1
|
Minnelli C, Mangiaterra G, Laudadio E, Citterio B, Rinaldi S. Investigation on the Synergy between Membrane Permeabilizing Amphiphilic α-Hydrazido Acids and Commonly Used Antibiotics against Drug-Resistant Bacteria. Molecules 2024; 29:4078. [PMID: 39274926 PMCID: PMC11397519 DOI: 10.3390/molecules29174078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
The growth of (multi)drug resistance in bacteria is among the most urgent global health issues. Monocationic amphiphilic α-hydrazido acid derivatives are structurally simple mimics of antimicrobial peptides (AMPs) with fewer drawbacks. Their mechanism of membrane permeabilization at subtoxic concentrations was found to begin with an initial electrostatic attraction of isolated amphiphile molecules to the phospholipid heads, followed by a rapid insertion of the apolar portions. As the accumulation into the bilayer proceeded, the membrane increased its fluidity and permeability without being subjected to major structural damage. After having ascertained that α-hydrazido acid amphiphiles do not interact with bacterial DNA, they were subjected to synergy evaluation for combinations with conventional antibiotics. Synergy was observed for combinations with tetracycline against sensitive S. aureus and E. coli, as well as with ciprofloxacin and colistin against resistant strains. Additivity with a remarkable recovery in activity of conventional antibiotics (from 2-fold to ≥32-fold) together with largely subtoxic concentrations of α-hydrazido acid derivatives was found for combinations with ciprofloxacin toward susceptible S. aureus and methicillin toward MRSa. However, no potentiation of conventional antibiotics was observed for combinations with linezolid and gentamicin against the corresponding resistant S. aureus and E. coli strains.
Collapse
Affiliation(s)
- Cristina Minnelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Gianmarco Mangiaterra
- Department of Biomolecular Science, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Emiliano Laudadio
- Department of Science and Engineering of Matter, Environment and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Barbara Citterio
- Department of Biomolecular Science, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Samuele Rinaldi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
2
|
Delgado JAC, Tian YM, Marcon M, König B, Paixão MW. Side-Selective Solid-Phase Metallaphotoredox N(in)-Arylation of Peptides. J Am Chem Soc 2023; 145:26452-26462. [PMID: 37976043 DOI: 10.1021/jacs.3c10792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Postsynthetic diversification of peptides through selective modification of endogenous amino acid side chains has enabled significant advances in peptide drug discovery while expanding the biological and medical chemistry space. However, current tools have been focused on the modification of reactive polar and ionizable side chains, whereas the decoration of aromatic systems (e.g., the N(in) of the tryptophan) has been a long-standing challenge. Here, we introduce metallaphotocatalysis in solid-phase peptide synthesis for the on-resin orthogonal N-arylation of relevant tryptophan-containing peptides. The protocol allows the chemoselective introduction of a new C(sp2)-N bond at the N(in) of tryptophan in biologically active protected peptide sequences in the presence of native redox-sensitive side chains. The fusion of metallaphotocatalysis with solid-phase peptide synthesis opens new perspectives in diversifying native amino acid side chains.
Collapse
Affiliation(s)
- José A C Delgado
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos─UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Ya-Ming Tian
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Michela Marcon
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Márcio W Paixão
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos─UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
3
|
Chianese A, Zannella C, Monti A, Doti N, Sanna G, Manzin A, De Filippis A, Galdiero M. Hylin-a1: A Pan-Inhibitor against Emerging and Re-Emerging Respiratory Viruses. Int J Mol Sci 2023; 24:13888. [PMID: 37762191 PMCID: PMC10531407 DOI: 10.3390/ijms241813888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Pandemic and epidemic outbreaks of respiratory viruses are a challenge for public health and social care system worldwide, leading to high mortality and morbidity among the human populations. In light of the limited efficacy of current vaccines and antiviral drugs against respiratory viral infections and the emergence and re-emergence of new viruses, novel broad-spectrum antiviral drugs are needed for the prevention and treatment of these infections. Antimicrobial peptides with an antiviral effect, also known as AVPs, have already been reported as potent inhibitors of viral infections by affecting different stages of the virus lifecycle. In the present study, we analyzed the activity of the AVP Hylin-a1, secreted by the frog Hypsiboas albopunctatus, against a wide range of respiratory viruses, including the coronaviruses HCoV-229E and SARS-CoV-2, measles virus, human parainfluenza virus type 3, and influenza virus H1N1. We report a significant inhibitory effect on infectivity in all the enveloped viruses, whereas there was a lack of activity against the naked coxsackievirus B3. Considering the enormous therapeutic potential of Hylin-a1, further experiments are required to elucidate its mechanism of action and to increase its stability by modifying the native sequence.
Collapse
Affiliation(s)
- Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (C.Z.); (A.D.F.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (C.Z.); (A.D.F.)
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy; (A.M.); (N.D.)
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (G.S.); (A.M.)
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (G.S.); (A.M.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (C.Z.); (A.D.F.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (C.Z.); (A.D.F.)
| |
Collapse
|
4
|
Li J, Liang Y, Su M, Wu J, Chai J, Xiong W, Mo G, Chen X, Xu X. Characterization of a novel LTA/LPS-binding antimicrobial and anti-inflammatory temporin peptide from the skin of Fejervary limnocharis (Anura: Ranidae). Biochem Pharmacol 2023; 210:115471. [PMID: 36893813 DOI: 10.1016/j.bcp.2023.115471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Septic shock caused by Gram-positive bacteria continues to be a major cause of morbidity and mortality in intensive care units globally. Most Temporins are excellent growth inhibitors of gram-positive bacteria and candidates for developing antimicrobial treatments due to their biological action and small molecular weight. In this study, a novel Temporin peptide from the skin of Fejervarya limnocharis frog, named as Temporin-FL, was characterized. Temporin-FL was found to adopt typical α-helical conformation in SDS solution and to exhibit selective antibacterial activity against Gram-positive bacteria through a membrane destruction mechanism. Accordingly, Temporin-FL showed protective effects against Staphylococcus aureus-induced sepsis in mice. Finally, Temporin-FL was demonstrated to exert anti-inflammatory effects by neutralizing the action of LPS/LTA and by inhibiting MAPK pathway activation. Therefore, Temporin-FL represents a novel candidate for moleculartherapy of Gram-positive bacterial sepsis.
Collapse
Affiliation(s)
- Jinqiao Li
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Liang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Minhong Su
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weichen Xiong
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
5
|
Temporins: Multifunctional Peptides from Frog Skin. Int J Mol Sci 2023; 24:ijms24065426. [PMID: 36982501 PMCID: PMC10049141 DOI: 10.3390/ijms24065426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Temporins are short peptides secreted by frogs from all over the world. They exert antimicrobial activity, mainly against Gram-positive bacteria, including resistant pathogens; recent studies highlight other possible applications of these peptides as anticancer or antiviral agents. This review is meant to describe the main features of temporins produced by different ranid genera. Due to the abundance of published papers, we focus on the most widely investigated peptides. We report studies on their mechanism of action and three-dimensional structure in model systems mimicking bacterial membranes or in the presence of cells. The design and the antimicrobial activity of peptide analogues is also described, with the aim of highlighting elements that are crucial to improve the bioactivity of peptides while reducing their toxicity. Finally, a short section is dedicated to the studies aimed at applying these peptides as drugs, to produce new antimicrobial materials or in other technological uses.
Collapse
|
6
|
Tripathi AK, Vishwanatha JK. Role of Anti-Cancer Peptides as Immunomodulatory Agents: Potential and Design Strategy. Pharmaceutics 2022; 14:pharmaceutics14122686. [PMID: 36559179 PMCID: PMC9781574 DOI: 10.3390/pharmaceutics14122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
The usage of peptide-based drugs to combat cancer is gaining significance in the pharmaceutical industry. The collateral damage caused to normal cells due to the use of chemotherapy, radiotherapy, etc. has given an impetus to the search for alternative methods of cancer treatment. For a long time, antimicrobial peptides (AMPs) have been shown to display anticancer activity. However, the immunomodulatory activity of anti-cancer peptides has not been researched very extensively. The interconnection of cancer and immune responses is well-known. Hence, a search and design of molecules that can show anti-cancer and immunomodulatory activity can be lead molecules in this field. A large number of anti-cancer peptides show good immunomodulatory activity by inhibiting the pro-inflammatory responses that assist cancer progression. Here, we thoroughly review both the naturally occurring and synthetic anti-cancer peptides that are reported to possess both anti-cancer and immunomodulatory activity. We also assess the structural and biophysical parameters that can be utilized to improve the activity. Both activities are mostly reported by different groups, however, we discuss them together to highlight their interconnection, which can be used in the future to design peptide drugs in the field of cancer therapeutics.
