artemisinin resistant
P. falciparum
isolates (N=7, K13 mutation; C580Y, G449A and R539T) from Thailand and Cambodia. Asexual blood stage antimalarial activity was evaluated in a SYBR-green I based 72h
in vitro
assay, and the effects on male and female mature stage V gametocytes were assessed in the
P. falciparum
dual gamete formation assay. Ganaplacide had higher activities when compared to cipargamin and artesunate, with a mean (SD) IC50 against asexual stages of 5.5 (1.1) nM, 7.8 (3.9) nM for male gametocytes and 57.9 (59.6) nM for female gametocytes. Cipargamin had a similar potency against male and female gametocytes, with a mean (SD) IC50 of 123.1 (80.2) nM for male gametocytes, 88.5 (52.7) nM for female gametocytes and 2.4 (0.6) nM for asexual stages. Both cipargamin and ganaplacide showed significant transmission-blocking activities against artemisinin resistant
P. falciparum
in vitro
.
Collapse
|
14
|
Woolley SD, Marquart L, Woodford J, Chalon S, Moehrle JJ, McCarthy JS, Barber BE. Haematological response in experimental human Plasmodium falciparum and Plasmodium vivax malaria. Malar J 2021; 20:470. [PMID: 34930260 PMCID: PMC8685492 DOI: 10.1186/s12936-021-04003-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
Background Malaria-associated anaemia, arising from symptomatic, asymptomatic and submicroscopic infections, is a significant cause of morbidity worldwide. Induced blood stage malaria volunteer infection studies (IBSM-VIS) provide a unique opportunity to evaluate the haematological response to early Plasmodium falciparum and Plasmodium vivax infection. Methods This study was an analysis of the haemoglobin, red cell counts, and parasitaemia data from 315 participants enrolled in IBSM-VIS between 2012 and 2019, including 269 participants inoculated with the 3D7 strain of P. falciparum (Pf3D7), 15 with an artemisinin-resistant P. falciparum strain (PfK13) and 46 with P. vivax. Factors associated with the fractional fall in haemoglobin (Hb-FF) were evaluated, and the malaria-attributable erythrocyte loss after accounting for phlebotomy-related losses was estimated. The relative contribution of parasitized erythrocytes to the malaria-attributable erythrocyte loss was also estimated. Results The median peak parasitaemia prior to treatment was 10,277 parasites/ml (IQR 3566–27,815), 71,427 parasites/ml [IQR 33,236–180,213], and 34,840 parasites/ml (IQR 13,302–77,064) in participants inoculated with Pf3D7, PfK13, and P. vivax, respectively. The median Hb-FF was 10.3% (IQR 7.8–13.3), 14.8% (IQR 11.8–15.9) and 11.7% (IQR 8.9–14.5) in those inoculated with Pf3D7, PfK13 and P. vivax, respectively, with the haemoglobin nadir occurring a median 12 (IQR 5–21), 15 (IQR 7–22), and 8 (IQR 7–15) days following inoculation. In participants inoculated with P. falciparum, recrudescence was associated with a greater Hb-FF, while in those with P. vivax, the Hb-FF was associated with a higher pre-treatment parasitaemia and later day of anti-malarial treatment. After accounting for phlebotomy-related blood losses, the estimated Hb-FF was 4.1% (IQR 3.1–5.3), 7.2% (IQR 5.8–7.8), and 4.9% (IQR 3.7–6.1) in participants inoculated with Pf3D7, PfK13, and P. vivax, respectively. Parasitized erythrocytes were estimated to account for 0.015% (IQR 0.006–0.06), 0.128% (IQR 0.068–0.616) and 0.022% (IQR 0.008–0.082) of the malaria-attributable erythrocyte loss in participants inoculated with Pf3D7, PfK13, and P. vivax, respectively. Conclusion Early experimental P. falciparum and P. vivax infection resulted in a small but significant fall in haemoglobin despite parasitaemia only just at the level of microscopic detection. Loss of parasitized erythrocytes accounted for < 0.2% of the total malaria-attributable haemoglobin loss. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-04003-7.
Collapse
|
15
|
Ndayisaba G, Yeka A, Asante KP, Grobusch MP, Karita E, Mugerwa H, Asiimwe S, Oduro A, Fofana B, Doumbia S, Jain JP, Barsainya S, Kullak-Ublick GA, Su G, Schmitt EK, Csermak K, Gandhi P, Hughes D. Hepatic safety and tolerability of cipargamin (KAE609), in adult patients with Plasmodium falciparum malaria: a randomized, phase II, controlled, dose-escalation trial in sub-Saharan Africa. Malar J 2021; 20:478. [PMID: 34930267 PMCID: PMC8686384 DOI: 10.1186/s12936-021-04009-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/04/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND The novel anti-malarial cipargamin (KAE609) has potent, rapid activity against Plasmodium falciparum. Transient asymptomatic liver function test elevations were previously observed in cipargamin-treated subjects in two trials: one in malaria patients in Asia and one in volunteers with experimentally induced malaria. In this study, the hepatic safety of cipargamin given as single doses of 10 to 150 mg and 10 to 50 mg once daily for 3 days was assessed. Efficacy results, frequency of treatment-emerging mutations in the atp4 gene and pharmacokinetics have been published elsewhere. Further, the R561H mutation in the k13 gene, which confers artemisinin-resistance, was associated with delayed parasite clearance following treatment with artemether-lumefantrine in Rwanda in this study. This was also the first study with cipargamin to be conducted in patients in sub-Saharan Africa. METHODS This was a Phase II, multicentre, randomized, open-label, dose-escalation trial in adults with uncomplicated falciparum malaria in five sub-Saharan countries, using artemether-lumefantrine as control. The primary endpoint was ≥ 2 Common Terminology Criteria for Adverse Events (CTCAE) Grade increase from baseline in alanine aminotransferase (ALT) or aspartate transaminase (AST) during the 4-week trial. RESULTS Overall, 2/135 patients treated with cipargamin had ≥ 2 CTCAE Grade increases from baseline in ALT or AST compared to 2/51 artemether-lumefantrine patients, with no significant difference between any cipargamin treatment group and the control group. Cipargamin exposure was comparable to or higher than those in previous studies. Hepatic adverse events and general safety and tolerability were similar for all cipargamin doses and artemether-lumefantrine. Cipargamin was well tolerated with no safety concerns. CONCLUSIONS This active-controlled, dose escalation study was a detailed assessment of the hepatic safety of cipargamin, across a wide range of doses, in patients with uncomplicated falciparum malaria. Comparison with previous cipargamin trials requires caution as no clear conclusion can be drawn as to whether hepatic safety and potential immunity to malaria would differ with ethnicity, patient age and or geography. Previous concerns regarding hepatic safety may have been confounded by factors including malaria itself, whether natural or experimental infection, and should not limit the further development of cipargamin. Trial registration ClinicalTrials.gov number: NCT03334747 (7 Nov 2017), other study ID CKAE609A2202.
Collapse
Affiliation(s)
| | - Adoke Yeka
- Infectious Diseases Research Collaboration, Masafu, Uganda
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Kintampo North Municipality, Kintampo, Ghana
| | - Martin P Grobusch
- Centre de Recherches Médicales en Lambaréné, Lambaréné, Gabon
- Amsterdam University Medical Centers, Amsterdam, The Netherlands
- University of Tübingen, Tübingen, Germany
| | | | | | - Stephen Asiimwe
- Kabwohe Clinical Research Centre and Mbarara University of Science and Technology, Mbarara, Uganda
| | | | | | | | - Jay Prakash Jain
- Novartis Institutes for BioMedical Research, Emeryville, CA, USA
| | | | - Gerd A Kullak-Ublick
- Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
- University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Guoqin Su
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Katalin Csermak
- Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Preetam Gandhi
- Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland.
| | | |
Collapse
|
16
|
Antimalarial drug candidates in phase I and II drug development: a scoping review. Antimicrob Agents Chemother 2021; 66:e0165921. [PMID: 34843390 PMCID: PMC8846400 DOI: 10.1128/aac.01659-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence and spread of parasite resistance to currently available antimalarials has highlighted the importance of developing novel antimalarials. This scoping review provides an overview of antimalarial drug candidates undergoing phase I and II studies between 1 January 2016 and 28 April 2021. PubMed, Web of Science, Embase, clinical trial registries, and reference lists were searched for relevant studies. Information regarding antimalarial compound details, clinical trial characteristics, study population, and drug pharmacokinetics and pharmacodynamics (PK-PD) were extracted. A total of 50 studies were included, of which 24 had published their results and 26 were unpublished. New antimalarial compounds were evaluated as monotherapy (28 studies, 14 drug candidates) and combination therapy (9 studies, 10 candidates). Fourteen active compounds were identified in the current antimalarial drug development pipeline together with 11 compounds that are inactive, 6 due to insufficient efficacy. PK-PD data were available from 24 studies published as open-access articles. Four unpublished studies have made their results publicly available on clinical trial registries. The terminal elimination half-life of new antimalarial compounds ranged from 14.7 to 483 h. The log10 parasite reduction ratio over 48 h and parasite clearance half-life for Plasmodium falciparum following a single-dose monotherapy were 1.55 to 4.1 and 3.4 to 9.4 h, respectively. The antimalarial drug development landscape has seen a number of novel compounds, with promising PK-PD properties, evaluated in phase I and II studies over the past 5 years. Timely public disclosure of PK-PD data is crucial for informative decision-making and drug development strategy.
