1
|
Hameed P S, Kotakonda H, Sharma S, Nandishaiah R, Katagihallimath N, Rao R, Sadler C, Slater I, Morton M, Chandrasekaran A, Griffen E, Pillai D, Reddy S, Bharatham N, Venkatesan S, Jonnalagadda V, Jayaraman R, Nanjundappa M, Sharma M, Raveendran S, Rajagopal S, Tumma H, Watters A, Becker H, Lindley J, Flamm R, Huband M, Sahm D, Hackel M, Mathur T, Kolamunnage-Dona R, Unsworth J, Mcentee L, Farrington N, Manickam D, Chandrashekara N, Jayachandiran S, Reddy H, Shanker S, Richard V, Thomas T, Nagaraj S, Datta S, Sambandamurthy V, Ramachandran V, Clay R, Tomayko J, Das S, V B. BWC0977, a broad-spectrum antibacterial clinical candidate to treat multidrug resistant infections. Nat Commun 2024; 15:8202. [PMID: 39294149 PMCID: PMC11410943 DOI: 10.1038/s41467-024-52557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
The global crisis of antimicrobial resistance (AMR) necessitates the development of broad-spectrum antibacterial drugs effective against multi-drug resistant (MDR) pathogens. BWC0977, a Novel Bacterial Topoisomerase Inhibitor (NBTI) selectively inhibits bacterial DNA replication via inhibition of DNA gyrase and topoisomerase IV. BWC0977 exhibited a minimum inhibitory concentration (MIC90) of 0.03-2 µg/mL against a global panel of MDR Gram-negative bacteria including Enterobacterales and non-fermenters, Gram-positive bacteria, anaerobes and biothreat pathogens. BWC0977 retains activity against isolates resistant to fluoroquinolones (FQs), carbapenems and colistin and demonstrates efficacy against multiple pathogens in two rodent species with significantly higher drug levels in the epithelial lining fluid of infected lungs. In healthy volunteers, single-ascending doses of BWC0977 administered intravenously ( https://clinicaltrials.gov/study/NCT05088421 ) was found to be safe, well tolerated (primary endpoint) and achieved dose-proportional exposures (secondary endpoint) consistent with modelled data from preclinical studies. Here, we show that BWC0977 has the potential to treat a range of critical-care infections including MDR bacterial pneumonias.
Collapse
Affiliation(s)
- Shahul Hameed P
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Harish Kotakonda
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Sreevalli Sharma
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Radha Nandishaiah
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Nainesh Katagihallimath
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Ranga Rao
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Claire Sadler
- Apconix Ltd. Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Ian Slater
- Apconix Ltd. Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Michael Morton
- Apconix Ltd. Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | | | - Ed Griffen
- Medchemica Ltd., No. 8162245, Ebenezer House, Newcastle-under-Lyme, Staffordshire, ST5 2BE, England
| | - Dhanashree Pillai
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Sambasiva Reddy
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Nagakumar Bharatham
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Suryanarayanan Venkatesan
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Venugopal Jonnalagadda
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Ramesh Jayaraman
- TheraIndx Lifesciences Pvt. Ltd., Sy No. 27, Deganahalli, Bangalore, 562123, India
| | - Mahesh Nanjundappa
- TheraIndx Lifesciences Pvt. Ltd., Sy No. 27, Deganahalli, Bangalore, 562123, India
| | - Maitrayee Sharma
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Savitha Raveendran
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Sreenath Rajagopal
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Harikrishna Tumma
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Amy Watters
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Holly Becker
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Jill Lindley
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Robert Flamm
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Michael Huband
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Dan Sahm
- IHMA USA, 2122 Palmer Drive, Schaumburg, IL, 60173-3817, USA
| | - Meredith Hackel
- IHMA USA, 2122 Palmer Drive, Schaumburg, IL, 60173-3817, USA
| | | | - Ruwanthi Kolamunnage-Dona
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Jennifer Unsworth
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Laura Mcentee
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Nikki Farrington
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Dhanasekaran Manickam
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Narayana Chandrashekara
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Sivakandan Jayachandiran
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Hrushikesava Reddy
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Sathya Shanker
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Vijay Richard
- Narayana Health, Mazumdar Shaw Medical Center, 258/A, Bommasandra Industrial Area, Hosur Road, Bangalore, 560 099, India
| | - Teby Thomas
- Microbiology laboratory, St. John's Hospital, Sarjapur Road, Bangalore, 560 034, India
| | - Savitha Nagaraj
- Microbiology laboratory, St. John's Hospital, Sarjapur Road, Bangalore, 560 034, India
| | - Santanu Datta
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Vasan Sambandamurthy
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Vasanthi Ramachandran
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Robert Clay
- Highbury Regulatory Science Limited, SK10 4TG, Nether Alderley, Cheshire, SK10 4TG, UK
| | - John Tomayko
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Shampa Das
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Balasubramanian V
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India.
| |
Collapse
|
2
|
Yang H, Yao Z, Yang K, Wang C, Li M, Zhang Y, Yan J, Lv R, Wang Y, Huang A, Zhang D, Li W, Wu Y, Miao Z. Synthesis and Antibacterial Evaluation of Novel Psoralen Derivatives against Methicillin-Resistant Staphylococcus aureus (MRSA). Chem Biodivers 2024; 21:e202302048. [PMID: 38263380 DOI: 10.1002/cbdv.202302048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Today, the bacterial infections caused by multidrug-resistant pathogens seriously threaten human health. Thereby, there is an urgent need to discover antibacterial drugs with novel mechanism. Here, novel psoralen derivatives had been designed and synthesized by a scaffold hopping strategy. Among these targeted twenty-five compounds, compound ZM631 showed the best antibacterial activity against methicillin-resistant S. aureus (MRSA) with the low MIC of 1 μg/mL which is 2-fold more active than that of the positive drug gepotidacin. Molecular docking study revealed that compound ZM631 fitted well in the active pockets of bacterial S. aureus DNA gyrase and formed a key hydrogen bond binding with the residue ASP-1083. These findings demonstrated that the psoralen scaffold could serve as an antibacterial lead compound for further drug development against multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Hang Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, the People's Republic of China
| | - Zheng Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
| | - Keli Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, the People's Republic of China
| | - Chuanhao Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Road, Nanjing, 210094, the People's Republic of China
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, the People's Republic of China
| | - Mochenxuan Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, the People's Republic of China
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, the People's Republic of China
| | - Yanming Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, the People's Republic of China
| | - Jianyu Yan
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, the People's Republic of China
| | - Rongxue Lv
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
| | - Yongchuang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, the People's Republic of China
| | - Anhua Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
| | - Daozuan Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
| | - Wei Li
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, the People's Republic of China
| | - Yuelin Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, the People's Republic of China
| |
Collapse
|
3
|
Pisano L, Giovannuzzi S, Supuran CT. Management of Neisseria gonorrhoeae infection: from drug resistance to drug repurposing. Expert Opin Ther Pat 2024; 34:511-524. [PMID: 38856987 DOI: 10.1080/13543776.2024.2367005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Neisseria gonorrhoeae is a common sexually transmitted disease connected with extensive drug resistance to many antibiotics. Presently, only expanded spectrum cephalosporins (ceftriaxone and cefixime) and azithromycin remain useful for its management. AREAS COVERED New chemotypes for the classical antibiotic drug target gyrase/topoisomerase IV afforded inhibitors with potent binding to these enzymes, with an inhibition mechanism distinct from that of fluoroquinolones, and thus less prone to mutations. The α-carbonic anhydrase from the genome of this bacterium (NgCAα) was also validated as an antibacterial target. EXPERT OPINION By exploiting different subunits from the gyrase/topoisomerase IV as well as new chemotypes, two new antibiotics reached Phase II/III clinical trials, zoliflodacin and gepotidacin. They possess a novel inhibition mechanism, binding in distinct parts of the enzyme compared to the fluoroquinolones. Other chemotypes with inhibitory activity in these enzymes were also reported. NgCAα inhibitors belonging to a variety of classes were obtained, with several sulfonamides showing MIC values in the range of 0.25-4 µg/mL and significant activity in animal models of this infection. Acetazolamide and similar CA inhibitors might thus be repurposed as antiinfectives. The scientific/patent literature has been searched for on PubMed, ScienceDirect, Espacenet, and PatentGuru, from 2016 to 2024.
Collapse
Affiliation(s)
- Luigi Pisano
- Section of Dermatology, Health Sciences Department, University of Florence, Florence, Italy
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Brown-Elliott BA, Bush G, Hughes MD, Rodriguez E, Weikel CA, Min SB, Wallace RJ. In vitro activity of gepotidacin and comparator antimicrobials against isolates of nontuberculous mycobacteria (NTM). Antimicrob Agents Chemother 2024:e0168423. [PMID: 38656138 DOI: 10.1128/aac.01684-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/31/2024] [Indexed: 04/26/2024] Open
Abstract
Novel antimicrobials are needed to treat rising nontuberculous mycobacteria (NTM) infections. Using standard broth microdilution methods, 68 NTM isolates were tested against gepotidacin, a new, first-in-class, oral triazaacenaphthylene bacterial topoisomerase inhibitor. MICs varied (0.25 to >64 µg/mL) with the lowest being M. fortuitum complex (0.25-8 µg/mL), M. mucogenicum complex (1-2 µg/mL), M. kansasii (0.25-8 µg/mL), and M. marinum (4-16 µg/mL). Testing greater numbers of some species is suggested to better understand gepotidacin activity against NTM.
Collapse
Affiliation(s)
- Barbara A Brown-Elliott
- The University of Texas Health Science Center at Tyler, Mycobacteria/Nocardia Laboratory, The University of Texas at Tyler School of Medicine, Tyler, Texas, USA
| | - Georgie Bush
- The University of Texas Health Science Center at Tyler, Mycobacteria/Nocardia Laboratory, The University of Texas at Tyler School of Medicine, Tyler, Texas, USA
| | - M Dolores Hughes
- The University of Texas Health Science Center at Tyler, Mycobacteria/Nocardia Laboratory, The University of Texas at Tyler School of Medicine, Tyler, Texas, USA
| | - Eliana Rodriguez
- The University of Texas Health Science Center at Tyler, Mycobacteria/Nocardia Laboratory, The University of Texas at Tyler School of Medicine, Tyler, Texas, USA
| | - Chase A Weikel
- Department of Infectious Diseases, GSK, Collegeville, Pennsylvania, USA
| | - Sharon B Min
- Department of Infectious Diseases, GSK, Collegeville, Pennsylvania, USA
| | - Richard J Wallace
- The University of Texas Health Science Center at Tyler, Mycobacteria/Nocardia Laboratory, The University of Texas at Tyler School of Medicine, Tyler, Texas, USA
| |
Collapse
|
5
|
Kokot M, Minovski N. Dynamic Profiling and Binding Affinity Prediction of NBTI Antibacterials against DNA Gyrase Enzyme by Multidimensional Machine Learning and Molecular Dynamics Simulations. ACS OMEGA 2024; 9:18278-18295. [PMID: 38680300 PMCID: PMC11044241 DOI: 10.1021/acsomega.4c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Bacterial type II topoisomerases are well-characterized and clinically important targets for antibacterial chemotherapy. Novel bacterial topoisomerase inhibitors (NBTIs) are a newly disclosed class of antibacterials. Prediction of their binding affinity to these enzymes would be beneficial for de novo design/optimization of new NBTIs. Utilizing in vitro NBTI experimental data, we constructed two comprehensive multidimensional DNA gyrase surrogate models for Staphylococcus aureus (q2 = 0.791) and Escherichia coli (q2 = 0.806). Both models accurately predicted the IC50s of 26 NBTIs from our recent studies. To investigate the NBTI's dynamic profile and binding to both targets, 10 selected NBTIs underwent molecular dynamics (MD) simulations. The analysis of MD production trajectories confirmed key hydrogen-bonding and hydrophobic contacts that NBTIs establish in both enzymes. Moreover, the binding free energies of selected NBTIs were computed by the linear interaction energy (LIE) method employing an in-house derived set of fitting parameters (α = 0.16, β = 0.029, γ = 0.0, and intercept = -1.72), which are successfully applicable to DNA gyrase of Gram-positive/Gram-negative pathogens. Both methods offer accurate predictions of the binding free energies of NBTIs against S. aureus and E. coli DNA gyrase. We are confident that this integrated modeling approach could be valuable in the de novo design and optimization of efficient NBTIs for combating resistant bacterial pathogens.
Collapse
Affiliation(s)
- Maja Kokot
- Laboratory
for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- The
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Nikola Minovski
- Laboratory
for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
6
|
Oviatt A, Gibson EG, Huang J, Mattern K, Neuman KC, Chan PF, Osheroff N. Interactions between Gepotidacin and Escherichia coli Gyrase and Topoisomerase IV: Genetic and Biochemical Evidence for Well-Balanced Dual-Targeting. ACS Infect Dis 2024; 10:1137-1151. [PMID: 38606465 PMCID: PMC11015057 DOI: 10.1021/acsinfecdis.3c00346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 04/13/2024]
Abstract
Antimicrobial resistance is a global threat to human health. Therefore, efforts have been made to develop new antibacterial agents that address this critical medical issue. Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial in clinical development. Recently, phase III clinical trials for gepotidacin treatment of uncomplicated urinary tract infections caused by uropathogens, including Escherichia coli, were stopped for demonstrated efficacy. Because of the clinical promise of gepotidacin, it is important to understand how the compound interacts with its cellular targets, gyrase and topoisomerase IV, from E. coli. Consequently, we determined how gyrase and topoisomerase IV mutations in amino acid residues that are involved in gepotidacin interactions affect the susceptibility of E. coli cells to the compound and characterized the effects of gepotidacin on the activities of purified wild-type and mutant gyrase and topoisomerase IV. Gepotidacin displayed well-balanced dual-targeting of gyrase and topoisomerase IV in E. coli cells, which was reflected in a similar inhibition of the catalytic activities of these enzymes by the compound. Gepotidacin induced gyrase/topoisomerase IV-mediated single-stranded, but not double-stranded, DNA breaks. Mutations in GyrA and ParC amino acid residues that interact with gepotidacin altered the activity of the compound against the enzymes and, when present in both gyrase and topoisomerase IV, reduced the antibacterial activity of gepotidacin against this mutant strain. Our studies provide insights regarding the well-balanced dual-targeting of gyrase and topoisomerase IV by gepotidacin in E. coli.
Collapse
Affiliation(s)
- Alexandria
A. Oviatt
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Elizabeth G. Gibson
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Jianzhong Huang
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Karen Mattern
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Keir C. Neuman
- Laboratory
of Single Molecule Biophysics, National
Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20982, United States
| | - Pan F. Chan
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
- VA
Tennessee
Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|
7
|
Collins J, Osheroff N. Gyrase and Topoisomerase IV: Recycling Old Targets for New Antibacterials to Combat Fluoroquinolone Resistance. ACS Infect Dis 2024; 10:1097-1115. [PMID: 38564341 PMCID: PMC11019561 DOI: 10.1021/acsinfecdis.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
8
|
Wagenlehner F, Perry CR, Hooton TM, Scangarella-Oman NE, Millns H, Powell M, Jarvis E, Dennison J, Sheets A, Butler D, Breton J, Janmohamed S. Oral gepotidacin versus nitrofurantoin in patients with uncomplicated urinary tract infection (EAGLE-2 and EAGLE-3): two randomised, controlled, double-blind, double-dummy, phase 3, non-inferiority trials. Lancet 2024; 403:741-755. [PMID: 38342126 DOI: 10.1016/s0140-6736(23)02196-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene antibiotic that inhibits bacterial DNA replication by a distinct mechanism of action and a unique binding site, providing well balanced inhibition of two type II topoisomerase enzymes. Oral gepotidacin is under investigation to treat uncomplicated urinary tract infections. We aimed to compare the efficacy and safety of oral gepotidacin with that of nitrofurantoin in adolescent and adult female individuals with uncomplicated urinary tract infections. METHODS EAGLE-2 and EAGLE-3 were phase 3, randomised, multicentre, double-blind, double-dummy, non-inferiority (10% margin) trials, in which patients were enrolled at 219 centres worldwide. Patients assigned female at birth, non-pregnant, aged 12 years or older, weighing 40 kg or more, with two or more symptoms of dysuria, frequency, urgency, or lower abdominal pain, and with evidence of urinary nitrite, pyuria, or both were eligible for inclusion. Patients were randomly assigned (1:1) centrally by interactive response technology to receive oral gepotidacin (1500 mg twice daily for 5 days) or oral nitrofurantoin (100 mg twice daily for 5 days), with randomisation stratified by age category and history of recurrent uncomplicated urinary tract infections. Patients, investigators, and the sponsor study team were masked to treatment assignment. The primary endpoint, therapeutic response (success or failure) at test-of-cure (ie, day 10-13), was evaluated in randomly assigned patients with nitrofurantoin-susceptible qualifying uropathogens (≥105 colony-forming units [CFU] per mL) and who received at least one dose of study treatment. Conforming to regulatory guidance, therapeutic success was defined as combined clinical success (ie, complete symptom resolution) and microbiological success (ie, reduction of qualifying uropathogens to <103 CFU/mL) without other systemic antimicrobial use. Safety analyses included patients who were randomly assigned and who received at least one dose of study treatment. The trials are registered with ClinicalTrials.gov, NCT04020341 (EAGLE-2) and NCT04187144 (EAGLE-3), and are completed. FINDINGS Studies were undertaken from Oct 17, 2019, to Nov 30, 2022 (EAGLE-2), and from April 23, 2020, to Dec 1, 2022 (EAGLE-3). 1680 patients in EAGLE-2 and 1731 patients in EAGLE-3 were screened for eligibility, of whom 1531 and 1605 were randomly assigned, respectively (767 in the gepotidacin group and 764 in the nitrofurantoin group in EAGLE-2, and 805 in the gepotidacin group and 800 in the nitrofurantoin group in EAGLE-3). After an interim analysis, which was prospectively agreed as a protocol amendment, both studies were stopped for efficacy. Thus, the primary analysis population included only patients who, at the time of the interim analysis data cutoff, had the opportunity to reach the test-of-cure visit or were known to not have attained therapeutic success before the test-of-cure visit. In EAGLE-2, 162 (50·6%) of 320 patients assigned gepotidacin and 135 (47·0%) of 287 patients assigned nitrofurantoin had therapeutic success (adjusted difference 4·3%, 95% CI -3·6 to 12·1). In EAGLE-3, 162 (58·5%) of 277 patients assigned gepotidacin and 115 (43·6%) of 264 patients assigned nitrofurantoin had therapeutic success (adjusted difference 14·6%, 95% CI 6·4 to 22·8). Gepotidacin was non-inferior to nitrofurantoin in both studies and superior to nitrofurantoin in EAGLE-3. The most common adverse event with gepotidacin was diarrhoea (observed in 111 [14%] of 766 patients in EAGLE-2 and in 147 [18%] of 804 patients in EAGLE-3), whereas the most common adverse event with nitrofurantoin was nausea (in 29 [4%] of 760 patients in EAGLE-2 and in 35 [4%] of 798 patients in EAGLE-3). Cases were mostly mild or moderate. No life-threatening or fatal events occurred. INTERPRETATION Gepotidacin is an efficacious oral antibiotic with acceptable safety and tolerability profiles. As a first-in-class investigational oral antibiotic with activity against common uropathogens, including clinically important drug-resistant phenotypes, gepotidacin has the potential to offer substantial benefit to patients. FUNDING GSK and the US Office of the Assistant Secretary for Preparedness and Response, Biomedical Advanced Research and Development Authority.