Collapse
|
7
|
Casciaro B, Loffredo MR, Cappiello F, O’Sullivan N, Tortora C, Manzer R, Karmakar S, Haskell A, Hasan SK, Mangoni ML. KDEON WK-11: A short antipseudomonal peptide with promising potential. Front Chem 2022; 10:1000765. [PMID: 36465859 PMCID: PMC9713011 DOI: 10.3389/fchem.2022.1000765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/01/2022] [Indexed: 08/27/2023] Open
Abstract
The plight of antimicrobial resistance continues to limit the availability of antibiotic treatment effective in combating resistant bacterial infections. Despite efforts made to rectify this issue and minimise its effects on both patients and the wider community, progress in this area remains minimal. Here, we de-novo designed a peptide named KDEON WK-11, building on previous work establishing effective residues and structures active in distinguished antimicrobial peptides such as lactoferrin. We assessed its antimicrobial activity against an array of bacterial strains and identified its most potent effect, against Pseudomonas aeruginosa with an MIC value of 3.12 μM, lower than its counterparts developed with similar residues and chain lengths. We then determined its anti-biofilm properties, potential mechanism of action and in vitro cytotoxicity. We identified that KDEON WK-11 had a broad range of antimicrobial activity and specific capabilities to fight Pseudomonas aeruginosa with low in vitro cytotoxicity and promising potential to express anti-lipopolysaccharide qualities, which could be exploited to expand its properties into an anti-sepsis agent.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Niamh O’Sullivan
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Carola Tortora
- Department of Chemistry and Technology of Drugs, “Department of Excellence 2018–2022”, Sapienza University of Rome, Rome, Italy
| | - Rizwan Manzer
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Sougata Karmakar
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Alan Haskell
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Syed K. Hasan
- Iuventis Technologies Inc. (DBA Immunotrex Biologics), Lowell, MA, United States
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Lin Y, Jiang Y, Zhao Z, Lu Y, Xi X, Ma C, Chen X, Zhou M, Chen T, Shaw C, Wang L. Discovery of a Novel Antimicrobial Peptide, Temporin-PKE, from the Skin Secretion of Pelophylax kl. esculentus, and Evaluation of Its Structure-Activity Relationships. Biomolecules 2022; 12:biom12060759. [PMID: 35740884 PMCID: PMC9221509 DOI: 10.3390/biom12060759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Bacterial resistance against antibiotics has led to increasing numbers of treatment failures, and AMPs are widely accepted as becoming potential alternatives due to their advantages. Temporin-PKE is a novel peptide extracted from the skin secretion of Pelophylax kl. esculentus and it displays a strong activity against Gram-positive bacteria, with an extreme cytotoxicity. Incorporating positively charged residues and introducing D-amino acids were the two main strategies adopted for the modifications. The transformation of the chirality of Ile could reduce haemolytic activity, and an analogue with appropriate D-isoforms could maintain antimicrobial activity and stability. The substitution of hydrophobic residues could bring about more potent and broad-spectrum antimicrobial activities. The analogues with Lys were less harmful to the normal cells and their stabilities remained at similarly high levels compared to temporin-PKE. The optimal number of charges was three, and the replacement on the polar face was a better choice. Temporin-PKE-3K exerted dually efficient functions includingstrong antimicrobial and anticancer activity. This analogue showed a reduced possibility for inducing resistance in MRSA and Klebsiella pneumoniae, a rather strong antimicrobial activity in vivo, and it exhibited the highest therapeutic index such that temporin-PKE-3K has the potential to be developed as a clinical drug.
Collapse
Affiliation(s)
- Yaxian Lin
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Yangyang Jiang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Ziwei Zhao
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yueyang Lu
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Xinping Xi
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
- Correspondence: (X.C.); (L.W.)
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.L.); (Y.J.); (Z.Z.); (Y.L.); (X.X.); (C.M.); (M.Z.); (T.C.); (C.S.)
- Correspondence: (X.C.); (L.W.)
| |
Collapse
|
9
|
Ferguson PM, Clarke M, Manzo G, Hind CK, Clifford M, Sutton JM, Lorenz CD, Phoenix DA, Mason AJ. Temporin B Forms Hetero-Oligomers with Temporin L, Modifies Its Membrane Activity, and Increases the Cooperativity of Its Antibacterial Pharmacodynamic Profile. Biochemistry 2022; 61:1029-1040. [PMID: 35609188 PMCID: PMC9178791 DOI: 10.1021/acs.biochem.1c00762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The pharmacodynamic
profile of antimicrobial peptides (AMPs) and
their in vivo synergy are two factors that are thought
to restrict resistance evolution and ensure their conservation. The
frog Rana temporaria secretes a family of closely
related AMPs, temporins A–L, as an effective chemical dermal
defense. The antibacterial potency of temporin L has been shown to
increase synergistically in combination with both temporins B and
A, but this is modest. Here we show that the less potent temporin
B enhances the cooperativity of the in vitro antibacterial
activity of the more potent temporin L against EMRSA-15 and that this
may be associated with an altered interaction with the bacterial plasma
membrane, a feature critical for the antibacterial activity of most
AMPs. Addition of buforin II, a histone H2A fragment, can further
increase the cooperativity. Molecular dynamics simulations indicate
temporins B and L readily form hetero-oligomers in models of Gram-positive
bacterial plasma membranes. Patch-clamp studies show transmembrane
ion conductance is triggered with lower amounts of both peptides and
more quickly when used in combination, but conductance is of a lower
amplitude and pores are smaller. Temporin B may therefore act by forming
temporin L/B hetero-oligomers that are more effective than temporin
L homo-oligomers at bacterial killing and/or by reducing the probability
of the latter forming until a threshold concentration is reached.
Exploration of the mechanism of synergy between AMPs isolated from
the same organism may therefore yield antibiotic combinations with
advantageous pharmacodynamic properties.
Collapse
Affiliation(s)
- Philip M Ferguson
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Maria Clarke
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Giorgia Manzo
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Charlotte K Hind
- Technology Development Group, UKHSA, Salisbury SP4 0JG, United Kingdom
| | - Melanie Clifford
- Technology Development Group, UKHSA, Salisbury SP4 0JG, United Kingdom
| | - J Mark Sutton
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom.,Technology Development Group, UKHSA, Salisbury SP4 0JG, United Kingdom
| | - Christian D Lorenz
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - David A Phoenix
- School of Applied Science, London South Bank University, 103 Borough Road, London SE1 0AA, United Kingdom
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
10
|
Binding of cationic analogues of α-MSH to lipopolysaccharide and disruption of the cytoplasmic membranes caused bactericidal action against Escherichia coli. Sci Rep 2022; 12:1987. [PMID: 35132082 PMCID: PMC8821551 DOI: 10.1038/s41598-022-05684-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/05/2022] [Indexed: 01/14/2023] Open
Abstract
In earlier reports, we have shown the antimicrobial activity of a host neuropeptide, alpha-melanocyte stimulating hormone (α-MSH) and its cationic analogues against Staphylococcus aureus. These analogues of α-MSH showed enhanced staphylocidal activity without any significant mammalian cell toxicity. Therefore, here, we explored the antimicrobial activity of α-MSH and its cationic analogues against Escherichia coli. Though the presence of lipopolysaccharide (LPS) in Gram-negative bacteria enables them to resist most conventional antibiotics, encouragingly α-MSH and its four analogues showed killing of both logarithmic and stationary phase E. coli cells in a time, dose and cationicity-dependent manner. In fact, the most cationic analogue, KKK-MSH with a + 5 charge, demonstrated successful eradication of 105 CFU/mL of E. coli cells within 15 min at a concentration as low as 1 µM. BC displacement experiment revealed that cationicity of the peptides was directly related to the killing efficacy of these α-MSH analogues against E. coli cells via initial LPS-binding, leading to rapid disruption of the LPS-outer membrane complex followed by inner bacterial membrane damage and eventual cell death. Here, we propose α-MSH based cationic peptides as promising future agents with broad-spectrum antibacterial efficacy against both Gram-negative and Gram-positive pathogens.
Collapse
|
11
|
Jia F, Wang J, Zhang L, Zhou J, He Y, Lu Y, Liu K, Yan W, Wang K. Multiple action mechanism and in vivo antimicrobial efficacy of antimicrobial peptide Jelleine-I. J Pept Sci 2020; 27:e3294. [PMID: 33283388 DOI: 10.1002/psc.3294] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/09/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022]
Abstract
With the extensive use of antibiotics in medicine, agriculture and food chemistry, the emergence of multi-drug resistant bacteria become more and more frequent and posed great threats to human health and life. So novel antimicrobial agents were urgently needed to defend the resistant bacteria. Jelleine-I was a small antimicrobial peptide (AMP) with eight amino acids in its sequence. It was believed to be an ideal template for developing antimicrobial agents. In the present study, the possible action mode against both gram-negative bacteria and gram-positive bacteria and in vivo antimicrobial activity was explored. Our results showed that Jelleine-I exhibits its antimicrobial activity mainly by disrupting the integrity of the cell membrane, which would not be affected by the conventional resistant mechanism. It also aims at some intracellular targets such as genomic DNA to inhibit the growth of microbes. In addition, the result of in vivo antimicrobial activity experiment showed that Jelleine-I performed a good therapeutic effect toward the mice with Escherichia coli infected peritonitis. Notably, Jelleine-I has negligible cytotoxicity toward the tested mammalian cells, indicating excellent cell selectivity between prokaryotic cells and eurkayotic cells. In summary, our results showed that Jelleine-I would be a potential candidate to be developed as a novel antimicrobial agent.
Collapse
Affiliation(s)
- Fengjing Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| | - Jiayi Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| | - Lishi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| | - Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| | - Yuhang He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| | - Yaqi Lu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| | - Kexin Liu
- School/Hospital of Stomatology, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Wenjin Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Research Unit of Peptide Science of Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, West Donggang Road, 199, Lanzhou, 730000, China
| |
Collapse
|
12
|
Bhattacharjya S, Straus SK. Design, Engineering and Discovery of Novel α-Helical and β-Boomerang Antimicrobial Peptides against Drug Resistant Bacteria. Int J Mol Sci 2020; 21:ijms21165773. [PMID: 32796755 PMCID: PMC7460851 DOI: 10.3390/ijms21165773] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
In an era where the pipeline of new antibiotic development is drying up, the continuous rise of multi-drug resistant (MDR) and extensively drug resistant (XDR) bacteria are genuine threats to human health. Although antimicrobial peptides (AMPs) may serve as promising leads against drug resistant bacteria, only a few AMPs are in advanced clinical trials. The limitations of AMPs, namely their low in vivo activity, toxicity, and poor bioavailability, need to be addressed. Here, we review engineering of frog derived short α-helical AMPs (aurein, temporins) and lipopolysaccharide (LPS) binding designed β-boomerang AMPs for further development. The discovery of novel cell selective AMPs from the human proprotein convertase furin is also discussed.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, 60 Nanyang Drive, Nanyang Technological University, Singapore 637551, Singapore
- Correspondence: (S.B.); (S.K.S.)
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Correspondence: (S.B.); (S.K.S.)
| |
Collapse
|
13
|
Krishnakumari V, Binny TM, Adicherla H, Nagaraj R. Escherichia coli Lipopolysaccharide Modulates Biological Activities of Human-β-Defensin Analogues but Not Non-Ribosomally Synthesized Peptides. ACS OMEGA 2020; 5:6366-6375. [PMID: 32258871 PMCID: PMC7114172 DOI: 10.1021/acsomega.9b03770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Human-β-defensins (HBD1-3) are antibacterial peptides containing three disulphide bonds. In the present study, the effect of Escherichia coli lipopolysaccharide (LPS) on the antibacterial activities of HBD2-3, C-terminal analogues having a single disulphide bond, Phd1-3, and their corresponding myristoylated analogues MPhd1-3 were investigated. The effect of LPS on the activities of linear amphipathic peptides melittin, LL37 and non-ribosomally synthesized peptides, polymyxin B, alamethicin, gramicidin A, and gramicidin S was also examined. The antibacterial activity of HBD 2-3, Phd1-3, and MPhd1-3 in the presence of LPS against E. coli and Staphylococcus aureus was inhibited. While LPS inhibited the antibacterial activity of LL37, the inhibition of melittin activity was partial. The hemolytic activity exhibited by MPhd1, MPhd3, melittin, and LL37 was inhibited in the presence of LPS. HBD2-3, Phd1-3, and MPhd1-3 also showed endotoxin neutralizing activity. The antibacterial and hemolytic activities of polymyxin B, alamethicin, gramicidin A, and gramicidin S were not inhibited in the presence of LPS. Fluorescence assays employing dansyl cadaverine showed that HBD2-3 and defensin analogues bind to LPS more strongly as compared to alamethicin, gramicidin A, and gramicidin S. Electron microscopy images indicated that peptides disintegrate the structure of LPS. The inhibition of the antibacterial activity of native defensins and analogues in the presence of LPS indicates that the initial interaction with the bacterial surface is similar. The native defensin sequence or structure is also not essential, although cationic charges are necessary for binding to LPS. Hydrophobic interaction is the main driving force for association of non-ribosomally synthesized polymyxin B, alamethicin, gramicidin A, and gramicidin S with LPS. It is likely that these peptides rapidly insert into membranes and do not interact with the bacterial cell surface, whereas cationic peptides such as β-defensin and their analogues, melittin and LL37, first interact with the bacterial cell surface and then the membrane. Our results suggest that evaluating interaction of antibacterial and hemolytic peptides with LPS is a compelling way of elucidating the mechanism of bacterial killing or hemolysis.
Collapse
|
14
|
Di Somma A, Avitabile C, Cirillo A, Moretta A, Merlino A, Paduano L, Duilio A, Romanelli A. The antimicrobial peptide Temporin L impairs E. coli cell division by interacting with FtsZ and the divisome complex. Biochim Biophys Acta Gen Subj 2020; 1864:129606. [PMID: 32229224 DOI: 10.1016/j.bbagen.2020.129606] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/25/2020] [Accepted: 03/23/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND The comprehension of the mechanism of action of antimicrobial peptides is fundamental for the design of new antibiotics. Studies performed looking at the interaction of peptides with bacterial cells offer a faithful picture of what really happens in nature. METHODS In this work we focused on the interaction of the peptide Temporin L with E. coli cells, using a variety of biochemical and biophysical techniques that include: functional proteomics, docking, optical microscopy, TEM, DLS, SANS, fluorescence. RESULTS We identified bacterial proteins specifically interacting with the peptides that belong to the divisome machinery; our data suggest that the GTPase FtsZ is the specific peptide target. Docking experiments supported the FtsZ-TL interaction; binding and enzymatic assays using recombinant FtsZ confirmed this hypothesis and revealed a competitive inhibition mechanism. Optical microscopy and TEM measurements demonstrated that, upon incubation with the peptide, bacterial cells are unable to divide forming long necklace-like cell filaments. Dynamic light scattering studies and Small Angle Neutron Scattering experiments performed on treated and untreated bacterial cells, indicated a change at the nanoscale level of the bacterial membrane. CONCLUSIONS The peptide temporin L acts by a non-membrane-lytic mechanism of action, inhibiting the divisome machinery. GENERAL SIGNIFICANCE Identification of targets of antimicrobial peptides is pivotal to the tailored design of new antimicrobials.
Collapse
Affiliation(s)
- Angela Di Somma
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy; National Institute of Biostructures and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Concetta Avitabile
- Institute of Biostructures and Bioimaging (CNR), via Mezzocannone 16, 80134 Napoli, Italy
| | - Arianna Cirillo
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy
| | - Antonio Moretta
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples "Federico II" Via Cinthia 4, 80126 Napoli, Italy.
| | - Alessandra Romanelli
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milan, Italy.
| |
Collapse
|
15
|
Patocka J, Nepovimova E, Klimova B, Wu Q, Kuca K. Antimicrobial Peptides: Amphibian Host Defense Peptides. Curr Med Chem 2019; 26:5924-5946. [PMID: 30009702 DOI: 10.2174/0929867325666180713125314] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/05/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Antimicrobial Peptides (AMPs) are one of the most common components of the innate immune system that protect multicellular organisms against microbial invasion. The vast majority of AMPs are isolated from the frog skin. Anuran (frogs and toads) skin contains abundant AMPs that can be developed therapeutically. Such peptides are a unique but diverse group of molecules. In general, more than 50% of the amino acid residues form the hydrophobic part of the molecule. Normally, there are no conserved structural motifs responsible for activity, although the vast majority of the AMPs are cationic due to the presence of multiple lysine residues; this cationicity has a close relationship with antibacterial activity. Notably, recent evidence suggests that synthesis of AMPs in frog skin may confer an advantage on a particular species, although they are not essential for survival. Frog skin AMPs exert potent activity against antibiotic-resistant bacteria, protozoa, yeasts, and fungi by permeating and destroying the plasma membrane and inactivating intracellular targets. Importantly, since they do not bind to a specific receptor, AMPs are less likely to induce resistance mechanisms. Currently, the best known amphibian AMPs are esculentins, brevinins, ranacyclins, ranatuerins, nigrocin-2, magainins, dermaseptins, bombinins, temporins, and japonicins-1 and -2, and palustrin-2. This review focuses on these frog skin AMPs and the mechanisms underlying their antimicrobial activity. We hope that this review will provide further information that will facilitate further study of AMPs and cast new light on novel and safer microbicides.
Collapse
Affiliation(s)
- Jiri Patocka
- Department of Radiology and Toxicology, Faculty of Health and Social Studies, University of South Bohemia Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Blanka Klimova
- Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
16
|
Romero SM, Cardillo AB, Martínez Ceron MC, Camperi SA, Giudicessi SL. Temporins: An Approach of Potential Pharmaceutic Candidates. Surg Infect (Larchmt) 2019; 21:309-322. [PMID: 31804896 DOI: 10.1089/sur.2019.266] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are small and mostly polycationic molecules that form part of the innate immune response. There are currently more than 3000 experimentally reported AMPs. Particularly in frogs, the temporin family has been discovered as potential AMPs. The aim of this work is to review the latest publications about this class of peptides, discuss their properties, and present an update of the last studies and new discoveries in the field. More than 130 temporins have been identified in this family. The most studied temporins are temporin A (TA), temporin B (TB), and temporin L (TL). These peptides showed antimicrobial activity against gram-negative, gram-positive bacteria and fungi. Since the discovery of temporins in 1996, several groups of researchers isolated different peptides from various species of frogs that were included as members of this family. Although antimicrobial activity of many temporins has not been analyzed yet, most of them showed antimicrobial and antifungal activities. A combination of nanotechnology and AMPs for temporins in different antimicrobial treatments could be a promising alternative for resistant pathogens. These studies demonstrate that, even with the advancement in scientific research on the composition and antimicrobial activity of temporins, further studies are necessary to wholly understand their components and mechanisms of action.
Collapse
Affiliation(s)
- Stella Maris Romero
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Córdoba, Argentina
| | - Alejandra Beatriz Cardillo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - María Camila Martínez Ceron
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Silvia Andrea Camperi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Silvana Laura Giudicessi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| |
Collapse
|
17
|
Temporin L and aurein 2.5 have identical conformations but subtly distinct membrane and antibacterial activities. Sci Rep 2019; 9:10934. [PMID: 31358802 PMCID: PMC6662694 DOI: 10.1038/s41598-019-47327-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 07/16/2019] [Indexed: 11/22/2022] Open
Abstract
Frogs such as Rana temporaria and Litoria aurea secrete numerous closely related antimicrobial peptides (AMPs) as an effective chemical dermal defence. Damage or penetration of the bacterial plasma membrane is considered essential for AMP activity and such properties are commonly ascribed to their ability to form secondary amphipathic, α-helix conformations in membrane mimicking milieu. Nevertheless, despite the high similarity in physical properties and preference for adopting such conformations, the spectrum of activity and potency of AMPs often varies considerably. Hence distinguishing apparently similar AMPs according to their behaviour in, and effects on, model membranes will inform understanding of primary-sequence-specific antimicrobial mechanisms. Here we use a combination of molecular dynamics simulations, circular dichroism and patch-clamp to investigate the basis for differing anti-bacterial activities in representative AMPs from each species; temporin L and aurein 2.5. Despite adopting near identical, α-helix conformations in the steady-state in a variety of membrane models, these two AMPs can be distinguished both in vitro and in silico based on their dynamic interactions with model membranes, notably their differing conformational flexibility at the N-terminus, ability to form higher order aggregates and the characteristics of induced ion conductance. Taken together, these differences provide an explanation of the greater potency and broader antibacterial spectrum of activity of temporin L over aurein 2.5. Consequently, while the secondary amphipathic, α-helix conformation is a key determinant of the ability of a cationic AMP to penetrate and disrupt the bacterial plasma membrane, the exact mechanism, potency and spectrum of activity is determined by precise structural and dynamic contributions from specific residues in each AMP sequence.
Collapse
|
18
|
A Pilot Study of the Synergy between Two Antimicrobial Peptides and Two Common Antibiotics. Antibiotics (Basel) 2019; 8:antibiotics8020060. [PMID: 31075940 PMCID: PMC6627861 DOI: 10.3390/antibiotics8020060] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 11/16/2022] Open
Abstract
Background: Frequent and unrestricted use of antibiotics has been associated with the development of antibiotic resistance by microorganisms. Thus, there is a need to find novel antibacterial agents or a combination of agents as the first line of treatment for various infections. This study aimed to investigate the synergy between antimicrobial peptide (AMP) combinations or between AMP-antibiotics combinations using two common pathogens, Pseudomonas aeruginosa and Staphylococcus aureus. Methods: The AMPs melimine, Mel4 and protamine, and antibiotics cefepime and ciprofloxacin were used in this study. The minimum inhibitory concentration (MIC) of each were evaluated against P. aeruginosa and S. aureus strains by a microtiter broth dilution. Based on the MIC of each antimicrobial agent, a checkerboard assay was performed to investigate the synergy between them, which was expressed as the fractional inhibitory concentration (FIC). Results: The combination of melimine and ciprofloxacin showed synergistic activity against antibiotic sensitive or resistant strains of P. aeruginosa and with FIC values ≤0.5. Conclusion: Combinations of AMPs and the fluoroquinolone ciprofloxacin is a promising method for reducing resistance to the fluoroquinolone of P. aeruginosa.
Collapse
|
19
|
Skirecki T, Cavaillon JM. Inner sensors of endotoxin - implications for sepsis research and therapy. FEMS Microbiol Rev 2019; 43:239-256. [PMID: 30844058 DOI: 10.1093/femsre/fuz004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/24/2019] [Indexed: 01/05/2025] Open
Abstract
Despite great efforts and numerous clinical trials, there is still a major need for effective therapies for sepsis. Neutralization or elimination of bacterial toxins remains a promising approach. The understanding of the interaction of the endotoxin (lipopolysaccharide, LPS) of Gram-negative bacteria with its cellular receptor, namely the CD14/TLR4/MD2 complex, was a major breakthrough. Unfortunately, clinical trials for sepsis on the neutralization of LPS or on the inhibition of TLR4 signaling failed whereas those on LPS removal remain controversial. Recent discoveries of another class of LPS receptors localized within the cytoplasm, namely caspase-11 in mice and caspases-4/5 in humans, have renewed interest in the field. These provide new potential targets for intervention in sepsis pathogenesis. Since cytoplasmic recognition of LPS induces non-canonical inflammasome pathway, a potentially harmful host response, it is conceivable to therapeutically target this mechanism. However, a great deal of care should be used in the translation of research on the non-canonical inflammasome inhibition due to multiple inter-species differences. In this review, we summarize the knowledge on endotoxin sensing in sepsis with special focus on the intracellular sensing. We also highlight the murine versus human differences and discuss potential therapeutic approaches addressing the newly discovered pathways.
Collapse
Affiliation(s)
- Tomasz Skirecki
- Laboratory of Flow Cytometry and Department of Anesthesiology and Intensive Care Medicine, Centre of Postgraduate Medical Education, Marymoncka 99/103 Street, 01-813 Warsaw, Poland
| | - Jean-Marc Cavaillon
- Experimental Neuropathology Unit, Institut Pasteur, 28 rue Dr. Roux, 75015 Paris, France
| |
Collapse
|
20
|
Liquid chromatography-tandem mass spectrometry based method development and validation of S016-1271 (LR8P), a novel cationic antimicrobial peptide for its application to pharmacokinetic studies. J Pharm Biomed Anal 2019; 169:116-126. [PMID: 30851514 DOI: 10.1016/j.jpba.2019.01.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/31/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
S016-1271 (LR8P) is a broad spectrum novel cationic antimicrobial peptide. The objective of the present study was to develop a selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) based bioanalytical method of S016-1271 peptide in mice and human plasma in order to uncover its pharmacokinetic aspects. The chromatographic separation of S016-1271 (FR8P as internal standard) was achieved on a Waters™ X select CSH-C18 column (75 × 3.0 mm, 2.5 μ) using mixture of acetonitrile and triple distilled water (TDW) both containing 0.05% formic acid as mobile phase. A seven minute linear gradient method was designed to separate analytes from ion suppression at a flow rate of 0.3 mL/min. The extraction of analytes from mice and human plasma was performed through solid phase extraction technique using mixed mode weak cation exchange cartridge (Thermo SOLA WCX 10 mg 1CC) with an extraction recovery of analytes about 75%. Mass spectrometric detection of S016-1271 and FR8P was performed with optimized multiple reaction monitoring (MRM) transitions (Q1/Q3) at 658.8 [M+3H] 3+/653.2 [M+3H-NH3] 3+ and 443.4 [M+5H]5+ /434.7 [y12-NH3]4+,respectively in positive electrospray ionization (ESI) mode. The linearity in mice and human plasma was established over a concentration range of 7.81-250 ng/mL with regression coefficient (r2 > 0.99). The currently developed method was validated as per US-FDA guidelines and found to be within the acceptable limits. The method was successfully applied to intravenous (IV) pharmacokinetic study in mice wherein the levels were detected upto 24 h. The peptide demonstrated poor distribution characteristics which were demonstrated through volume of distribution at steady state (202.71 ± 47.02 mL/kg less than total body water of mice; 580 mL/kg). The clearance of the peptide predominantly occurred through central compartment (central clearance is 25 fold greater than peripheral clearance). Also, the in vitro pharmacokinetic studies demonstrated the stability of S016-1271 in plasma and high plasma protein binding in mice and humans.
Collapse
|
21
|
Gene expression and in silico analysis of snakehead murrel interleukin 8 and antimicrobial activity of C-terminal derived peptide WS12. Vet Immunol Immunopathol 2017; 190:1-9. [PMID: 28778316 DOI: 10.1016/j.vetimm.2017.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022]
|
22
|
Farrotti A, Conflitti P, Srivastava S, Ghosh JK, Palleschi A, Stella L, Bocchinfuso G. Molecular Dynamics Simulations of the Host Defense Peptide Temporin L and Its Q3K Derivative: An Atomic Level View from Aggregation in Water to Bilayer Perturbation. Molecules 2017; 22:molecules22071235. [PMID: 28737669 PMCID: PMC6152314 DOI: 10.3390/molecules22071235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 12/03/2022] Open
Abstract
Temporin L (TempL) is a 13 residue Host Defense Peptide (HDP) isolated from the skin of frogs. It has a strong affinity for lipopolysaccharides (LPS), which is related to its high activity against Gram-negative bacteria and also to its strong tendency to neutralize the pro-inflammatory response caused by LPS release from inactivated bacteria. A designed analog with the Q3K substitution shows an enhancement in both these activities. In the present paper, Molecular Dynamics (MD) simulations have been used to investigate the origin of these improved properties. To this end, we have studied the behavior of the peptides both in water solution and in the presence of LPS lipid-A bilayers, demonstrating that the main effect through which the Q3K substitution improves the peptide activities is the destabilization of peptide aggregates in water.
Collapse
Affiliation(s)
- Andrea Farrotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome 00133, Italy.
| | - Paolo Conflitti
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome 00133, Italy.
| | - Saurabh Srivastava
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Jimut Kanti Ghosh
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Antonio Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome 00133, Italy.
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome 00133, Italy.
| | - Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma "Tor Vergata", Rome 00133, Italy.
| |
Collapse
|
23
|
Bosso A, Pirone L, Gaglione R, Pane K, Del Gatto A, Zaccaro L, Di Gaetano S, Diana D, Fattorusso R, Pedone E, Cafaro V, Haagsman HP, van Dijk A, Scheenstra MR, Zanfardino A, Crescenzi O, Arciello A, Varcamonti M, Veldhuizen EJA, Di Donato A, Notomista E, Pizzo E. A new cryptic host defense peptide identified in human 11-hydroxysteroid dehydrogenase-1 β-like: from in silico identification to experimental evidence. Biochim Biophys Acta Gen Subj 2017; 1861:2342-2353. [PMID: 28454736 DOI: 10.1016/j.bbagen.2017.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/05/2017] [Accepted: 04/24/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Host defence peptides (HDPs) are evolutionarily conserved components of innate immunity. Human HDPs, produced by a variety of immune cells of hematopoietic and epithelial origin, are generally grouped into two families: beta structured defensins and variably-structured cathelicidins. We report the characterization of a very promising cryptic human HDP, here called GVF27, identified in 11-hydroxysteroid dehydrogenase-1 β-like protein. METHODS Conformational analysis of GVF27 and its propensity to bind endotoxins were performed by NMR, Circular Dichroism, Fluorescence and Dynamic Light Scattering experiments. Crystal violet and WST-1 assays, ATP leakage measurement and colony counting procedures were used to investigate antimicrobial, anti-biofilm, cytotoxicity and hemolytic activities. Anti-inflammatory properties were evaluated by ELISA. RESULTS GVF27 possesses significant antibacterial properties on planktonic cells and sessile bacteria forming biofilm, as well as promising dose dependent abilities to inhibit attachment or eradicate existing mature biofilm. It is unstructured in aqueous buffer, whereas it tends to assume a helical conformation in mimic membrane environments as well as it is able to bind lipopolysaccharide (LPS) and lipoteichoic acid (LTA). Notably it is not toxic towards human and murine cell lines and triggers a significant innate immune response by attenuating expression levels of pro-inflammatory interleukins and release of nitric oxide in LPS induced macrophages. CONCLUSION Human GVF27 may offer significant advantages as leads for the design of human-specific therapeutics. GENERAL SIGNIFICANCE Human cryptic host defence peptides are naturally no immunogenic and for this they are a real alternative for solving the lack of effective antibiotics to control bacterial infections.
