1
|
Uittenboogaard A, Mageto S, Mohamed SKE, Pourroy B, Mwesige B, Chitedze AC, Kaspers G, Njuguna F. Investigator-Initiated Clinical Pharmacokinetic Studies in Resource-Limited Settings: Minimal Requirements and Practical Guidance. J Clin Pharmacol 2025. [PMID: 39810407 DOI: 10.1002/jcph.6184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025]
Abstract
Clinical pharmacology studies are critical for determining the efficacy and safety of drugs. Due to the resource-intensive nature of these studies, most have been conducted in high-income countries, leading to a significant gap in clinical pharmacology data for patients in low- and middle-income countries. This paper provides an overview of the minimal requirements for performing a clinical pharmacology investigator-initiated trial (IIT), including pharmacokinetic sampling. We identify common challenges in resource-limited settings and propose strategies to overcome them. This guideline covers regulatory approval, participant recruitment, drug storage, sample collection and handling, transport, bioanalytical analysis, and data management tailored to the constraints of resource-limited settings. Strategies are proposed to minimize resource demands, including simplified study designs, the use of technologies like whole blood microsampling, and opportunities for collaboration. The goal is to provide practical guidance for those seeking to perform a clinical pharmacology IIT in resource-limited settings to improve safe and effective drug treatment for patients worldwide. Beyond the scope of this guideline is a detailed step-by-step guide on how to perform clinical pharmacology studies.
Collapse
Affiliation(s)
- Aniek Uittenboogaard
- Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Susan Mageto
- Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Academic Model Providing Access to Healthcare (AMPATH), Eldoret, Kenya
- Pharmacology, School of Health Sciences, Kisii University, Kisii, Kenya
| | | | - Bertrand Pourroy
- Oncopharma Unit, Pharmacy Department, University Teaching Hospital of La Timone, Assistance Publique Hopitaux de Marseille, Universitaires de Provence, Marseille, France
- Groupe Franco-Africain d'Oncologie Pédiatrique (GFAOP), Institut Gustave Roussy, Villejuif, France
| | | | - Agness Chisomo Chitedze
- Baylor College of Medicine Children's Foundation, Lilongwe, Malawi
- Texas Children's Global Hematology-Oncology-Pediatric-Excellence (HOPE) Program, Lilongwe, Malawi
| | - