1
|
Shi S, Xu M, Zhao Y, Feng L, Liu Q, Yao Z, Sun Y, Zhou T, Ye J. Tigecycline-Rifampicin Restrains Resistance Development in Carbapenem-Resistant Klebsiella pneumoniae. ACS Infect Dis 2023; 9:1858-1866. [PMID: 37669401 DOI: 10.1021/acsinfecdis.3c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The goal of this study was to clarify the synergistic antibacterial activity of the combination of tigecycline (TGC) and rifampicin (RIF). Additionally, the study sought to investigate the impact of this combination on the development of mutational resistance and to assess its efficacy in an in vivo model using Galleria mellonella. Through a checkerboard test, we found that the combination of TGC and RIF showed synergistic antibacterial activity against carbapenem-resistant Klebsiella pneumoniae (CRKP). The fractional inhibition concentration index (FICI) was found to be ≤0.5, confirming the potency of the combination. Additionally, this synergistic effect was further validated in vivo using the G. mellonella infection model. TGC-RIF treatment had a lower mutant prevention concentration (MPC) than that of monotherapy, indicating its potential to reduce the development of mutational resistance. We observed a substantial variation in the MPCs of TGC and RIF when they were measured at different proportions in the combinations. Furthermore, during the resistant mutant selection window (MSW) test, we noticed a correlation between strains with low FICI and low MSW. The expression of efflux-pump-related genes, namely rarA and acrB, is significantly decreased in the combination therapy group. This indicates that altered expression levels of certain efflux pump regulator genes are associated with a combined decrease in bacterial mutation resistance. In conclusion, the combination of TGC and RIF effectively suppresses antibiotic resistance selection in CRKP. This study establishes a paradigm for evaluating drug-resistant mutant suppression in antimicrobial combination therapy.
Collapse
Affiliation(s)
- Shiyi Shi
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Yining Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Luozhu Feng
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Qi Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Zhuocheng Yao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325000, People's Republic of China
| |
Collapse
|
2
|
Li L, Ma J, Cheng P, Li M, Yu Z, Song X, Yu Z, Sun H, Zhang W, Wang Z. Roles of two-component regulatory systems in Klebsiella pneumoniae: Regulation of virulence, antibiotic resistance, and stress responses. Microbiol Res 2023; 272:127374. [PMID: 37031567 DOI: 10.1016/j.micres.2023.127374] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen belonging to the Enterobacteriaceae family, which is the leading cause of nosocomial infections. The emergence of hypervirulent and multi-drug resistant K. pneumoniae is a serious health threat. In the process of infection, K. pneumoniae needs to adapt to different environmental conditions, and the two-component regulatory system (TCS) composed of a sensor histidine kinase and response regulator is an important bacterial regulatory system in response to external stimuli. Understanding how K. pneumoniae perceives and responds to complex environmental stimuli provides insights into TCS regulation mechanisms and new targets for drug design. In this review, we analyzed the TCS composition and summarized the regulation mechanisms of TCSs, focusing on the regulation of genes involved in virulence, antibiotic resistance, and stress response. Collectively, these studies demonstrated that several TCSs play important roles in the regulation of virulence, antibiotic resistance and stress responses of K. pneumoniae. A single two-component regulatory system can participate in the regulation of several stress responses, and one stress response process may include several TCSs, forming a complex regulatory network. However, the function and regulation mechanism of some TCSs require further study. Hence, future research endeavors are required to enhance the understanding of TCS regulatory mechanisms and networks in K. pneumoniae, which is essential for the design of novel drugs targeting TCSs.
Collapse
|
3
|
Chen HL, Jiang Y, Li MM, Sun Y, Cao JM, Zhou C, Zhang XX, Qu Y, Zhou TL. Acquisition of Tigecycline Resistance by Carbapenem-Resistant Klebsiella pneumoniae Confers Collateral Hypersensitivity to Aminoglycosides. Front Microbiol 2021; 12:674502. [PMID: 34276606 PMCID: PMC8284424 DOI: 10.3389/fmicb.2021.674502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
Tigecycline is a last-resort antibiotic for infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP). This study aimed to broaden our understanding of the acquisition of collateral hypersensitivity by CRKP, as an evolutionary trade-off of developing resistance to tigecycline. Experimental induction of tigecycline resistance was conducted with tigecycline-sensitive CRKP clinical isolates. Antimicrobial susceptibility testing, microbial fitness assessment, genotypic analysis and full-genome sequencing were carried out for these clinical isolates and their resistance-induced descendants. We found that tigecycline resistance was successfully induced after exposing CRKP clinical isolates to tigecycline at gradually increased concentrations, at a minor fitness cost of bacterial cells. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) found higher expression of the efflux pump gene acrB (5.3–64.5-fold) and its regulatory gene ramA (7.4–65.8-fold) in resistance-induced strains compared to that in the tigecycline-sensitive clinical isolates. Stable hypersensitivities to aminoglycosides and other antibiotics were noticed in resistance-induced strains, showing significantly lowered MICs (X 4 – >500 times). Full genome sequencing and plasmid analysis suggested the induced collateral hypersensitivity might be multifaceted, with the loss of an antimicrobial resistance (AMR) plasmid being a possible major player. This study rationalized the sequential combination of tigecycline with aminoglycosides for the treatment of CRKP infections.
Collapse
Affiliation(s)
- Hua-le Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Laboratory Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mei-Mei Li
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian-Ming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Xiao Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yue Qu
- Biomedicine Discovery Institute, Department of Microbiology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Tie-Li Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Cheng YH, Huang TW, Juan CH, Chou SH, Tseng YY, Chen TW, Yang TC, Lin YT. Tigecycline-non-susceptible hypervirulent Klebsiella pneumoniae strains in Taiwan. J Antimicrob Chemother 2021; 75:309-317. [PMID: 31702790 DOI: 10.1093/jac/dkz450] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Emergent antimicrobial-resistant hypervirulent Klebsiella pneumoniae (hvKp) is an important public health issue. We aimed to investigate resistance mechanisms and hypervirulent traits among tigecycline-non-susceptible (TNS) K. pneumoniae clinical strains, focusing on one hvKp strain with in vivo evolution of tigecycline resistance. METHODS TNS K. pneumoniae strains causing invasive diseases in a medical centre in Taiwan between July 2015 and April 2018 were collected. Resistance mechanisms were determined and hvKp strains were defined as rmpA/rmpA2-carrying strains. Isogenic strains with and without tigecycline resistance were subjected to WGS and in vivo virulence testing. Further, site-directed mutagenesis was used to confirm the resistance mechanism. RESULTS In total, 31 TNS K. pneumoniae strains were isolated, including six hypervirulent strains. Tigecycline resistance mechanisms were mostly caused by overexpression of AcrAB and OqxAB together with up-regulation of RamA or RarA, respectively. One TNS hypervirulent strain (KP1692; MIC=6 mg/L) derived from its tigecycline-susceptible counterpart (KP1677; MIC=0.75 mg/L) showed acrAB overexpression. WGS revealed four genetic variations between KP1677 and KP1692. In addition, using site-directed mutagenesis, we confirmed that a 1 bp insertion in the ramA upstream region (RamR-binding site), leading to ramA and acrAB overexpression in KP1692, was responsible for tigecycline resistance. The in vivo virulence experiment showed that the TNS hvKp strain KP1692 still retained its high virulence compared with KP1677. CONCLUSIONS hvKp strains accounted for 19.4% among TNS strains. We identified alterations in the ramA upstream region as a mechanism of in vivo tigecycline resistance development in an hvKp strain.
Collapse
Affiliation(s)
- Yi-Hsiang Cheng
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Han Juan
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sheng-Hua Chou
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yao-Yi Tseng
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan.,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Li J, Xu Q, Ogurek S, Li Z, Wang P, Xie Q, Sheng Z, Wang M. Efflux Pump AcrAB Confers Decreased Susceptibility to Piperacillin-Tazobactam and Ceftolozane-Tazobactam in Tigecycline-Non-Susceptible Klebsiella pneumoniae. Infect Drug Resist 2020; 13:4309-4319. [PMID: 33273833 PMCID: PMC7705282 DOI: 10.2147/idr.s279020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 01/18/2023] Open
Abstract
Introduction Drug efflux pumps are critical for resistance in Gram-negative organisms, but there are limited data on the role they play in decreased susceptibility to β-lactam/β-lactamase inhibitor combinations. In this study, we aimed to investigate the impact of efflux pump AcrAB on piperacillin–tazobactam (TZP) and ceftolozane–tazobactam (C/T) susceptibility in tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) strains. Methods A tigecycline gradient was used to obtain various TNSKP strains, and in conjunction with the gradient derived strains, a TNSKP clinical strain (TNSKP24) was also included. Minimum inhibitory concentrations (MICs) of antibiotics were determined by the broth microdilution method, and whole-genome sequencing (WGS) was carried out to analyze genomic changes. PCR and sequencing were performed to confirm mutations in ramR, acrR, and the intergenic region of ramR-romA, and qRT-PCR was applied to evaluate levels of gene expression. In-frame acrB knockout and complementation were performed in 3 TNSKP strains. Results Two derivatives of K. pneumoniae K2606 (K2606-4 and K2606-16) and TNSKP24 overexpressed efflux pump AcrAB were obtained for further study. The MICs of TZP and C/T exhibited a 4- to 8-fold increase in K2606-4 and K2606-16, respectively, when compared with K2606 (TZP, 2/4 μg/mL; C/T, 0.25/4 μg/mL). Deletion of acrB decreased the MICs of TZP and C/T by 4- to 16-fold in TNSKP24, K2606-4, and K2606-16, respectively, and complementation of acrB increased the MICs of these agents. MICs of clavulanate, sulbactam, and avibactam in the presence of β-lactam compounds did not change after acrB deletion and subsequent introduction of complementation mutants. Conclusion This study highlights that decreased susceptibility to TZP and C/T could be caused by the multidrug efflux pump AcrAB in TNSKP strains.
Collapse
Affiliation(s)
- Junjie Li
- Department of Respiratory and Critical Care Medicine, Shanghai Institute of Respiratory Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Qingqing Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| | - Sean Ogurek
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ziqiang Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Peiyun Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zike Sheng
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Zhang X, Li F, Cui S, Mao L, Li X, Awan F, Lv W, Zeng Z. Prevalence and Distribution Characteristics of blaKPC-2 and blaNDM-1 Genes in Klebsiella pneumoniae. Infect Drug Resist 2020; 13:2901-2910. [PMID: 32903853 PMCID: PMC7445519 DOI: 10.2147/idr.s253631] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/26/2020] [Indexed: 01/11/2023] Open
Abstract
Background Carbapenem-resistant Klebsiella pneumoniae infections have caused major concern and posed a global threat to public health. As blaKPC-2 and blaNDM-1 genes are the most widely reported carbapenem resistant genes in K. pneumonia, it is crucial to study the prevalence and geographical distribution of these two genes for further understanding of their transmission mode and mechanism. Purpose Here, we investigated the prevalence and distribution of blaKPC-2 and blaNDM-1 genes in carbapenem-resistant K. pneumoniae strains from a tertiary hospital and from 1579 genomes available in the NCBI database, and further analyzed the possible core structure of blaKPC-2 or blaNDM-1 genes among global genome data. Materials and Methods K. pneumoniae strains from a tertiary hospital in China during 2013–2018 were collected and their antimicrobial susceptibility testing for 28 antibiotics was determined. Whole-genome sequencing of carbapenem-resistant K. pneumoniae strains was used to investigate the genetic characterization. The phylogenetic relationships of these strains were investigated through pan-genome analysis. The epidemiology and distribution of blaKPC-2 and blaNDM-1 genes in K. pneumoniae based on 1579 global genomes and carbapenem-resistant K. pneumoniae strains from hospital were analyzed using bioinformatics. The possible core structure carrying blaKPC-2 or blaNDM-1 genes was investigated among global data. Results A total of 19 carbapenem-resistant K. pneumoniae were isolated in a tertiary hospital. All isolates had a multi-resistant pattern and eight kinds of resistance genes. The phylogenetic analysis showed all isolates in the hospital were dominated by two lineages composed of ST11 and ST25, respectively. ST11 and ST25 were the major ST type carrying blaKPC-2 and blaNDM-1 genes, respectively. Among 1579 global genomes data, 147 known ST types (1195 genomes) have been identified, while ST258 (23.6%) and ST11 (22.1%) were the globally prevalent clones among the known ST types. Genetic environment analysis showed that the ISKpn7-dnaA/ISKpn27 -blaKPC-2-ISkpn6 and blaNDM-1-ble-trpf-nagA may be the core structure in the horizontal transfer of blaKPC-2 and blaNDM-1, respectively. In addition, DNA transferase (hin) may be involved in the horizontal transfer or the expression of blaNDM-1. Conclusion There was clonal transmission of carbapenem-resistant K. pneumoniae in the tertiary hospital in China. The prevalence and distribution of blaKPC-2 and blaNDM-1 varied by countries and were driven by different transposons carrying the core structure. This study shed light on the genetic environment of blaKPC-2 and blaNDM-1 and offered basic information about the mechanism of carbapenem-resistant K. pneumoniae dissemination.
Collapse
Affiliation(s)
- Xiufeng Zhang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China
| | - Fangping Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Shiyun Cui
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China
| | - Lisha Mao
- Department of Clinical Laboratory, Cancer Hospital of Guangxi Medical University, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Xiaohua Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Furqan Awan
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China
| | - Weibiao Lv
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528000, People's Republic of China
| | - Zhenling Zeng
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in Animals, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China
| |
Collapse
|
7
|
The role of RND-type efflux pumps in multidrug-resistant mutants of Klebsiella pneumoniae. Sci Rep 2020; 10:10876. [PMID: 32616840 PMCID: PMC7331594 DOI: 10.1038/s41598-020-67820-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/10/2020] [Indexed: 11/23/2022] Open
Abstract
The emergence of multidrug-resistant Klebsiella pneumoniae is a worldwide problem. K. pneumoniae possesses numerous resistant genes in its genome. We isolated mutants resistant to various antimicrobials in vitro and investigated the importance of intrinsic genes in acquired resistance. The isolation frequency of the mutants was 10−7–10−9. Of the multidrug-resistant mutants, hyper-multidrug-resistant mutants (EB256-1, EB256-2, Nov1-8, Nov2-2, and OX128) were identified, and accelerated efflux activity of ethidium from the inside to the outside of the cells was observed in these mutants. Therefore, we hypothesized that the multidrug efflux pump, especially RND-type efflux pump, would be related to changes of the phenotype. We cloned all RND-type multidrug efflux pumps from the K. pneumoniae genome and characterized them. KexEF and KexC were powerful multidrug efflux pumps, in addition to AcrAB, KexD, OqxAB, and EefABC, which were reported previously. It was revealed that the expression of eefA was increased in EB256-1 and EB256-2: the expression of oqxA was increased in OX128; the expression of kexF was increased in Nov2-2. It was found that a region of 1,485 bp upstream of kexF, was deleted in the genome of Nov2-2. K. pneumoniae possesses more potent RND-multidrug efflux systems than E. coli. However, we revealed that most of them did not contribute to the drug resistance of our strain at basic levels of expression. On the other hand, it was also noted that the overexpression of these pumps could lead to multidrug resistance based on exposure to antimicrobial chemicals. We conclude that these pumps may have a role to maintain the intrinsic resistance of K. pneumoniae when they are overexpressed. The antimicrobial chemicals selected many resistant mutants at the same minimum inhibitory concentration (MIC) or a concentration slightly higher than the MIC. These results support the importance of using antibiotics at appropriate concentrations at clinical sites.
Collapse
|
8
|
Molecular and Clinical Characterization of Multidrug-Resistant and Hypervirulent Klebsiella pneumoniae Strains from Liver Abscess in Taiwan. Antimicrob Agents Chemother 2020; 64:AAC.00174-20. [PMID: 32152079 DOI: 10.1128/aac.00174-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae strains are the major cause of liver abscesses throughout East Asia, and these strains are usually antibiotic susceptible. Recently, multidrug-resistant and hypervirulent (MDR-HV) K. pneumoniae strains have emerged due to hypervirulent strains acquiring antimicrobial resistance determinants or the transfer of a virulence plasmid into a classic MDR strain. In this study, we characterized the clinical and microbiological properties of K. pneumoniae liver abscess (KPLA) caused by MDR-HV strains in Taiwan. Patients with community onset KPLA were retrospectively identified at Taipei Veterans General Hospital during January 2013 to May 2018. Antimicrobial resistance mechanisms, capsular types, and sequence types were determined. MDR-HV strains and their parental antimicrobial-susceptible strains further underwent whole-genome sequencing (WGS) and in vivo mice lethality tests. Thirteen MDR-HV strains were identified from a total of 218 KPLA episodes. MDR-HV strains resulted in similar outcomes to antimicrobial-susceptible strains. All MDR-HV strains were traditional hypervirulent clones carrying virulence capsular types. The major resistance mechanisms were the overexpression of efflux pumps and/or the acquisition of ESBL or AmpC β-lactamase genes. WGS revealed that two hypervirulent strains had evolved to an MDR phenotype due to mutation in the ramR gene and the acquisition of an SHV-12-bearing plasmid, respectively. Both these MDR-HV strains retained high virulence compared to their parental strains. The spread of MDR-HV K. pneumoniae strains in the community raises significant public concerns, and measures should be taken to prevent the further acquisition of carbapenemase and other resistance genes among these strains in order to avoid the occurrence of untreatable KPLA.
Collapse
|
9
|
Wang CH, Hsieh YH, Powers ZM, Kao CY. Defeating Antibiotic-Resistant Bacteria: Exploring Alternative Therapies for a Post-Antibiotic Era. Int J Mol Sci 2020; 21:E1061. [PMID: 32033477 PMCID: PMC7037027 DOI: 10.3390/ijms21031061] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
Antibiotics are one of the greatest medical advances of the 20th century, however, they are quickly becoming useless due to antibiotic resistance that has been augmented by poor antibiotic stewardship and a void in novel antibiotic discovery. Few novel classes of antibiotics have been discovered since 1960, and the pipeline of antibiotics under development is limited. We therefore are heading for a post-antibiotic era in which common infections become untreatable and once again deadly. There is thus an emergent need for both novel classes of antibiotics and novel approaches to treatment, including the repurposing of existing drugs or preclinical compounds and expanded implementation of combination therapies. In this review, we highlight to utilize alternative drug targets/therapies such as combinational therapy, anti-regulator, anti-signal transduction, anti-virulence, anti-toxin, engineered bacteriophages, and microbiome, to defeat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Zachary M. Powers
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
10
|
Chen D, Zhao Y, Qiu Y, Xiao L, He H, Zheng D, Li X, Yu X, Xu N, Hu X, Chen F, Li H, Chen Y. CusS-CusR Two-Component System Mediates Tigecycline Resistance in Carbapenem-Resistant Klebsiella pneumoniae. Front Microbiol 2020; 10:3159. [PMID: 32047485 PMCID: PMC6997431 DOI: 10.3389/fmicb.2019.03159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022] Open
Abstract
Background The increase in carbapenem-resistant Klebsiella pneumoniae (CRKP), especially the emergence of tigecycline-resistant K. pneumoniae (KP), is a serious public health concern. However, the underlying mechanism of tigecycline resistance is unclear. In this study, we evaluated the role of the CusS-CusR two-component system (TCS), which is associated with copper/silver resistance, in tigecycline resistance in CRKP. Methods Following the in vitro evolution of tigecycline-resistant KP, the minimum inhibitory concentrations of tigecycline were determined using the micro-broth dilution method. RNA sequencing and data analysis were performed to identify differentially expressed genes. Quantitative PCR (qPCR) was performed to verify the genes of interest. Genes associated with tigecycline resistance, such as ramR, tex (T), and tet (A), were detected by PCR, and then mutants were confirmed by sequencing. Additionally, the efflux pump-associated genes soxS, oqxA, oqxB, acrE, and acrF were also analyzed by qPCR. CusR was deleted and complemented by the suicide vector pKO3-Km plasmid and pGEM-T-easy plasmid, respectively. Results Nine strains of KP were evaluated in our study. Strains A2 and A3 were evolved from A1, B2, and B3 were evolved from B1, and C2 and C3 were evolved from C1. The tigecycline minimum inhibitory concentration for A1, B1, and C1 was 0.5 μg/mL; that for A2, B2, and C3 was 16.0 μg/mL; and that for A3, B3, and C3 was 32.0 μg/mL. RNA-sequencing and qPCR confirmed that the differentially expressed genes cusE, cusS, cusR, cusC, cusF, cusB, and cusA showed higher expression in C2 and C3 than in C1. Genes related to the efflux pump AcrAB-TolC showed higher expression in B2 and B3 than in B1. No mutants of ramR, tex (T), or tet (A) were detected. SoxS, oqxA, oqxB, acrE, and acrF did not show increased expression in any group. After deletion and complementation of cusR among C3, the MIC of tigecycline decreased to 4 μg/mL, and then recovered to 32 μg/mL. The expression of cusFBCA, correspondingly decreased and increased significantly. Conclusion In addition to its primary function in resistance to copper/silver, the CusS-CusR two-component system is associated with CRKP resistance to tigecycline.
Collapse
Affiliation(s)
- Dongjie Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Clinical Microbiology Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Yunan Zhao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yanqin Qiu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Liying Xiao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Huaqiang He
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Dongmei Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiaoqin Li
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaoli Yu
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Nengluan Xu
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Xinlan Hu
- Clinical Microbiology Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Falin Chen
- Clinical Microbiology Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Hongru Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Yusheng Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Pulmonary and Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
11
|
Huang YH, Chou SH, Liang SW, Ni CE, Lin YT, Huang YW, Yang TC. Emergence of an XDR and carbapenemase-producing hypervirulent Klebsiella pneumoniae strain in Taiwan. J Antimicrob Chemother 2019; 73:2039-2046. [PMID: 29800340 DOI: 10.1093/jac/dky164] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/12/2018] [Indexed: 12/26/2022] Open
Abstract
Background Carbapenemase-producing Klebsiella pneumoniae causes high mortality owing to the limited therapeutic options available. Here, we investigated an emergent carbapenem-resistant K. pneumoniae strain with hypervirulence found among KPC-2-producing strains in Taiwan. Methods KPC-producing K. pneumoniae strains were collected consecutively from clinical specimens at the Taipei Veterans General Hospital between January 2012 and December 2014. Capsular types and the presence of rmpA/rmpA2 were analysed, and PFGE and MLST performed using these strains. The strain positive for rmpA/rmpA2 was tested in an in vivo mouse lethality study to verify its virulence and subjected to WGS to delineate its genomic features. Results A total of 62 KPC-2-producing K. pneumoniae strains were identified; all of these belonged to ST11 and capsular genotype K47. One strain isolated from a fatal case with intra-abdominal abscess (TVGHCRE225) harboured rmpA and rmpA2 genes. This strain was resistant to tigecycline and colistin, in addition to carbapenems, and did not belong to the major cluster in PFGE. TVGHCRE225 exhibited high in vivo virulence in the mouse lethality experiment. WGS showed that TVGHCRE225 acquired a novel hybrid virulence plasmid harbouring a set of virulence genes (iroBCDN, iucABCD, rmpA and rmpA2, and iutA) compared with the classic ST11 KPC-2-producing strain. Conclusions We identified an XDR ST11 KPC-2-producing K. pneumoniae strain carrying a hybrid virulent plasmid in Taiwan. Active surveillance focusing on carbapenem-resistant hypervirulent K. pneumoniae strains is necessary, as the threat to human health is imminent.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Institute of Biomedical Informatics and Centre for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Sheng-Hua Chou
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Syun-Wun Liang
- Institute of Biomedical Informatics and Centre for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-En Ni
- Institute of Biomedical Informatics and Centre for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wei Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
12
|
Jiang Y, Jia X, Xia Y. Risk factors with the development of infection with tigecycline- and carbapenem-resistant Enterobacter cloacae. Infect Drug Resist 2019; 12:667-674. [PMID: 30936728 PMCID: PMC6430992 DOI: 10.2147/idr.s189941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Tigecycline is regarded as a last resort treatment for carbapenem-resistant Enterobacter cloacae (CREC) infections, and increasing numbers of tigecycline- and carbapenem-resistant E. cloacae (TCREC) isolates have been reported in recent years. However, risk factors and clinical impacts of these isolates are poorly characterized. Patients and methods We conducted a retrospective case-case-control study of hospitalized patients with TCREC infection during the period 2012-2016 in Chongqing, China. Case patients with TCREC and those with CREC were compared to a control group with no E. cloacae infection. Multivariate logistic regression models were used to identify independent risk factors for acquiring TCREC and CREC. Results A total of 36 TCREC cases, 36 CREC cases, and 100 controls were enrolled in our study. Multivariable analysis indicated that nasal catheter (OR: 8.9; 95% CI: 1.1-75.2), exposure to penicillin (OR: 95.9; 95% CI: 8.9-1038.3), aminoglycosides (OR: 42.1; 95% CI: 2.1-830.6), and fluoroquinolones (OR: 18.6; 95% CI: 1.9-185.6) were independent predictors for acquiring TCREC. In addition, venous catheterization (OR: 12.2; 95% CI: 2.5-58.5), penicillin (OR: 30.8; 95% CI: 7.9-120.0), and broad-spectrum cephalosporin (OR: 5.0; 95% CI: 1.5-17.3) were independently associated with CREC acquisition. Conclusion Reasonable antibiotic stewardship programs and surveillance are necessary to control the tigecycline resistance among high-risk patients.
Collapse
Affiliation(s)
- Yuansu Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China,
| | - Xiaojiong Jia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China,
| | - Yun Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China,
| |
Collapse
|
13
|
Li J, Zhang H, Ning J, Sajid A, Cheng G, Yuan Z, Hao H. The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrob Resist Infect Control 2019; 8:44. [PMID: 30834112 PMCID: PMC6387526 DOI: 10.1186/s13756-019-0489-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/03/2019] [Indexed: 01/03/2023] Open
Abstract
Background OqxAB efflux pump has been found to mediate multidrug resistance (MDR) in various bacteria over the past decades. The updates on the nature and epidemiology of OqxAB efflux pump need to be fully reviewed to broaden our understanding of this MDR determinant. Methods A literature search using the keyword of "oqxAB" was conducted in the online databases of Pubmed and ISI Web of Science with no restriction on the date of publication. The 87 publications were included into this review as references due to their close relevance to the nature and/or epidemiology of OqxAB efflux pump. Results The oqxAB gene generally locates on chromosome and/or plasmids flanked by IS26-like elements in clinical isolates of Enterobacteriaceae and Klebsiella pneumoniae, conferring low to intermediated resistance to quinoxalines, quinolones tigecycline, nitrofurantoin, several detergents and disinfectants (benzalkonium chloride, triclosan and SDS). It could co-spread with other antimicrobial resistance genes (bla CTX-M, rmtB and aac(6')-Ib etc.), virulence genes and heavy metal resistance genes (pco and sil operons). Both RarA (activator) and OqxR (repressor) play important roles on regulation of the expression of OqxAB. Conclusions The dissemination of oqxAB gene may pose a great risk on food safety and public health. Further investigation and understanding of the natural functions, horizontal transfer, and regulation mechanism of the OqxAB efflux pump will aid in future strategies of antimicrobial usage.
Collapse
Affiliation(s)
- Jun Li
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China.,2Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Heying Zhang
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China
| | - Jianan Ning
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China
| | - Abdul Sajid
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China.,4College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan, KP Pakistan
| | - Guyue Cheng
- 3Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, P.R China, Wuhan, 430070 Hubei China
| | - Zonghui Yuan
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China.,3Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, P.R China, Wuhan, 430070 Hubei China
| | - Haihong Hao
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China.,3Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, P.R China, Wuhan, 430070 Hubei China
| |
Collapse
|
14
|
Durdu B, Koc MM, Hakyemez IN, Akkoyunlu Y, Daskaya H, Gultepe BS, Aslan T. Risk Factors Affecting Patterns of Antibiotic Resistance and Treatment Efficacy in Extreme Drug Resistance in Intensive Care Unit-Acquired Klebsiella Pneumoniae Infections: A 5-Year Analysis. Med Sci Monit 2019; 25:174-183. [PMID: 30614487 PMCID: PMC6391853 DOI: 10.12659/msm.911338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/25/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND We investigated the factors affecting antibiotic resistance in the intensive care unit (ICU)-related hospital-acquired infections caused by Klebsiella pneumoniae (KP-HAI) and the effects of antibiotics used for high-level antibiotic resistance on patient survival. MATERIAL AND METHODS This retrospective study was performed at the adult ICU of Bezmialem Vakif University Hospital. Patients who were followed up between 01 January 2012 and 31 May 2017 were evaluated. Each KP strain was categorized according to resistance patterns and analyzed. The efficiency of antibiotic therapy for highly-resistant KP-HAI was determined by patients' lifespans. RESULTS We evaluated 208 patients. With the prior use of carbapenem, antibiotics against resistant Gram-positives, and tigecycline, it was observed that the resistance rate of the infectious agents had a significant increase. As the resistance category increases, a significant decrease was seen in the survival time. We observed that if the treatment combination included trimethoprim-sulfamethoxazole, the survival time became significantly longer, and tigecycline-carbapenem-colistin and tigecycline-carbapenem combination patients showed significantly shorter survival times. CONCLUSIONS When the resistance increases, delays will occur in starting suitable and effective antibiotic treatment, with increased sepsis frequency and higher mortality rates. Trimethoprim-sulfamethoxazole can be an efficient alternative to extend survival time in trimethoprim-sulfamethoxazole-susceptible KP infections that have extensive drug resistance.
Collapse
Affiliation(s)
- Bulent Durdu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Meliha Meric Koc
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ismail N. Hakyemez
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Yasemin Akkoyunlu
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Hayrettin Daskaya
- Department of Anesthesia and Reanimation, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Bilge Sumbul Gultepe
- Department of Medical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Turan Aslan
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
15
|
Juan CH, Chuang C, Chen CH, Li L, Lin YT. Clinical characteristics, antimicrobial resistance and capsular types of community-acquired, healthcare-associated, and nosocomial Klebsiella pneumoniae bacteremia. Antimicrob Resist Infect Control 2019; 8:1. [PMID: 30622702 PMCID: PMC6318907 DOI: 10.1186/s13756-018-0426-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/25/2018] [Indexed: 11/25/2022] Open
Abstract
Background Klebsiella pneumoniae bacteremia is a major cause of morbidity and mortality worldwide. We aimed to compare the clinical characteristics, distribution of capsular types, and antimicrobial resistance of K. pneumoniae bacteremia among community-acquired (CA), healthcare-associated (HCA), and nosocomial infections. Methods This retrospective study of patients with K. pneumoniae bacteremia was conducted at Taipei Veterans General Hospital from January to December 2015. Clinical characteristics of K. pneumoniae bacteremia were collected. The K. pneumoniae isolates were subjected to antimicrobial susceptibility testing and capsular genotyping. Results In total, 337 patients with K. pneumoniae bacteremia were identified: 70 (20.8%), 102 (30.3%), and 165 (48.9%) presented with CA, HCA, and nosocomial infection, respectively. The 28-day mortality of HCA bacteremia was lower than that of nosocomial bacteremia (17.6% versus 30.9%, p = 0.016); however, that of the HCA and CA bacteremia was similar (17.6% versus 14.3%, p = 0.557). CA isolates had the highest prevalence of virulent capsular types (51.4%), followed by HCA (36.3%) and nosocomial isolates (19.4%). The proportion of multidrug-resistant (MDR) isolates was highest in nosocomial infections (41.8%), followed by HCA (23.5%) and CA infections (5.7%). Conclusion CA, HCA and nosocomial K. pneumoniae are distinct entities, as evidenced by the differences in clinical characteristics, antimicrobial resistance, and capsular types found in this study.
Collapse
Affiliation(s)
- Chih-Han Juan
- 1Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Number 201, Section 2, Shih-Pai Road, Beitou District, Taipei, 11217 Taiwan
| | - Chien Chuang
- 1Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Number 201, Section 2, Shih-Pai Road, Beitou District, Taipei, 11217 Taiwan
| | - Chi-Han Chen
- 2Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Lo Li
- 2Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Tsung Lin
- 1Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Number 201, Section 2, Shih-Pai Road, Beitou District, Taipei, 11217 Taiwan.,3Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
16
|
Lin YT, Cheng YH, Juan CH, Wu PF, Huang YW, Chou SH, Yang TC, Wang FD. High mortality among patients infected with hypervirulent antimicrobial-resistant capsular type K1 Klebsiella pneumoniae strains in Taiwan. Int J Antimicrob Agents 2018; 52:251-257. [PMID: 29906566 DOI: 10.1016/j.ijantimicag.2018.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/23/2018] [Accepted: 06/02/2018] [Indexed: 01/08/2023]
Abstract
Capsular type K1 Klebsiella pneumoniae, highly virulent strains which are common in Asian countries, can cause pyogenic infections. These hypervirulent strains are usually susceptible to most antimicrobials, except for ampicillin. Little is known regarding the clinical and molecular characteristics of antimicrobial-resistant K1 K. pneumoniae strains. This retrospective study evaluated patients infected with capsular type K1 K. pneumoniae strains in a Taiwanese medical centre between April 2013 and March 2016. Antimicrobial-resistant strains were defined based on non-susceptibility to antimicrobial agents except ampicillin. We compared the clinical outcome of patients infected with and without antimicrobial-resistant strains. The in vivo virulence, genetic relatedness, and resistance mechanisms of these hypervirulent antimicrobial-resistant strains were also investigated. A total of 182 capsular type K1 K. pneumoniae strains were identified, including 18 antimicrobial-resistant strains. The 28-day mortality rate among the 18 cases caused by antimicrobial-resistant strains was significantly higher than that among 164 cases caused by antimicrobial-sensitive strains (50% vs. 10.4%, P < 0.001). Infection with antimicrobial-resistant strain independently increased the 28-day mortality risk. Most antimicrobial-resistant strains were not clonally related, and they exhibited high in vivo virulence in a mouse lethality experiment. The major resistance mechanisms involved the presence of β-lactamases and the overexpression of efflux pumps. In conclusion, hypervirulent antimicrobial-resistant capsular type K1 K. pneumoniae strains can predispose to a fatal outcome. These strains may represent an emerging threat to public health in Taiwan.
Collapse
Affiliation(s)
- Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Yi-Hsiang Cheng
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Han Juan
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ping-Feng Wu
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Wei Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Sheng-Hua Chou
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
17
|
Papadimitriou-Olivgeris M, Bartzavali C, Spyropoulou A, Lambropoulou A, Sioulas N, Vamvakopoulou S, Karpetas G, Spiliopoulou I, Vrettos T, Anastassiou ED, Fligou F, Christofidou M, Marangos M. Molecular epidemiology and risk factors for colistin- or tigecycline-resistant carbapenemase-producing Klebsiella pneumoniae bloodstream infection in critically ill patients during a 7-year period. Diagn Microbiol Infect Dis 2018; 92:235-240. [PMID: 30076041 DOI: 10.1016/j.diagmicrobio.2018.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 11/28/2022]
Abstract
A matched 1:2 case-control study was conducted among critically ill patients in order to identify the risk factors of colistin or tigecycline-resistant carbapenemase-producing Klebsiella pneumoniae (ColR-Kp, TigR-Kp) bacteraemia. MIC to colistin and tigecycline were determined by Etest. From 224 bacteraemic patients, 46.4% and 29.5% were resistant to colistin and tigecycline, respectively. PCR revealed that 199 isolates carried the blaKPC gene. PCR revealed that no isolate carried the mcr-1 gene. Risk factors for ColR-Kp bacteraemia as compared to patients with bacteraemia by a colistin-susceptible isolate or patients without carbapenemase-producing K. pneumoniae bacteraemia were colistin or tigecycline administration and tracheostomy, while TigR-Kp bacteraemia as compared to either patients with bacteraemia by tigecycline-susceptible isolate or patients without carbapenemase-producing K. pneumoniae bacteraemia were colistin or tigecycline administration, number of comorbidities and prior bacteraemia by a Gram-negative pathogen. Administration of colistin and tigecycline predisposed to development of bacteraemia by either ColR-Kp or TigR-Kp.
Collapse
Affiliation(s)
- Matthaios Papadimitriou-Olivgeris
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of Patras, 26504, Rion-Patras, Greece
| | - Christina Bartzavali
- Department of Microbiology, School of Medicine, University of Patras, 26504, Rion-Patras, Greece
| | - Aikaterini Spyropoulou
- Department of Microbiology, School of Medicine, University of Patras, 26504, Rion-Patras, Greece
| | - Anastasia Lambropoulou
- Department of Microbiology, School of Medicine, University of Patras, 26504, Rion-Patras, Greece
| | - Nektarios Sioulas
- Anesthesiology and Critical Care Medicine, School of Medicine, University of Patras, 26504, Rion-Patras, Greece
| | - Sophia Vamvakopoulou
- Department of Microbiology, School of Medicine, University of Patras, 26504, Rion-Patras, Greece
| | - Georgios Karpetas
- Anesthesiology and Critical Care Medicine, School of Medicine, University of Patras, 26504, Rion-Patras, Greece
| | - Iris Spiliopoulou
- Department of Microbiology, School of Medicine, University of Patras, 26504, Rion-Patras, Greece
| | - Theofanis Vrettos
- Anesthesiology and Critical Care Medicine, School of Medicine, University of Patras, 26504, Rion-Patras, Greece
| | - Evangelos D Anastassiou
- Department of Microbiology, School of Medicine, University of Patras, 26504, Rion-Patras, Greece
| | - Fotini Fligou
- Anesthesiology and Critical Care Medicine, School of Medicine, University of Patras, 26504, Rion-Patras, Greece
| | - Myrto Christofidou
- Department of Microbiology, School of Medicine, University of Patras, 26504, Rion-Patras, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of Patras, 26504, Rion-Patras, Greece.
| |
Collapse
|
18
|
Elgendy SG, Abdel Hameed MR, El-Mokhtar MA. Tigecycline resistance among Klebsiella pneumoniae isolated from febrile neutropenic patients. J Med Microbiol 2018; 67:972-975. [PMID: 29799385 DOI: 10.1099/jmm.0.000770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Febrile neutropenic patients are at a high risk of life-threatening bacterial infections. Tigecycline was developed to treat multidrug-resistant isolates, however resistance to tigecycline in Klebsiella pneumoniae has been reported. Here, we investigated tigecycline resistance among K. pneumoniae isolated from febrile neutropenic patients admitted to Hematology ICU, Egypt. Out of 75 enrolled febrile neutropenic patients, 48 cases showed bacteriologically confirmed infection. The majority of cases were infected with K. pneumoniae, of which nine were tigecycline non-susceptible. Expression levels of the efflux pump genes acrB and oqxB and their regulatory genes ramA and rarA were analysed. Six isolates had overexpression of the four efflux-related genes while one showed baseline expression. This study emphasizes the importance of growing tigecycline resistance in K. pneumoniae infecting febrile neutropenic patients. Concerning the mechanism of resistance, it was clear that the ramA gene plays the major role, although alternative resistance mechanisms may also exist.