Collapse
Affiliation(s)
- A Bosso
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; Department of Infectious Diseases and Immunology, Utrecht University, 3584 CS Utrecht, Holland
| | | | - R Gaglione
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Department of Infectious Diseases and Immunology, Utrecht University, 3584 CS Utrecht, Holland
| | - K Pane
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | | | | | - D Diana
- IBB, CNR, 80134 Naples, Italy
| | - R Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", I-81100 Caserta, Italy
| | | | - V Cafaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - H P Haagsman
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CS Utrecht, Holland
| | - A van Dijk
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CS Utrecht, Holland
| | - M R Scheenstra
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CS Utrecht, Holland
| | - A Zanfardino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - O Crescenzi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - A Arciello
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - M Varcamonti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - E J A Veldhuizen
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CS Utrecht, Holland
| | - A Di Donato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - E Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - E Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
24
|
Tim-4 protects mice against lipopolysaccharide-induced endotoxic shock by suppressing the NF-κB signaling pathway. J Transl Med 2016; 96:1189-1197. [PMID: 27617399 DOI: 10.1038/labinvest.2016.94] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/08/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022] Open
Abstract
Endotoxic shock is the primary cause of morbidity and mortality in hospital patients, creating an urgent need to explore the mechanisms involved in sepsis. Our previous studies showed that T-cell immunoglobulin- and mucin-domain-containing molecule-4 (Tim-4) attenuated the inflammatory response through regulating the functions of macrophages. However, the mechanism by which Tim-4 does this has not been fully elucidated. In this study, we found that Tim-4 expression was increased in lipopolysaccharide (LPS)-induced endotoxic shock. Interestingly, the survival rate of mice in the Tim-4 overexpression group was higher than that of the control group after LPS administration. To investigate the function of Tim-4 in LPS-induced inflammation, we further demonstrated that Tim-4 attenuated LPS-induced endotoxic shock by inhibiting cytokine production by macrophages. Blocking expression of Tim-4 and nuclear factor-kappa B (NF-κB) signal inhibition showed that Tim-4 inhibited cytokine production via NF-κB signaling pathway. This study indicates that Tim-4 may exert its immune modulation by regulating inflammatory factor secretion and might act as a novel potential target for inflammatory diseases, especially endotoxic shock.
Collapse
|
25
|
Modulation of anti-endotoxin property of Temporin L by minor amino acid substitution in identified phenylalanine zipper sequence. Biochem J 2016; 473:4045-4062. [PMID: 27609815 DOI: 10.1042/bcj20160713] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/07/2016] [Indexed: 11/17/2022]
Abstract
A 13-residue frog antimicrobial peptide Temporin L (TempL) possesses versatile antimicrobial activities and is considered a lead molecule for the development of new antimicrobial agents. To find out the amino acid sequences that influence the anti-microbial property of TempL, a phenylalanine zipper-like sequence was identified in it which was not reported earlier. Several alanine-substituted analogs and a scrambled peptide having the same composition of TempL were designed for evaluating the role of this motif. To investigate whether leucine residues instead of phenylalanine residues at 'a' and/or 'd' position(s) of the heptad repeat sequence could alter its antimicrobial property, several TempL analogs were synthesized after replacing these phenylalanine residues with leucine residues. Replacing phenylalanine residues with alanine residues in the phenylalanine zipper sequence significantly compromised the anti-endotoxin property of TempL. This is evident from the higher production of tumor necrosis factor-α and interleukin-6 in lipopolysaccharide (LPS)-stimulated rat bone-marrow-derived macrophage cells in the presence of its alanine-substituted analogs than TempL itself. However, replacement of these phenylalanine residues with leucine residues significantly augmented anti-endotoxin property of TempL. A single alanine-substituted TempL analog (F8A-TempL) showed significantly reduced cytotoxicity but retained the antibacterial activity of TempL, while the two single leucine-substituted analogs (F5L-TempL and F8L-TempL), although exhibiting lower cytotoxicity, were able to retain the antibacterial activity of the parent peptide. The results demonstrate how minor amino acid substitutions in the identified phenylalanine zipper sequence in TempL could yield analogs with better antibacterial and/or anti-endotoxin properties with their plausible mechanism of action.
Collapse
|
26
|
Chen X, Wang H, Yang M, Wang L, Zhou M, Chen T, Shaw C. Identification and bioactivity evaluation of two novel temporins from the skin secretion of the European edible frog, Pelophylax kl. esculentus. Biochem Biophys Res Commun 2016; 476:566-573. [DOI: 10.1016/j.bbrc.2016.05.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/30/2016] [Indexed: 11/25/2022]
|
27
|
Mohanram H, Bhattacharjya S. 'Lollipop'-shaped helical structure of a hybrid antimicrobial peptide of temporin B-lipopolysaccharide binding motif and mapping cationic residues in antibacterial activity. Biochim Biophys Acta Gen Subj 2016; 1860:1362-72. [PMID: 27015761 DOI: 10.1016/j.bbagen.2016.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/08/2016] [Accepted: 03/20/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Temporins are attractive templates for the development of antibiotics. However, many temporins are inactive against Gram-negative bacteria. Previously, we demonstrated conjugation of a lipopolysaccharide binding motif peptide to temporins yielded hybrid non-haemolytic AMPs that killed several Gram-negative bacteria. METHODS We carried out a systematic Ala replacement of individual cationic and polar amino acid residues of LG21, a hybrid AMP consisted of temporin B (TB) and LPS binding motif. These Ala containing analogs of LG21 were examined for antibacterial activity, cell membrane permeabilization and liposome leakage assays using optical spectroscopic methods. Atomic resolution structure of LG21 was determined in zwitterionic dodecyl phosphocholine (DPC) micelles by NMR spectroscopy. RESULTS Cationic residues in the LPS binding motif of LG21 were critical for bactericidal and membrane permeabilization. Detergent bound structure of LG21 revealed helical conformation containing extensive sidechain/sidechain packing including cation/π interactions in the LPS binding motif. The helical structure of LG21 resembled a 'lollipop' like shape that was sustained by a compacted bulky aromatic/cationic head with a comparatively thinner 'stick' at the N-terminal region. The 'head' of the structure could be localized into micelle-water interfacial region whereas the 'stick' region may be inserted into the hydrophobic core of micelle. CONCLUSIONS The LPS binding motif of LG21 played dominant roles in broad spectrum activity and the 3-D structure provided plausible mechanistic insights for permeabilization of bacterial membrane. GENERAL SIGNIFICANCE Hybrid AMPs containing LPS binding motif could be useful for the structure based development of broad spectrum antibiotics.
Collapse
Affiliation(s)
- Harini Mohanram
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
28
|
Kumaresan V, Bhatt P, Ganesh MR, Harikrishnan R, Arasu M, Al-Dhabi NA, Pasupuleti M, Marimuthu K, Arockiaraj J. A novel antimicrobial peptide derived from fish goose type lysozyme disrupts the membrane of Salmonella enterica. Mol Immunol 2015; 68:421-33. [PMID: 26477736 DOI: 10.1016/j.molimm.2015.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 12/21/2022]
Abstract
In aquaculture, accumulation of antibiotics resulted in development of resistance among bacterial pathogens. Consequently, it became mandatory to find alternative to synthetic antibiotics. Antimicrobial peptides (AMPs) which are described as evolutionary ancient weapons have been considered as promising alternates in recent years. In this study, a novel antimicrobial peptide had been derived from goose type lysozyme (LyzG) which was identified from the cDNA library of freshwater fish Channa striatus (Cs). The identified lysozyme cDNA contains 585 nucleotides which encodes a protein of 194 amino acids. CsLyzG was closely related to Siniperca chuatsi with 92.8% homology. The depicted protein sequence contained a GEWL domain with conserved GLMQ motif, 7 active residues and 2 catalytic residues. Gene expression analysis revealed that CsLyzG was distributed in major immune organs with highest expression in head kidney. Results of temporal expression analysis after bacterial (Aeromonas hydrophila) and fungal (Aphanomyces invadans) challenges indicated a stimulant-dependent expression pattern of CsLyzG. Two antimicrobial peptides IK12 and TS10 were identified from CsLyzG and synthesized. Antibiogram showed that IK12 was active against Salmonella enterica, a major multi-drug resistant (MDR) bacterial pathogen which produces beta lactamase. The IK12 induced loss of cell viability in the bacterial pathogen. Flow cytometry assay revealed that IK12 disrupt the membrane of S. enterica which is confirmed by scanning electron microscope (SEM) analysis that reveals blebs around the bacterial cell membrane. Conclusively, CsLyzG is a potential innate immune component and the identified antimicrobial peptide has great caliber to be used as an ecofriendly antibacterial substance in aquaculture.
Collapse
Affiliation(s)
- Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Prasanth Bhatt
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Munuswamy-Ramanujam Ganesh
- Interdisciplinary Institute of Indian System of Medicine, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501 Tamil Nadu, India
| | - MariadhasValan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031 Uttar Pradesh, India
| | - Kasi Marimuthu
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Semeling Bedong, 08100 Bedong, Kedah, Malaysia
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
29
|
Koh JJ, Lin H, Caroline V, Chew YS, Pang LM, Aung TT, Li J, Lakshminarayanan R, Tan DTH, Verma C, Tan AL, Beuerman RW, Liu S. N-Lipidated Peptide Dimers: Effective Antibacterial Agents against Gram-Negative Pathogens through Lipopolysaccharide Permeabilization. J Med Chem 2015. [PMID: 26214729 DOI: 10.1021/acs.jmedchem.5b00628] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Treating infections caused by multidrug-resistant Gram-negative pathogens is challenging, and there is concern regarding the toxicity of the most effective antimicrobials for Gram-negative pathogens. We hypothesized that conjugating a fatty acid moiety onto a peptide dimer could maximize the interaction with lipopolysaccharide (LPS) and facilitate the permeabilization of the LPS barrier, thereby improving potency against Gram-negative pathogens. We systematically designed a series of N-lipidated peptide dimers that are active against Gram-negative bacteria, including carbapenem-resistant Enterobacteriaceae (CRE). The optimized lipid length was 6-10 carbons. At these lipid lengths, the N-lipidated peptide dimers exhibited strong LPS permeabilization. Compound 23 exhibited synergy with select antibiotics in most of the combinations tested. 23 and 32 also displayed rapid bactericidal activity. Importantly, 23 and 32 were nonhemolytic at 10 mg/mL, with no cellular or in vivo toxicity. These characteristics suggest that these compounds can overcome the limitations of current Gram-negative-targeted antimicrobials such as polymyxin B.