Collapse
|
17
|
Schmitt EK, Ndayisaba G, Yeka A, Asante KP, Grobusch MP, Karita E, Mugerwa H, Asiimwe S, Oduro A, Fofana B, Doumbia S, Su G, Csermak Renner K, Venishetty VK, Sayyed S, Straimer J, Demin I, Barsainya S, Boulton C, Gandhi P. Efficacy of cipargamin (KAE609) in a randomized, Phase II dose-escalation study in adults in sub-Saharan Africa with uncomplicated Plasmodium falciparum malaria. Clin Infect Dis 2021; 74:1831-1839. [PMID: 34410358 PMCID: PMC9155642 DOI: 10.1093/cid/ciab716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 12/02/2022] Open
Abstract
Background Cipargamin (KAE609) is a potent antimalarial in a phase II trial. Here we report efficacy, pharmacokinetics, and resistance marker analysis across a range of cipargamin doses. These were secondary endpoints from a study primarily conducted to assess the hepatic safety of cipargamin (hepatic safety data are reported elsewhere). Methods This phase II, multicenter, randomized, open-label, dose-escalation trial was conducted in sub-Saharan Africa in adults with uncomplicated Plasmodium falciparum malaria. Cipargamin monotherapy was given as single doses up to 150 mg or up to 50 mg once daily for 3 days, with artemether-lumefantrine as control. Key efficacy endpoints were parasite clearance time (PCT), and polymerase chain reaction (PCR)–corrected and uncorrected adequate clinical and parasitological response (ACPR) at 14 and 28 days. Pharmacokinetics and molecular markers of drug resistance were also assessed. Results All single or multiple cipargamin doses ≥50 mg were associated with rapid parasite clearance, with median PCT of 8 hours versus 24 hours for artemether-lumefantrine. PCR-corrected ACPR at 14 and 28 days was >75% and 65%, respectively, for each cipargamin dose. A treatment-emerging mutation in the Pfatp4 gene, G358S, was detected in 65% of treatment failures. Pharmacokinetic parameters were consistent with previous data, and approximately dose proportional. Conclusions Cipargamin, at single doses of 50 to 150 mg, was associated with very rapid parasite clearance, PCR-corrected ACPR at 28 days of >65% in adults with uncomplicated P. falciparum malaria, and recrudescent parasites frequently harbored a treatment-emerging mutation. Cipargamin will be further developed with a suitable combination partner. Clinical Trials Registration ClinicalTrials.gov (NCT03334747).
Collapse
Affiliation(s)
| | | | - Adoke Yeka
- Infectious Diseases Research Collaboration, Busia, Uganda
| | | | - Martin P Grobusch
- Centre de Recherches Médicales en Lambaréné, Lambaréné, Gabon, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,University of Tübingen, Tübingen, Germany
| | | | | | - Stephen Asiimwe
- Kabwohe Clinical Research Center and Mbarara University of Science and Technology, Mbarara, Uganda
| | | | | | | | - Guoqin Su
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | | | | | - Judith Straimer
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | | | | | | | | |
Collapse
|
18
|
Tisnerat C, Dassonville-Klimpt A, Gosselet F, Sonnet P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 2021; 29:3326-3365. [PMID: 34344287 DOI: 10.2174/0929867328666210803152419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Malaria is a tropical threatening disease caused by Plasmodium parasites, resulting in 409,000 deaths in 2019. The delay of mortality and morbidity has been compounded by the widespread of drug resistant parasites from Southeast Asia since two decades. The emergence of artemisinin-resistant Plasmodium in Africa, where most cases are accounted, highlights the urgent need for new medicines. In this effort, the World Health Organization and Medicines for Malaria Venture joined to define clear goals for novel therapies and characterized the target candidate profile. This ongoing search for new treatments is based on imperative labor in medicinal chemistry which is summarized here with particular attention to hit-to-lead optimizations, key properties, and modes of action of these novel antimalarial drugs. This review, after presenting the current antimalarial chemotherapy, from quinine to the latest marketed drugs, focuses in particular on recent advances of the most promising antimalarial candidates in clinical and preclinical phases.
Collapse
Affiliation(s)
- Camille Tisnerat
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| | | | | | - Pascal Sonnet
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| |
Collapse
|