Collapse
Affiliation(s)
- Sherein G Elgendy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Egypt
| | - Muhammad R Abdel Hameed
- Internal Medicine and Hematology Unit, Assiut University Hospitals, Assiut University, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Egypt
| |
Collapse
|
19
|
Park J, Kang HK, Choi MC, Chae JD, Son BK, Chong YP, Seo CH, Park Y. Antibacterial activity and mechanism of action of analogues derived from the antimicrobial peptide mBjAMP1 isolated from Branchiostoma japonicum. J Antimicrob Chemother 2018; 73:2054-2063. [DOI: 10.1093/jac/dky144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/21/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, South Korea
| | - Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Jeong Don Chae
- Department of Laboratory Medicine, Eulji University-Eulji General Hospital, Seoul, Republic of Korea
| | - Byoung Kwan Son
- Department of Internal Medicine, Eulji University-Eulji General Hospital, Seoul, Republic of Korea
| | - Yong Pil Chong
- Department of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju, South Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| |
Collapse
|
20
|
Ye M, Ding B, Qian H, Xu Q, Jiang J, Huang J, Ou H, Hu F, Wang M. In vivo development of tigecycline resistance in Klebsiella pneumoniae owing to deletion of the ramR ribosomal binding site. Int J Antimicrob Agents 2017; 50:523-528. [DOI: 10.1016/j.ijantimicag.2017.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/16/2017] [Accepted: 04/27/2017] [Indexed: 10/19/2022]
|
21
|
Abstract
The global rise of multidrug-resistant gram-negative bacteria represents an increasing threat to patient safety. From the first observation of a carbapenem-resistant gram-negative bacteria a global spread of extended-spectrum beta-lactamases and carbapenemases producing Klebsiella pneumoniae has been observed. Treatment options for multidrug-resistant K. pneumoniae are actually limited to combination therapy with some aminoglycosides, tigecycline and to older antimicrobial agents. Unfortunately, the prevalence of colistin-resistant and tigecycline-resistant K. pneumoniae is increasing globally. Infection due to colistin-resistant K. pneumoniae represents an independent risk factor for mortality. Resistance to colistin in K. pneumoniae may be multifactorial, as it is mediated by chromosomal genes or plasmids. The emergence of transmissible, plasmid-mediated colistin resistance is an alarming finding. The absence of new agents effective against resistant Gram-negative pathogens means that enhanced surveillance, compliance with infection prevention procedures, and antimicrobial stewardship programs will be required to limit the spread of colistin-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Guido Granata
- Clinical and Research Department, National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome, Italy
| | - Nicola Petrosillo
- Clinical and Research Department, National Institute for Infectious Diseases "L. Spallanzani" - IRCCS, Rome, Italy
| |
Collapse
|
22
|
Chiu SK, Chan MC, Huang LY, Lin YT, Lin JC, Lu PL, Siu LK, Chang FY, Yeh KM. Tigecycline resistance among carbapenem-resistant Klebsiella Pneumoniae: Clinical characteristics and expression levels of efflux pump genes. PLoS One 2017; 12:e0175140. [PMID: 28388651 PMCID: PMC5384758 DOI: 10.1371/journal.pone.0175140] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/21/2017] [Indexed: 01/26/2023] Open
Abstract
Objectives Tigecycline is a treatment option for infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP). Emerging tigecycline resistance in CRKP represents a growing threat. Knowledge of the clinical, microbiological, and molecular characteristics of tigecycline- and carbapenem-resistant Klebsiella pneumoniae (TCRKP) is limited. Methods Patients infected with TCRKP were identified from a Taiwanese national surveillance study. Clinical data were collected from medical records. We performed susceptibility tests, carbapenemase gene detection, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Furthermore, we performed quantitative real-time polymerase chain reaction (qRT-PCR) analyses to assess the expression levels of the efflux pump genes acrB and oqxB. Results We identified 16 patients infected with TCRKP, with urinary tract infection (UTI) being the most common type of infection (63%). The all-cause 30-day mortality rate was 44% in patients with TCRKP infection. Patients with a site of infection other than the urinary tract had a significantly higher mortality rate than patients with UTIs (83% vs. 20%, p = 0.035). PFGE and MLST revealed no dominant clone or sequence type. Using qRT-PCR, overexpression of both the acrB and oqxB genes was identified in seven isolates, and overexpression of the oqxB gene was observed in another seven. There was poor correlation between acrB or oqxB expression and tigecycline MICs (r = -0.038 and -0.166, respectively). Conclusions The mortality rate in patients infected with TCRKP in this study was 44% and this is an important subset of patients. The absence of a linear relationship between efflux pump genes expression and MICs indicates that tigecycline resistance may be mediated by other factors. Continuous monitoring of tigecycline resistance among CRKP isolates and resistance mechanisms are necessary.
Collapse
Affiliation(s)
- Sheng-Kang Chiu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ming-Chin Chan
- Infection Control Office, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Li-Yueh Huang
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Yi-Tsung Lin
- Section of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, National Yan-Ming University, Taipei, Taiwan, ROC
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | - L. Kristopher Siu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan, ROC
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Kuo-Ming Yeh
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- * E-mail:
| |
Collapse
|
23
|
Petersen E, Mohsin J. Should travelers be screened for multi-drug resistant (MDR) bacteria after visiting high risk areas such as India? Travel Med Infect Dis 2016; 14:591-594. [PMID: 27913311 DOI: 10.1016/j.tmaid.2016.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 11/27/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Eskild Petersen
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman; Institute of Clinical Medicine, University of Aarhus, Denmark.
| | - Jalila Mohsin
- Department of Clinical Microbiology, The Royal Hospital, Muscat, Oman
| |
Collapse
|