Collapse
Affiliation(s)
- Jun-Jie Koh
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore , 119074, Singapore
| | - Huifen Lin
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Vonny Caroline
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Yu Siang Chew
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Li Mei Pang
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Thet Tun Aung
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore
| | - Jianguo Li
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore.,Bioinformatics Institute (A*STAR) , 30 Biopolis Street, 07-01 matrix, 138671, Singapore
| | - Rajamani Lakshminarayanan
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore.,SRP Neuroscience and Behavioural Disorders, Duke-NUS Medical School , 169857, Singapore
| | - Donald T H Tan
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore , 119074, Singapore.,Singapore National Eye Centre , 11 Third Hospital Avenue, 168751, Singapore
| | - Chandra Verma
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore.,Bioinformatics Institute (A*STAR) , 30 Biopolis Street, 07-01 matrix, 138671, Singapore.,School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, 637551, Singapore.,Department of Biological Sciences, National University of Singapore , 14 Science Drive 4, 117543, Singapore
| | - Ai Ling Tan
- Department of Pathology, Singapore General Hospital , 169608, Singapore
| | - Roger W Beuerman
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore.,SRP Neuroscience and Behavioural Disorders, Duke-NUS Medical School , 169857, Singapore
| | - Shouping Liu
- Singapore Eye Research Institute, The Academia , 20 College Road, Discovery Tower Level 6, 169856, Singapore.,SRP Neuroscience and Behavioural Disorders, Duke-NUS Medical School , 169857, Singapore
| |
Collapse
|
30
|
D-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions. Amino Acids 2015; 47:2505-19. [PMID: 26162435 DOI: 10.1007/s00726-015-2041-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 06/24/2015] [Indexed: 12/18/2022]
Abstract
Naturally occurring antimicrobial peptides (AMPs) represent promising future antibiotics. We have previously isolated esculentin-1a(1-21)NH2, a short peptide derived from the frog skin AMP esculentin-1a, with a potent anti-Pseudomonal activity. Here, we investigated additional functions of the peptide and properties responsible for these activities. For that purpose, we synthesized the peptide, as well as its structurally altered analog containing two D-amino acids. The peptides were then biophysically and biologically investigated for their cytotoxicity and immunomodulating activities. The data revealed that compared to the wild-type, the diastereomer: (1) is significantly less toxic towards mammalian cells, in agreement with its lower α-helical structure, as determined by circular dichroism spectroscopy; (2) is more effective against the biofilm form of Pseudomonas aeruginosa (responsible for lung infections in cystic fibrosis sufferers), while maintaining a high activity against the free-living form of this important pathogen; (3) is more stable in serum; (4) has a higher activity in promoting migration of lung epithelial cells, and presumably in healing damaged lung tissue, and (5) disaggregates and detoxifies the bacterial lipopolysaccharide (LPS), albeit less than the wild-type. Light scattering studies revealed a correlation between anti-LPS activity and the ability to disaggregate the LPS. Besides shedding light on the multifunction properties of esculentin-1a(1-21)NH2, the D-amino acid containing isomer may serve as an attractive template for the development of new anti-Pseudomonal compounds with additional beneficial properties. Furthermore, together with other studies, incorporation of D-amino acids may serve as a general approach to optimize the future design of new AMPs.
Collapse
|
31
|
Berkov-Zrihen Y, Herzog IM, Benhamou RI, Feldman M, Steinbuch KB, Shaul P, Lerer S, Eldar A, Fridman M. Tobramycin and Nebramine as Pseudo-oligosaccharide Scaffolds for the Development of Antimicrobial Cationic Amphiphiles. Chemistry 2015; 21:4340-9. [DOI: 10.1002/chem.201406404] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Indexed: 12/31/2022]
|
32
|
Derde M, Nau F, Lechevalier V, Guérin-Dubiard C, Paboeuf G, Jan S, Baron F, Gautier M, Vié V. Native lysozyme and dry-heated lysozyme interactions with membrane lipid monolayers: lateral reorganization of LPS monolayer, model of the Escherichia coli outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:174-83. [PMID: 25450345 DOI: 10.1016/j.bbamem.2014.10.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/26/2014] [Accepted: 10/20/2014] [Indexed: 01/24/2023]
Abstract
Lysozyme is mainly described active against Gram-positive bacteria, but is also efficient against some Gram-negative species. Especially, it was recently demonstrated that lysozyme disrupts Escherichia coli membranes. Moreover, dry-heating changes the physicochemical properties of the protein and increases the membrane activity of lysozyme. In order to elucidate the mode of insertion of lysozyme into the bacterial membrane, the interaction between lysozyme and a LPS monolayer mimicking the E. coli outer membrane has been investigated by tensiometry, ellipsometry, Brewster angle microscopy and atomic force microscopy. It was thus established that lysozyme has a high affinity for the LPS monolayer, and is able to insert into the latter as long as polysaccharide moieties are present, causing reorganization of the LPS monolayer. Dry-heating increases the lysozyme affinity for the LPS monolayer and its insertion capacity; the resulting reorganization of the LPS monolayer is different and more drastic than with the native protein.
Collapse
Affiliation(s)
- Melanie Derde
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Oeuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Oeuf, F-35042 Rennes, France.
| | - Françoise Nau
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Oeuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Oeuf, F-35042 Rennes, France
| | - Valérie Lechevalier
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Oeuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Oeuf, F-35042 Rennes, France
| | - Catherine Guérin-Dubiard
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Oeuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Oeuf, F-35042 Rennes, France
| | - Gilles Paboeuf
- Université de Rennes 1, Institut de Physique de Rennes, UMR6251, CNRS, F-35042 Rennes, France
| | - Sophie Jan
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Oeuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Oeuf, F-35042 Rennes, France
| | - Florence Baron
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Oeuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Oeuf, F-35042 Rennes, France
| | - Michel Gautier
- Agrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Oeuf, F-35042 Rennes, France; INRA, UMR1253 Science et Technologie du Lait et de l'Oeuf, F-35042 Rennes, France
| | - Véronique Vié
- Université de Rennes 1, Institut de Physique de Rennes, UMR6251, CNRS, F-35042 Rennes, France.
| |
Collapse
|
33
|
Porfire AS, Leucuţa SE, Kiss B, Loghin F, Pârvu AE. Investigation into the role of Cu/Zn-SOD delivery system on its antioxidant and antiinflammatory activity in rat model of peritonitis. Pharmacol Rep 2014; 66:670-6. [PMID: 24948070 DOI: 10.1016/j.pharep.2014.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/24/2014] [Accepted: 03/28/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND The current study evaluated the role of delivery system (solution, conventional liposomes and PEG-ylated liposomes) on superoxide dismutase (SOD) antioxidant and antiinflammatory properties in a rat model of lipopolysaccharide (LPS)-induced peritonitis. METHODS Fifty male albino rats (Wistar-Bratislava) were divided into five groups (n=10). Control group received saline and the other four groups received intraperitoneal injections of LPS (5mg/kg). Among the LPS-injected groups, one was LPS control group and the other three groups received the endotoxin injection 30min after receiving the same dose of SOD (500U/kg, ip) in different delivery systems: saline solution (SOD-S), conventional liposomes (SOD-L) or PEG-ylated liposomes (SOD-PL). The animals were euthanized 6h after LPS injection, blood samples were collected and acute phase response (total and differential leukocytes count; tumor necrosis factor α), antioxidants (total antioxidants; reduced glutathione), oxidative stress (total oxidants; lipid peroxidation) and nitrosative stress (nitric oxide metabolites; nitrotyrosine) were evaluated. RESULTS Intraperitoneal administration of LPS to rats induced a marked inflammatory and oxidative response in plasma. On the other hand, all SOD formulations had protective effect against endotoxin-induced inflammation and oxidative/nitrosative stress, but PEG-ylated liposomes had the most significant activity. Thus, SOD-PL administration significantly reduced the effects of LPS on bone marrow acute phase response, the oxidative status and production of nitric oxide metabolites, while increasing the markers of antioxidant response in a significant manner. CONCLUSION SOD supplementation interferes both with inflammatory and oxidative pathways involved in LPS-induced acute inflammation, PEG-ylated liposomal formulation being of choice among the tested delivery systems.
Collapse
Affiliation(s)
- Alina S Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.
| | - Sorin E Leucuţa
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Bela Kiss
- Department of Toxicology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Felicia Loghin
- Department of Toxicology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alina E Pârvu
- Department of Physiopathology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
34
|
López-Abarrategui C, Del Monte-Martínez A, Reyes-Acosta O, Franco OL, Otero-González AJ. LPS inmobilization on porous and non-porous supports as an approach for the isolation of anti-LPS host-defense peptides. Front Microbiol 2013; 4:389. [PMID: 24409171 PMCID: PMC3865429 DOI: 10.3389/fmicb.2013.00389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/29/2013] [Indexed: 12/20/2022] Open
Abstract
Lipopolysaccharides (LPSs) are the major molecular component of the outer membrane of Gram-negative bacteria. This molecule is recognized as a sign of bacterial infection, responsible for the development of local inflammatory response and, in extreme cases, septic shock. Unfortunately, despite substantial advances in the pathophysiology of sepsis, there is no efficacious therapy against this syndrome yet. As a consequence, septic shock syndrome continues to increase, reaching mortality rates over 50% in some cases. Even though many preclinical studies and clinical trials have been conducted, there is no Food and Drug Administration-approved drug yet that interacts directly against LPS. Cationic host-defense peptides (HDPs) could be an alternative solution since they possess both antimicrobial and antiseptic properties. HDPs are small, positively charged peptides which are evolutionarily conserved components of the innate immune response. In fact, binding to diverse chemotypes of LPS and inhibition of LPS-induced pro-inflammatory cytokines from macrophages have been demonstrated for different HDPs. Curiously, none of them have been isolated by their affinity to LPS. A diversity of supports could be useful for such biological interaction and suitable for isolating HDPs that recognize LPS. This approach could expand the rational search for anti-LPS HDPs.