Collapse
Affiliation(s)
- Florian Wagenlehner
- Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig-University, Giessen, Germany.
| | | | - Thomas M Hooton
- Miller School of Medicine, Medical Campus, University of Miami, Miami, FL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ali ASM, Anderson CS. Gepotidacin, a new first-in-class antibiotic for treating uncomplicated urinary tract infection. Lancet 2024; 403:702-703. [PMID: 38342129 DOI: 10.1016/s0140-6736(23)02697-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 02/13/2024]
Affiliation(s)
- Ased S M Ali
- Department of Urology, Mid Yorkshire Teaching NHS Trust, Wakefield WF1 4DG, UK; Convatec, Deeside, UK.
| | - Catriona S Anderson
- Longton Hall Surgery, NHS Primary Care Centre, Stoke on Trent, UK; Focus Medical Diagnostics, Newcastle under Lyme, UK
| |
Collapse
|
10
|
Zorman M, Hrast Rambaher M, Kokot M, Minovski N, Anderluh M. The overview of development of novel bacterial topoisomerase inhibitors effective against multidrug-resistant bacteria in an academic environment: From early hits to in vivo active antibacterials. Eur J Pharm Sci 2024; 192:106632. [PMID: 37949194 DOI: 10.1016/j.ejps.2023.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Antimicrobial resistance caused by the excessive and inappropriate use of antibacterial drugs is a global health concern. Currently, we are walking a fine line between the fact that most bacterial infections can still be cured with the antibiotics known so far, and the emergence of infections with bacteria resistant to several drugs at the same time, against which we no longer have an effective drug. Therefore, new antibacterial drugs are urgently needed to curb the hard-to-treat infections. Our group has developed new antibacterials from the class of novel bacterial topoisomerase inhibitors (NBTIs) that exhibit broad-spectrum antibacterial activity. This article reviews our efforts in developing highly potent NBTIs over the past decade. Following the discovery of an initial hit with potent enzyme inhibitory and broad-spectrum antibacterial activity, an extensive hit-to-lead campaign was conducted with the goal of optimizing physicochemical properties, reducing hERG inhibition, and maintaining antibacterial activity against both Gram-positive and Gram-negative bacteria, with a focus on methicillin-resistant Staphylococcus aureus (MRSA). This optimization strategy resulted in an amide-containing, focused NBTI library with compounds exhibiting potent antibacterial activity against Gram-positive bacteria, reduced hERG inhibition, no cardiotoxicity in in vivo zebrafish model, and favorable in vivo efficacy in a neutropenic murine thigh infection model for MRSA infections.
Collapse
Affiliation(s)
- Maša Zorman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana 1000, Slovenia; Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1001, Slovenia
| | - Martina Hrast Rambaher
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana 1000, Slovenia
| | - Maja Kokot
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana 1000, Slovenia; Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1001, Slovenia
| | - Nikola Minovski
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, Ljubljana 1001, Slovenia.
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
11
|
Schwartz L, de Dios Ruiz-Rosado J, Stonebrook E, Becknell B, Spencer JD. Uropathogen and host responses in pyelonephritis. Nat Rev Nephrol 2023; 19:658-671. [PMID: 37479904 PMCID: PMC10913074 DOI: 10.1038/s41581-023-00737-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections seen in clinical practice. The ascent of UTI-causing pathogens to the kidneys results in pyelonephritis, which can trigger kidney injury, scarring and ultimately impair kidney function. Despite sizable efforts to understand how infections develop or are cleared in the bladder, our appreciation of the mechanisms by which infections develop, progress or are eradicated in the kidney is limited. The identification of virulence factors that are produced by uropathogenic Escherichia coli to promote pyelonephritis have begun to fill this knowledge gap, as have insights into the mechanisms by which kidney tubular epithelial cells oppose uropathogenic E. coli infection to prevent or eradicate UTIs. Emerging data also illustrate how specific cellular immune responses eradicate infection whereas other immune cell populations promote kidney injury. Insights into the mechanisms by which uropathogenic E. coli circumvent host immune defences or antibiotic therapy to cause pyelonephritis is paramount to the development of new prevention and treatment strategies to mitigate pyelonephritis and its associated complications.
Collapse
Affiliation(s)
- Laura Schwartz
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| | - Juan de Dios Ruiz-Rosado
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Emily Stonebrook
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Brian Becknell
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - John David Spencer
- The Kidney and Urinary Tract Center, Nationwide Children's Abigail Wexner Research Institute, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
12
|
Wagenlehner FME. [New antibiotics for the treatment of urinary tract infections]. UROLOGIE (HEIDELBERG, GERMANY) 2023:10.1007/s00120-023-02121-5. [PMID: 37306723 DOI: 10.1007/s00120-023-02121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/13/2023]
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections. The clinical phenotypes of UTIs are heterogeneous, ranging from rather benign uncomplicated infections to complicated UTIs and pyelonephritis to severe urosepsis. Antibiotics have become indispensable in modern medicine, but the development of resistance is threatening clinical effectiveness. Antimicrobial resistance rates are locally high in UTIs, however can vary significantly depending on the population studied and the type of study. In addition, between 1990 and 2010, there was a discovery void in the development of new antibiotics that is still having an impact today. In recent years, UTIs have emerged as an infection model for research into novel antibiotics. In the last 10 years, novel gram-negative active drugs have been explored in these groups. On the one hand, novel beta-lactam/beta-lactamase inhibitor combinations were investigated, and there has also been further development of cephalosporins and aminoglycosides.
Collapse
Affiliation(s)
- Florian M E Wagenlehner
- Klinik für Urologie, Kinderurologie und Andrologie, Justus-Liebig-Universität Giessen, Rudolf-Buchheim Str. 7, 35392, Giessen, Deutschland.
| |
Collapse
|
13
|
Kokot M, Novak D, Zdovc I, Anderluh M, Hrast M, Minovski N. Exploring Alternative Pathways to Target Bacterial Type II Topoisomerases Using NBTI Antibacterials: Beyond Halogen-Bonding Interactions. Antibiotics (Basel) 2023; 12:antibiotics12050930. [PMID: 37237833 DOI: 10.3390/antibiotics12050930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Novel bacterial topoisomerase inhibitors (NBTIs) are a new class of antibacterial agents that target bacterial type II topoisomerases (DNA gyrase and topoisomerase IV). Our recently disclosed crystal structure of an NBTI ligand in complex with DNA gyrase and DNA revealed that the halogen atom in the para position of the phenyl right hand side (RHS) moiety is able to establish strong symmetrical bifurcated halogen bonds with the enzyme; these are responsible for the excellent enzyme inhibitory potency and antibacterial activity of these NBTIs. To further assess the possibility of any alternative interactions (e.g., hydrogen-bonding and/or hydrophobic interactions), we introduced various non-halogen groups at the p-position of the phenyl RHS moiety. Considering the hydrophobic nature of amino acid residues delineating the NBTI's binding pocket in bacterial topoisomerases, we demonstrated that designed NBTIs cannot establish any hydrogen-bonding interactions with the enzyme; hydrophobic interactions are feasible in all respects, while halogen-bonding interactions are apparently the most preferred.