Collapse
Affiliation(s)
| | | | | | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília, Brazil
| | | |
Collapse
|
35
|
Saravanan R, Joshi M, Mohanram H, Bhunia A, Mangoni ML, Bhattacharjya S. NMR structure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane. PLoS One 2013; 8:e72718. [PMID: 24039798 PMCID: PMC3767682 DOI: 10.1371/journal.pone.0072718] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/12/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Antimicrobial peptides (AMPs) play important roles in the innate defense mechanism. The broad spectrum of activity of AMPs requires an efficient permeabilization of the bacterial outer and inner membranes. The outer leaflet of the outer membrane of Gram negative bacteria is made of a specialized lipid called lipopolysaccharide (LPS). The LPS layer is an efficient permeability barrier against anti-bacterial agents including AMPs. As a mode of protection, LPS can induce self associations of AMPs rendering them inactive. Temporins are a group of short-sized AMPs isolated from frog skin, and many of them are inactive against Gram negative bacteria as a result of their self-association in the LPS-outer membrane. PRINCIPAL FINDINGS Using NMR spectroscopy, we have determined atomic resolution structure and characterized localization of temporin-1Ta or TA (FLPLIGRVLSGIL-amide) in LPS micelles. In LPS micelles, TA adopts helical conformation for residues L4-I12, while residues F1-L3 are found to be in extended conformations. The aromatic sidechain of residue F1 is involved in extensive packing interactions with the sidechains of residues P3, L4 and I5. Interestingly, a number of long-range NOE contacts have been detected between the N-terminal residues F1, P3 with the C-terminal residues S10, I12, L13 of TA in LPS micelles. Saturation transfer difference (STD) NMR studies demonstrate close proximity of residues including F1, L2, P3, R7, S10 and L13 with the LPS micelles. Notably, the LPS bound structure of TA shows differences with the structures of TA determined in DPC and SDS detergent micelles. SIGNIFICANCE We propose that TA, in LPS lipids, forms helical oligomeric structures employing N- and C-termini residues. Such oligomeric structures may not be translocated across the outer membrane; resulting in the inactivation of the AMP. Importantly, the results of our studies will be useful for the development of antimicrobial agents with a broader spectrum of activity.
Collapse
Affiliation(s)
- Rathi Saravanan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Mangesh Joshi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Harini Mohanram
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anirban Bhunia
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Maria Luisa Mangoni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche Università La Sapienza, Roma, Italy
| | - Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
36
|
Gadelha DNB, Melo MCSC, Oliveira TKB, Brandt CT. Autogenous fecal peritonitis in Wistar rats with permanent bilateral carotid occlusion: morbidity, mortality and microbiological response. Acta Cir Bras 2013; 28:299-306. [DOI: 10.1590/s0102-86502013000400010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/19/2013] [Indexed: 11/22/2022] Open
|
37
|
Dimerization of aurein 1.2: effects in structure, antimicrobial activity and aggregation of Cândida albicans cells. Amino Acids 2013; 44:1521-8. [DOI: 10.1007/s00726-013-1475-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 02/14/2013] [Indexed: 10/27/2022]
|
38
|
Grieco P, Carotenuto A, Auriemma L, Saviello MR, Campiglia P, Gomez-Monterrey IM, Marcellini L, Luca V, Barra D, Novellino E, Mangoni ML. The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: Identification of a potent anti-Candida peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:652-60. [DOI: 10.1016/j.bbamem.2012.08.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 08/27/2012] [Accepted: 08/30/2012] [Indexed: 12/27/2022]
|
39
|
Korting H, Schöllmann C, Stauss-Grabo M, Schäfer-Korting M. Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine. Skin Pharmacol Physiol 2012; 25:323-34. [DOI: 10.1159/000341990] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 07/19/2012] [Indexed: 12/11/2022]
|
40
|
Srivastava RM, Srivastava S, Singh M, Bajpai VK, Ghosh JK. Consequences of alteration in leucine zipper sequence of melittin in its neutralization of lipopolysaccharide-induced proinflammatory response in macrophage cells and interaction with lipopolysaccharide. J Biol Chem 2011; 287:1980-95. [PMID: 22128186 DOI: 10.1074/jbc.m111.302893] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bee venom antimicrobial peptide, melittin, besides showing versatile activity against microorganisms also neutralizes lipopolysaccharide (LPS)-induced proinflammatory responses in macrophage cells. However, how the amino acid sequence of melittin contributes in its anti-inflammatory properties is mostly unknown. To determine the importance of the leucine zipper sequence of melittin in its neutralization of LPS-induced inflammatory responses in macrophages and interaction with LPS, anti-inflammatory properties of melittin and its three analogues and their interactions with LPS were studied in detail. Two of these analogues, namely melittin Mut-1 (MM-1) and melittin Mut-2 (MM-2), possess leucine to alanine substitutions in the single and double heptadic leucine residue(s) of melittin, respectively, whereas the third analogue is a scrambled peptide (Mel-SCR) that contains the amino acid composition of melittin with minor rearrangement in its leucine zipper sequence. Although MM-1 partly inhibited the production of proinflammatory cytokines in RAW 264.7 and rat primary macrophage cells in the presence of LPS, MM-2 and Mel-SCR were negligibly active. A progressive decrease in interaction of melittin with LPS, aggregation in LPS, and dissociation of LPS aggregates with alteration in the leucine zipper sequence of melittin was observed. Furthermore, with alteration in the leucine zipper sequence of melittin, these analogues failed to exhibit cellular responses associated with neutralization of LPS-induced inflammatory responses in macrophage cells by melittin. The data indicated a probable important role of the leucine zipper sequence of melittin in neutralizing LPS-induced proinflammatory responses in macrophage cells as well as in its interaction with LPS.
Collapse
Affiliation(s)
- Raghvendra M Srivastava
- Molecular and Structural Biology Division, Sophisticated Analytical Instrument Facility, Central Drug Research Institute, Council of Scientific and Industrial Research, Chattar Manzil Palace, P. O. Box 173, Lucknow 226001, India
| | | | | | | | | |
Collapse
|
41
|
Sha J, Zhao G, Chen X, Guan W, He Y, Wang Z. Antibacterial potential of hGlyrichin encoded by a human gene. J Pept Sci 2011; 18:97-104. [DOI: 10.1002/psc.1421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 08/10/2011] [Accepted: 09/06/2011] [Indexed: 02/04/2023]
Affiliation(s)
- Jibin Sha
- School of Life Science & Technology; Xi'an Jiaotong University; Xi'an China
- Beijing Institute of Radiation Medicine; Beijing China
| | - Guang Zhao
- Beijing Institute of Radiation Medicine; Beijing China
| | - Xiaojuan Chen
- Beijing Institute of Radiation Medicine; Beijing China
| | | | - Yanling He
- School of Energy & Power Engineering; Xi'an Jiaotong University; Xi'an China
| | - Zhaoqing Wang
- Beijing Institute of Radiation Medicine; Beijing China
| |
Collapse
|
42
|
Bhunia A, Saravanan R, Mohanram H, Mangoni ML, Bhattacharjya S. NMR structures and interactions of temporin-1Tl and temporin-1Tb with lipopolysaccharide micelles: mechanistic insights into outer membrane permeabilization and synergistic activity. J Biol Chem 2011; 286:24394-406. [PMID: 21586570 PMCID: PMC3129218 DOI: 10.1074/jbc.m110.189662] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 04/27/2011] [Indexed: 11/06/2022] Open
Abstract
Temporins are a group of closely related short antimicrobial peptides from frog skin. Lipopolysaccharide (LPS), the major constituent of the outer membrane of gram-negative bacteria, plays important roles in the activity of temporins. Earlier studies have found that LPS induces oligomerization of temporin-1Tb (TB) thus preventing its translocation across the outer membrane and, as a result, reduces its activity on gram-negative bacteria. On the other hand, temporin-1Tl (TL) exhibits higher activity, presumably because of lack of such oligomerization. A synergistic mechanism was proposed, involving TL and TB in overcoming the LPS-mediated barrier. Here, to gain insights into interactions of TL and TB within LPS, we investigated the structures and interactions of TL, TB, and TL+TB in LPS micelles, using NMR and fluorescence spectroscopy. In the context of LPS, TL assumes a novel antiparallel dimeric helical structure sustained by intimate packing between aromatic-aromatic and aromatic-aliphatic residues. By contrast, independent TB has populations of helical and aggregated conformations in LPS. The LPS-induced aggregated states of TB are largely destabilized in the presence of TL. Saturation transfer difference NMR studies have delineated residues of TL and TB in close contact with LPS and enhanced interactions of these two peptides with LPS, when combined together. Fluorescence resonance energy transfer and (31)P NMR have pointed out the proximity of TL and TB in LPS and conformational changes of LPS, respectively. Importantly, these results provide the first structural insights into the mode of action and synergism of antimicrobial peptides at the level of the LPS-outer membrane.
Collapse
Affiliation(s)
- Anirban Bhunia
- From the School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, Singapore 637551 and
| | - Rathi Saravanan
- From the School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, Singapore 637551 and
| | - Harini Mohanram
- From the School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, Singapore 637551 and
| | - Maria L. Mangoni
- the Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche Universita‘ La Sapienza, Piazzale Aldo Moro, 5-00185 Roma, Italy
| | - Surajit Bhattacharjya
- From the School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, Singapore 637551 and
| |
Collapse
|
43
|
Mangoni ML, Shai Y. Short native antimicrobial peptides and engineered ultrashort lipopeptides: similarities and differences in cell specificities and modes of action. Cell Mol Life Sci 2011; 68:2267-80. [PMID: 21573781 PMCID: PMC11114904 DOI: 10.1007/s00018-011-0718-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/19/2022]
Abstract
Due to the rapid emergence of resistant microbes to the currently available antibiotics, cationic antimicrobial peptides have attracted considerable interest as a possible new generation of anti-infective compounds. However, low cost development for therapeutic or industrial purposes requires, among other properties, that the peptides will be small and with simple structure. Therefore, considerable research has been devoted to optimizing peptide length combined with a simple design. This review focuses on the similarities and differences in the mode of action and target cell specificity of two families of small peptides: the naturally occurring temporins from the skin of amphibia and the engineered ultrashort lipopeptides. We will also discuss the finding that acylation of cationic peptides results in molecules with a more potent spectrum of activity and a higher resistance to proteolytic degradation. Conjugation of fatty acids to linear native peptide sequences is a powerful strategy to engineer novel successful anti-infective drugs.
Collapse
Affiliation(s)
- Maria Luisa Mangoni
- Istituto Pasteur-Fondazione Cenci Bolognetti, La Sapienza University of Rome, 00185, Rome, Italy,
| | | |
Collapse
|
44
|
Bruschi M, Pirri G, Giuliani A, Nicoletto SF, Baster I, Scorciapino MA, Casu M, Rinaldi AC. Synthesis, characterization, antimicrobial activity and LPS-interaction properties of SB041, a novel dendrimeric peptide with antimicrobial properties. Peptides 2010; 31:1459-67. [PMID: 20438783 DOI: 10.1016/j.peptides.2010.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/26/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
Multimeric peptides offer several advantages with respect to their monomeric counterparts, as increased activity and greater stability to peptidases and proteases. SB041 is a novel antimicrobial peptide with dendrimeric structure; it is a tetramer of pyrEKKIRVRLSA linked by a lysine core, with an amino valeric acid chain. Here, we report on its synthesis, NMR characterization, antimicrobial activity, and LPS-interaction properties. The peptide was especially active against Gram-negative strains, with a potency comparable (on molar basis) to that of lipopeptides colistin and polymixin B, but it also displayed some activity against selected Gram-positive strains. Following these indications, we investigated the efficacy of SB041 in binding Escherichia coli and Pseudomonas aeruginosa LPS in vitro and counteracting its biological effects in RAW-Blue cells, derived from RAW 264.7 macrophages. SB041 strongly bound purified LPS, especially that of E. coli, as proved by fluorescent displacement assay, and readily penetrated into LPS monolayers. However, the killing activity of SB041 against E. coli was not inhibited by increasing concentrations of LPS added to the medium. Checking the SB041 effect on LPS-induced activation of pattern recognition receptors (PRRs) in Raw-Blue cells revealed that while the peptide gave a statistically significant decrease in PRRs stimulation when RAW-Blue cells were challenged with P. aeruginosa LPS, the same was not seen when E. coli LPS was used to activate innate immune defense-like responses. Thus, as previously seen for other antimicrobial peptides, also for SB041 binding to LPS did not translate necessarily into LPS-neutralizing activity, suggesting that SB041-LPS interactions must be of complex nature.
Collapse
Affiliation(s)
- Michela Bruschi
- Research & Development Unit, Spider Biotech S.r.l., I-10010 Colleretto Giacosa (TO), Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Rosenfeld Y, Lev N, Shai Y. Effect of the Hydrophobicity to Net Positive Charge Ratio on Antibacterial and Anti-Endotoxin Activities of Structurally Similar Antimicrobial Peptides. Biochemistry 2010; 49:853-61. [DOI: 10.1021/bi900724x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yosef Rosenfeld
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Lev
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yechiel Shai
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
46
|
Abstract
An expanding body of evidence is rendering manifest that many cationic antimicrobial peptides are endowed with different properties and activities, well beyond their direct action on microbes. One of the most interesting and potentially important research avenue on the alternative use of antimicrobial peptides grounds on their affinity toward lipopolysaccharide (LPS), the endotoxin, responsible for the systemic inflammatory response syndrome (SIRS) and related, often fatal, disorders that can follow Gram-negative infections. Indeed, not only do several antimicrobial peptides, such as cathelicidins, display an ability to strongly bind LPS and break its aggregates, but they have also been demonstrated to suppress LPS-induced pro-inflammatory responses in vitro and to protect from sepsis in animal models. Although many aspects still need to be carefully evaluated - some of which are highlighted here - a mix of antimicrobial, LPS-sequestering/neutralization, and immunomodulatory features make cationic peptides, and especially synthetic or semi-synthetic amphiphilic compounds built on their scheme, attractive candidates for novel drugs to be administered in antisepsis therapies. These therapies will probably hinge either on compounds able to intervene at multiple points in the sepsis cascade or on the combination of two or more immunomodulators.
Collapse
Affiliation(s)
- Andrea Giuliani
- Research and Development Unit, SpiderBiotech S.r.l, Colleretto Giacosa, Italy
| | | | | |
Collapse
|
47
|
Synergistic antibacterial and anti-inflammatory activity of temporin A and modified temporin B in vivo. PLoS One 2009; 4:e7191. [PMID: 19784377 PMCID: PMC2747021 DOI: 10.1371/journal.pone.0007191] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/11/2009] [Indexed: 11/26/2022] Open
Abstract
Temporins are antimicrobial peptides secreted by the granular glands of the European red frog (Rana temporaria). They are 10–14 amino acid long polypeptides active prevalently against gram positive bacteria. This study shows that a synthetic temporin B analogue (TB-YK), acquires the capacity to act in synergism with temporin A and to exert antimicrobial and anti-inflammatory activity in vivo against gram positive and gram negative bacteria. Administration of 3.4 mg/Kg of temporin A (TA)+1.6 mg/Kg TB-YK, given to individual mice concurrently with a lethal dose of bacteria (gram positive or negative), rescued 100% of the animals. More importantly, the same doses of temporins, administered one week after experimental infection with a sub lethal dose of bacteria, sterilized 100% of the animals within 3–6 days. Also, it is described an animal model based on the use of sub lethal doses of bacteria, which closely mimics bacterial infection in humans. The model offers the possibility to test in a preclinical setting the true potential of TA and TB-YK in combination as antimicrobial and anti-inflammatory agents.
Collapse
|
48
|
Marcellini L, Borro M, Gentile G, Rinaldi AC, Stella L, Aimola P, Barra D, Mangoni ML. Esculentin-1b(1-18)--a membrane-active antimicrobial peptide that synergizes with antibiotics and modifies the expression level of a limited number of proteins in Escherichia coli. FEBS J 2009; 276:5647-64. [PMID: 19725877 DOI: 10.1111/j.1742-4658.2009.07257.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Antimicrobial peptides constitute one of the main classes of molecular weapons deployed by the innate immune system of all multicellular organisms to resist microbial invasion. A good proportion of all antimicrobial peptides currently known, numbering hundreds of molecules, have been isolated from frog skin. Nevertheless, very little is known about the effect(s) and the mode(s) of action of amphibian antimicrobial peptides on intact bacteria, especially when they are used at subinhibitory concentrations and under conditions closer to those encountered in vivo. Here we show that esculentin-1b(1-18) [Esc(1-18)] (GIFSKLAGKKLKNLLISG-NH(2)), a linear peptide encompassing the first 18 residues of the full-length esculentin-1b, rapidly kills Escherichia coli at the minimal inhibitory concentration. The lethal event is concomitant with the permeation of the outer and inner bacterial membranes. This is in contrast to what is found for many host defense peptides, which do not destabilize membranes at their minimal inhibitory concentrations. Importantly, proteomic analysis revealed that Esc(1-18) has a limited ability to modify the bacterium's protein expression profile, at either bactericidal or sublethal concentrations. To the best of our knowledge, this is the first report on the effects of an antimicrobial peptide from frog skin on the proteome of its bacterial target, and underscores the fact that the bacterial membrane is the major target for the killing mechanism of Esc(1-18), rather than intracellular processes.
Collapse
Affiliation(s)
- Ludovica Marcellini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche, Azienda Ospedaliera S. Andrea, Università La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lin QP, Zhou LF, Li NN, Chen YQ, Li BC, Cai YF, Zhang SQ. Lipopolysaccharide neutralization by the antibacterial peptide CM4. Eur J Pharmacol 2008; 596:160-5. [DOI: 10.1016/j.ejphar.2008.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/14/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
|
50
|
Steinstraesser L, Koehler T, Jacobsen F, Daigeler A, Goertz O, Langer S, Kesting M, Steinau H, Eriksson E, Hirsch T. Host defense peptides in wound healing. Mol Med 2008; 14:528-37. [PMID: 18385817 DOI: 10.2119/2008-00002.steinstraesser] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 03/25/2008] [Indexed: 12/16/2022] Open
Abstract
Host defense peptides are effector molecules of the innate immune system. They show broad antimicrobial action against gram-positive and -negative bacteria, and they likely play a key role in activating and mediating the innate as well as adaptive immune response in infection and inflammation. These features make them of high interest for wound healing research. Non-healing and infected wounds are a major problem in patient care and health care spending. Increasing infection rates, growing bacterial resistance to common antibiotics, and the lack of effective therapeutic options for the treatment of problematic wounds emphasize the need for new approaches in therapy and pathophysiologic understanding. This review focuses on the current knowledge of host defense peptides affecting wound healing and infection. We discuss the current data and highlight the potential future developments in this field of research.
Collapse
|