Collapse
Affiliation(s)
- Maja Kokot
- Laboratory for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Doroteja Novak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Irena Zdovc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Martina Hrast
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Nikola Minovski
- Laboratory for Cheminformatics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Mancuso G, Midiri A, Gerace E, Marra M, Zummo S, Biondo C. Urinary Tract Infections: The Current Scenario and Future Prospects. Pathogens 2023; 12:pathogens12040623. [PMID: 37111509 PMCID: PMC10145414 DOI: 10.3390/pathogens12040623] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections worldwide, occurring in both community and healthcare settings. Although the clinical symptoms of UTIs are heterogeneous and range from uncomplicated (uUTIs) to complicated (cUTIs), most UTIs are usually treated empirically. Bacteria are the main causative agents of these infections, although more rarely, other microorganisms, such as fungi and some viruses, have been reported to be responsible for UTIs. Uropathogenic Escherichia coli (UPEC) is the most common causative agent for both uUTIs and cUTIs, followed by other pathogenic microorganisms, such as Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis, and Staphylococcus spp. In addition, the incidence of UTIs caused by multidrug resistance (MDR) is increasing, resulting in a significant increase in the spread of antibiotic resistance and the economic burden of these infections. Here, we discuss the various factors associated with UTIs, including the mechanisms of pathogenicity related to the bacteria that cause UTIs and the emergence of increasing resistance in UTI pathogens.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | | | - Maria Marra
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Sebastiana Zummo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
15
|
Khalid K, Rox K. All Roads Lead to Rome: Enhancing the Probability of Target Attainment with Different Pharmacokinetic/Pharmacodynamic Modelling Approaches. Antibiotics (Basel) 2023; 12:antibiotics12040690. [PMID: 37107052 PMCID: PMC10135278 DOI: 10.3390/antibiotics12040690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
In light of rising antimicrobial resistance and a decreasing number of antibiotics with novel modes of action, it is of utmost importance to accelerate development of novel treatment options. One aspect of acceleration is to understand pharmacokinetics (PK) and pharmacodynamics (PD) of drugs and to assess the probability of target attainment (PTA). Several in vitro and in vivo methods are deployed to determine these parameters, such as time-kill-curves, hollow-fiber infection models or animal models. However, to date the use of in silico methods to predict PK/PD and PTA is increasing. Since there is not just one way to perform the in silico analysis, we embarked on reviewing for which indications and how PK and PK/PD models as well as PTA analysis has been used to contribute to the understanding of the PK and PD of a drug. Therefore, we examined four recent examples in more detail, namely ceftazidime-avibactam, omadacycline, gepotidacin and zoliflodacin as well as cefiderocol. Whereas the first two compound classes mainly relied on the ‘classical’ development path and PK/PD was only deployed after approval, cefiderocol highly profited from in silico techniques that led to its approval. Finally, this review shall highlight current developments and possibilities to accelerate drug development, especially for anti-infectives.
Collapse
Affiliation(s)
- Kashaf Khalid
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
16
|
Kokot M, Weiss M, Zdovc I, Senerovic L, Radakovic N, Anderluh M, Minovski N, Hrast M. Amide containing NBTI antibacterials with reduced hERG inhibition, retained antimicrobial activity against gram-positive bacteria and in vivo efficacy. Eur J Med Chem 2023; 250:115160. [PMID: 36753879 DOI: 10.1016/j.ejmech.2023.115160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Novel bacterial topoisomerase inhibitors (NBTIs) are new promising antimicrobials for the treatment of multidrug-resistant bacterial infections. In recent years, many new NBTIs have been discovered, however most of them struggle with the same issue - the balance between antibacterial activity and hERG-related toxicity. We started a new campaign by optimizing the previous series of NBTIs, followed by the design and synthesis of a new, amide-containing focused NBTI library to reduce hERG inhibition and maintain antibacterial activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). This optimization strategy yielded the lead compound 12 that exhibits potent antibacterial activity against Gram-positive bacteria, reduced hERG inhibition, no cardiotoxicity in zebrafish model, and a favorable in vivo efficacy in a neutropenic murine thigh infection model of MRSA infection.
Collapse
Affiliation(s)
- Maja Kokot
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia
| | - Matjaž Weiss
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia
| | - Irena Zdovc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Lidija Senerovic
- Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11 042, Belgrade, Serbia
| | - Natasa Radakovic
- Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11 042, Belgrade, Serbia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia
| | - Nikola Minovski
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.
| | - Martina Hrast
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Koeth LM, DiFranco-Fisher JM, Scangarella-Oman NE. Analysis of the effect of urine on the in vitro activity of gepotidacin and levofloxacin against Escherichia coli, Staphylococcus epidermidis and Staphylococcus saprophyticus. Diagn Microbiol Infect Dis 2023; 106:115946. [DOI: 10.1016/j.diagmicrobio.2023.115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/05/2022] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
|
18
|
Barth A, Perry CR, Shabbir S, Zamek-Gliszczynski MJ, Thomas S, Dumont EF, Brimhall DB, Nguyen D, Srinivasan M, Swift B. Clinical assessment of gepotidacin (GSK2140944) as a victim and perpetrator of drug-drug interactions via CYP3A metabolism and transporters. Clin Transl Sci 2023; 16:647-661. [PMID: 36642822 PMCID: PMC10087077 DOI: 10.1111/cts.13477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Gepotidacin is a novel triazaacenaphthylene antibiotic in phase III development. Based on nonclinical in vitro characterization of gepotidacin metabolism, two phase I studies were conducted in healthy participants to investigate clinical drug-drug interactions (DDIs). We assessed gepotidacin as a DDI victim with a potent cytochrome P450 (CYP) 3A4/P-glycoprotein (P-gp) inhibitor (itraconazole), potent CYP3A4 inducer (rifampicin), and nonspecific organic cation transporter (OCT)/multidrug and toxic extrusion transporter (MATE) renal transport inhibitor (cimetidine) via single doses of gepotidacin before and after co-administration with multiple doses of the modulator drugs. Gepotidacin DDI perpetrator potential for P-gp inhibition (digoxin) and CYP3A4 inhibition (midazolam) was evaluated via single doses of the two-drug cocktail without and with gepotidacin. The DDI magnitudes were interpreted based on area under the concentration-time curve (AUC). A weak DDI (AUC increase 48%-50%) was observed for gepotidacin co-administered with itraconazole. A clinically significant decrease in gepotidacin plasma AUC (52%) was observed with rifampicin coadministration, indicating a moderate DDI. There was no DDI for gepotidacin with cimetidine; a unique biomarker approach showed increased serum creatinine (24%), decreased renal clearance of creatinine (21%), and N1-methylnicotinamide (39%), which confirmed extensive MATE inhibition and partial OCT2 inhibition. Gepotidacin was not a P-gp DDI perpetrator, although the maximum plasma concentration of digoxin increased (53%) and is potentially clinically relevant given its narrow therapeutic index. Gepotidacin demonstrated weak CYP3A4 inhibition with midazolam (<2-fold AUC increase). There were no new safety-risk profile findings. These results will inform the safe and efficacious clinical use of gepotidacin when co-administered with other drugs.
Collapse
Affiliation(s)
- Aline Barth
- Global Blood Therapeutics, South San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
A 2.8 Å Structure of Zoliflodacin in a DNA Cleavage Complex with Staphylococcus aureus DNA Gyrase. Int J Mol Sci 2023; 24:ijms24021634. [PMID: 36675148 PMCID: PMC9865888 DOI: 10.3390/ijms24021634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/17/2023] Open
Abstract
Since 2000, some thirteen quinolones and fluoroquinolones have been developed and have come to market. The quinolones, one of the most successful classes of antibacterial drugs, stabilize DNA cleavage complexes with DNA gyrase and topoisomerase IV (topo IV), the two bacterial type IIA topoisomerases. The dual targeting of gyrase and topo IV helps decrease the likelihood of resistance developing. Here, we report on a 2.8 Å X-ray crystal structure, which shows that zoliflodacin, a spiropyrimidinetrione antibiotic, binds in the same DNA cleavage site(s) as quinolones, sterically blocking DNA religation. The structure shows that zoliflodacin interacts with highly conserved residues on GyrB (and does not use the quinolone water-metal ion bridge to GyrA), suggesting it may be more difficult for bacteria to develop target mediated resistance. We show that zoliflodacin has an MIC of 4 µg/mL against Acinetobacter baumannii (A. baumannii), an improvement of four-fold over its progenitor QPT-1. The current phase III clinical trial of zoliflodacin for gonorrhea is due to be read out in 2023. Zoliflodacin, together with the unrelated novel bacterial topoisomerase inhibitor gepotidacin, is likely to become the first entirely novel chemical entities approved against Gram-negative bacteria in the 21st century. Zoliflodacin may also become the progenitor of a new safer class of antibacterial drugs against other problematic Gram-negative bacteria.
Collapse
|
20
|
Michalczyk E, Hommernick K, Behroz I, Kulike M, Pakosz-Stępień Z, Mazurek L, Seidel M, Kunert M, Santos K, von Moeller H, Loll B, Weston JB, Mainz A, Heddle JG, Süssmuth RD, Ghilarov D. Molecular mechanism of topoisomerase poisoning by the peptide antibiotic albicidin. Nat Catal 2023; 6:52-67. [PMID: 36741192 PMCID: PMC9886550 DOI: 10.1038/s41929-022-00904-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/30/2022] [Indexed: 01/24/2023]
Abstract
The peptide antibiotic albicidin is a DNA topoisomerase inhibitor with low-nanomolar bactericidal activity towards fluoroquinolone-resistant Gram-negative pathogens. However, its mode of action is poorly understood. We determined a 2.6 Å resolution cryoelectron microscopy structure of a ternary complex between Escherichia coli topoisomerase DNA gyrase, a 217 bp double-stranded DNA fragment and albicidin. Albicidin employs a dual binding mechanism where one end of the molecule obstructs the crucial gyrase dimer interface, while the other intercalates between the fragments of cleaved DNA substrate. Thus, albicidin efficiently locks DNA gyrase, preventing it from religating DNA and completing its catalytic cycle. Two additional structures of this trapped state were determined using synthetic albicidin analogues that demonstrate improved solubility, and activity against a range of gyrase variants and E. coli topoisomerase IV. The extraordinary promiscuity of the DNA-intercalating region of albicidins and their excellent performance against fluoroquinolone-resistant bacteria holds great promise for the development of last-resort antibiotics.
Collapse
Affiliation(s)
| | - Kay Hommernick
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Iraj Behroz
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Marcel Kulike
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Zuzanna Pakosz-Stępień
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Lukasz Mazurek
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Maria Seidel
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Maria Kunert
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | | | - Bernhard Loll
- moloX GmbH, Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - John B Weston
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Andi Mainz
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Dmitry Ghilarov
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
21
|
Barth A, Hossain M, Perry CR, Gross AS, Ogura H, Shabbir S, Thomas S, Dumont EF, Brimhall DB, Srinivasan M, Swift B. Pharmacokinetic, Safety, and Tolerability Evaluations of Gepotidacin (GSK2140944) in Healthy Japanese Participants. Clin Pharmacol Drug Dev 2023; 12:38-56. [PMID: 36468634 PMCID: PMC10107257 DOI: 10.1002/cpdd.1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/02/2022] [Indexed: 12/12/2022]
Abstract
Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene antibiotic in late-phase development for uncomplicated urinary tract infection and uncomplicated urogenital gonorrhea. Two clinical studies were conducted to assess the pharmacokinetics (PK) and interethnic comparisons of oral gepotidacin (free-base and to-be-marketed mesylate formulations) administered as single doses ranging from 1500 to 3000 mg in fed and fasted states, and as 2 × 3000-mg doses given 12 hours apart under fed conditions in healthy participants of Japanese ancestry. Dose proportionality was observed in plasma exposures, and comparable area under the concentration-time curve (AUC) and maximum concentration were observed in fed and fasted states. Interethnic comparisons for Japanese versus non-Japanese participant data showed slightly higher plasma maximum concentration (7%-30%) yet similar plasma AUCs; slightly lower urine AUCs (11%-18%) were observed. The slightly higher plasma exposures in healthy Japanese versus White participants in the same study were attributed to lower mean body weights (64 kg versus ≈80 kg). Adverse events were primarily gastrointestinal, and when administered with food, gastrointestinal tolerability was improved. Overall, the gepotidacin PK and safety-risk profiles in healthy Japanese support potential evaluation of the global clinical doses in future studies.
Collapse
Affiliation(s)
- Aline Barth
- GSK, Collegeville, Pennsylvania, USA.,Present affiliation: Global Blood Therapeutics, San Francisco, California, USA
| | - Mohammad Hossain
- GSK, Collegeville, Pennsylvania, USA.,Present affiliation: Servier Pharmaceuticals, Boston, Massachusetts, USA
| | | | | | | | | | | | - Etienne F Dumont
- GSK, Collegeville, Pennsylvania, USA.,Present affiliation: Boston Pharmaceuticals, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
22
|
Chen A, Dellos-Nolan S, Lu Y, West JS, Wozniak DJ, Mitton-Fry MJ. Dioxane-Linked Novel Bacterial Topoisomerase Inhibitors Exhibit Bactericidal Activity against Planktonic and Biofilm Staphylococcus aureus In Vitro. Microbiol Spectr 2022; 10:e0205622. [PMID: 36250857 PMCID: PMC9769912 DOI: 10.1128/spectrum.02056-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/28/2022] [Indexed: 01/06/2023] Open
Abstract
The development of novel treatments for Staphylococcus aureus infections remains a high priority worldwide. We previously reported compounds 0147 and 0186, novel bacterial topoisomerase inhibitors (NBTIs) with potent antibacterial activity against S. aureus, including methicillin-resistant S. aureus. Here, we further investigated the in vitro activity of 0147 and 0186 against S. aureus ATCC 29213. Both compounds demonstrated bactericidal activity against planktonic and biofilm S. aureus, which then translated into significant inhibition of biofilm formation. Combinations of NBTIs and glycopeptides yielded indifferent interactions against planktonic S. aureus, but several had synergistic effects against S. aureus biofilms. This work reinforces the potential of NBTIs as future therapeutics for S. aureus infections. IMPORTANCE The pathogen Staphylococcus aureus contributes substantially to infection-related mortality. Biofilms render bacteria more recalcitrant to antibacterial therapy. The manuscript describes the potent activity of a new class of antibacterial agents against both planktonic and biofilm populations of Staphylococcus aureus.
Collapse
Affiliation(s)
- Anna Chen
- Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sheri Dellos-Nolan
- Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yanran Lu
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Jason S. West
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Daniel J. Wozniak
- Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Mark J. Mitton-Fry
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
23
|
Abbott IJ, van Gorp E, Cottingham H, Macesic N, Wallis SC, Roberts JA, Meletiadis J, Peleg AY. Oral ciprofloxacin activity against ceftriaxone-resistant Escherichia coli in an in vitro bladder infection model. J Antimicrob Chemother 2022; 78:397-410. [PMID: 36473954 PMCID: PMC9890216 DOI: 10.1093/jac/dkac402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Pharmacodynamic profiling of oral ciprofloxacin dosing for urinary tract infections caused by ceftriaxone-resistant Escherichia coli isolates with ciprofloxacin MIC ≥ 0.25 mg/L. BACKGROUND Urine-specific breakpoints for ciprofloxacin do not exist. However, high urinary concentrations may promote efficacy in isolates with low-level resistance. METHODS Ceftriaxone-resistant E. coli urinary isolates were screened for ciprofloxacin susceptibility. Fifteen representative strains were selected and tested using a dynamic bladder infection model. Oral ciprofloxacin dosing was simulated over 3 days (250 mg daily, 500 mg daily, 250 mg 12 hourly, 500 mg 12 hourly and 750 mg 12 hourly). The model was run for 96 h. Primary endpoint was change in bacterial density at 72 h. Secondary endpoints were follow-up change in bacterial density at 96 h and area-under-bacterial-kill-curve. Bacterial response was related to exposure (AUC0-24/MIC; Cmax/MIC). PTA was determined using Monte-Carlo simulation. RESULTS Ninety-three clinical isolates demonstrated a trimodal ciprofloxacin MIC distribution (modal MICs at 0.016, 0.25 and 32 mg/L). Fifteen selected clinical isolates (ciprofloxacin MIC 0.25-512 mg/L) had a broad range of quinolone-resistance genes. Following ciprofloxacin exposure, E. coli ATCC 25922 (MIC 0.008 mg/L) was killed in all dosing experiments. Six isolates (MIC ≥ 16 mg/L) regrew in all experiments. Remaining isolates (MIC 0.25-8 mg/L) regrew variably after an initial period of killing, depending on simulated ciprofloxacin dose. A >95% PTA, using AUC0-24/MIC targets, supported 250 mg 12 hourly for susceptible isolates (MIC ≤ 0.25 mg/L). For isolates with MIC ≤ 1 mg/L, 750 mg 12 hourly promoted 3 log10 kill at the end of treatment (72 h), 1 log10 kill at follow-up (96 h) and 90% maximal activity (AUBKC0-96). CONCLUSIONS Bladder infection modelling supports oral ciprofloxacin activity against E. coli with low-level resistance (ciprofloxacin MIC ≤ 1 mg/L) when using high dose therapy (750 mg 12 hourly).
Collapse
Affiliation(s)
| | - Elke van Gorp
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Hugh Cottingham
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nenad Macesic
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Steven C Wallis
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia,Department of Intensive Care Medicine and Pharmacy Department, Royal Brisbane and Women’s Hospital, Brisbane, Australia,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | | | | |
Collapse
|
24
|
Singh SB, Tan CM, Kaelin D, Meinke PT, Miesel L, Olsen DB, Fukuda H, Kishii R, Takei M, Ohata K, Takeuchi T, Shibue T, Takano H, Nishimura A, Fukuda Y. Structure activity relationship of N-1 substituted 1,5-naphthyrid-2-one analogs of oxabicyclooctane-linked novel bacterial topoisomerase inhibitors as broad-spectrum antibacterial agents (Part-9). Bioorg Med Chem Lett 2022; 75:128808. [PMID: 35609741 DOI: 10.1016/j.bmcl.2022.128808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
Novel bacterial topoisomerase inhibitors (NBTIs) are the newest members of gyrase inhibitor broad-spectrum antibacterial agents, represented by the most advanced member, gepotidacin, a 4-amino-piperidine linked NBTI, which is undergoing phase III clinical trials for treatment of urinary tract infections (UTI). We have extensively reported studies on oxabicyclooctane linked NBTIs, including AM-8722. The present study summarizes structure activity relationship (SAR) of AM-8722 leading to identification of 7-fluoro-1-cyanomethyl-1,5-naphthyridin-2-one based NBTI (16, AM-8888) with improved potency and spectrum (MIC values of 0.016-4 μg/mL), with Pseudomonas aeruginosa being the least sensitive strain (MIC 4 μg/mL).
Collapse
Affiliation(s)
| | | | | | | | - Lynn Miesel
- Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | | | - Hideyuki Fukuda
- Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Ryuta Kishii
- Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Masaya Takei
- Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Kohei Ohata
- Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Tomoko Takeuchi
- Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Taku Shibue
- Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Hisashi Takano
- Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Akinori Nishimura
- Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Yasumichi Fukuda
- Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan.
| |
Collapse
|
25
|
Janin YL. On drug discovery against infectious diseases and academic medicinal chemistry contributions. Beilstein J Org Chem 2022; 18:1355-1378. [PMID: 36247982 PMCID: PMC9531561 DOI: 10.3762/bjoc.18.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
This perspective is an attempt to document the problems that medicinal chemists are facing in drug discovery. It is also trying to identify relevant/possible, research areas in which academics can have an impact and should thus be the subject of grant calls. Accordingly, it describes how hit discovery happens, how compounds to be screened are selected from available chemicals and the possible reasons for the recurrent paucity of useful/exploitable results reported. This is followed by the successful hit to lead stories leading to recent and original antibacterials which are, or about to be, used in human medicine. Then, illustrated considerations and suggestions are made on the possible inputs of academic medicinal chemists. This starts with the observation that discovering a "good" hit in the course of a screening campaign still rely on a lot of luck - which is within the reach of academics -, that the hit to lead process requires a lot of chemistry and that if public-private partnerships can be important throughout these stages, they are absolute requirements for clinical trials. Concerning suggestions to improve the current hit success rate, one academic input in organic chemistry would be to identify new and pertinent chemical space, design synthetic accesses to reach these and prepare the corresponding chemical libraries. Concerning hit to lead programs on a given target, if no new hits are available, previously reported leads along with new structural data can be pertinent starting points to design, prepare and assay original analogues. In conclusion, this text is an actual plea illustrating that, in many countries, academic research in medicinal chemistry should be more funded, especially in the therapeutic area neglected by the industry. At the least, such funds would provide the intensive to secure series of hopefully relevant chemical entities which appears to often lack when considering the results of academic as well as industrial screening campaigns.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| |
Collapse
|
26
|
Kokot M, Weiss M, Zdovc I, Anderluh M, Hrast M, Minovski N. Diminishing hERG inhibitory activity of aminopiperidine-naphthyridine linked NBTI antibacterials by structural and physicochemical optimizations. Bioorg Chem 2022; 128:106087. [PMID: 35970069 DOI: 10.1016/j.bioorg.2022.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
Novel bacterial topoisomerase inhibitors (NBTIs) are an important new class of antibacterials targeting bacterial type II topoisomerases (DNA gyrase and topoisomerase IV). Notwithstanding their potent antibacterial activity, they suffer from a detrimental class-related hERG blockage. In this study, we designed and synthesized an optimized library of NBTIs comprising different linker moieties that exhibit reduced hERG inhibition and retain inhibitory potencies on DNA gyrase and topoisomerase IV of Staphylococcus aureus and Escherichia coli, respectively, as well as potent antibacterial activities. Substitution of the linker's tertiary amine with polar groups outcome in diminished hERG inhibition. Compound 17 expresses nanomolar enzyme inhibitory potency and antibacterial activity against both Gram-positive and Gram-negative bacteria as well as reduced hERG inhibition relative to our previously published NBTI analogs. Here, we point to some important NBTI's structural features that influence their hERG inhibitory activity.
Collapse
Affiliation(s)
- Maja Kokot
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Matjaž Weiss
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Irena Zdovc
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Marko Anderluh
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Martina Hrast
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Nikola Minovski
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.
| |
Collapse
|
27
|
Kokot M, Anderluh M, Hrast M, Minovski N. The Structural Features of Novel Bacterial Topoisomerase Inhibitors That Define Their Activity on Topoisomerase IV. J Med Chem 2022; 65:6431-6440. [PMID: 35503563 PMCID: PMC9109137 DOI: 10.1021/acs.jmedchem.2c00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The continued emergence
of bacterial resistance has created an
urgent need for new and effective antibacterial agents. Bacterial
type II topoisomerases, such as DNA gyrase and topoisomerase IV (topoIV),
are well-validated targets for antibacterial chemotherapy. The novel
bacterial topoisomerase inhibitors (NBTIs) represent one of the new
promising classes of antibacterial agents. They can inhibit both of
these bacterial targets; however, their potencies differ on the targets
among species, making topoIV probably a primary target of NBTIs in
Gram-negative bacteria. Therefore, it is important to gain an insight
into the NBTIs key structural features that govern the topoIV inhibition.
However, in Gram-positive bacteria, topoIV is also a significant target
for achieving dual-targeting, which in turn contributes to avoiding
bacterial resistance caused by single-target mutations. In this perspective,
we address the structure–activity relationship guidelines for
NBTIs that target the topoIV enzyme in Gram-positive and Gram-negative
bacteria.
Collapse
Affiliation(s)
- Maja Kokot
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Martina Hrast
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Nikola Minovski
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
28
|
Reply to Kaye and Belley, "Third-Generation Cephalosporin-Resistant Enterobacterales Are Critical Priority Pathogens, Too!". Antimicrob Agents Chemother 2022; 66:e0022322. [PMID: 35323014 PMCID: PMC9017292 DOI: 10.1128/aac.00223-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
29
|
Scangarella-Oman NE, Hossain M, Hoover JL, Perry CR, Tiffany C, Barth A, Dumont EF. Dose Selection for Phase III Clinical Evaluation of Gepotidacin (GSK2140944) in the Treatment of Uncomplicated Urinary Tract Infections. Antimicrob Agents Chemother 2022; 66:e0149221. [PMID: 34978887 PMCID: PMC8923173 DOI: 10.1128/aac.01492-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotics are the current standard-of-care treatment for uncomplicated urinary tract infections (uUTIs). However, increasing rates of bacterial antibiotic resistance necessitate novel therapeutic options. Gepotidacin is a first-in-class triazaacenaphthylene antibiotic that selectively inhibits bacterial DNA replication by interaction with the bacterial subunits of DNA gyrase (GyrA) and topoisomerase IV (ParC). Gepotidacin is currently in clinical development for the treatment of uUTIs and other infections. In this article, we review data for gepotidacin from nonclinical studies, including in vitro activity, in vivo animal efficacy, and pharmacokinetic (PK) and pharmacokinetic/pharmacodynamic (PK/PD) models that informed dose selection for phase III clinical evaluation of gepotidacin. Based on this translational package of data, a gepotidacin 1,500-mg oral dose twice daily for 5 days was selected for two ongoing, randomized, multicenter, parallel-group, double-blind, double-dummy, active-comparator phase III clinical studies evaluating the safety and efficacy of gepotidacin in adolescent and adult female participants with uUTIs (ClinicalTrials.gov identifiers NCT04020341 and NCT04187144).
Collapse
Affiliation(s)
| | - Mohammad Hossain
- Research and Development, GlaxoSmithKline plc, Upper Providence, Pennsylvania, USA
| | - Jennifer L. Hoover
- Research and Development, GlaxoSmithKline plc, Upper Providence, Pennsylvania, USA
| | - Caroline R. Perry
- Research and Development, GlaxoSmithKline plc, Upper Providence, Pennsylvania, USA
| | - Courtney Tiffany
- Research and Development, GlaxoSmithKline plc, Upper Providence, Pennsylvania, USA
| | - Aline Barth
- Research and Development, GlaxoSmithKline plc, Upper Providence, Pennsylvania, USA
| | - Etienne F. Dumont
- Research and Development, GlaxoSmithKline plc, Upper Providence, Pennsylvania, USA
| |
Collapse
|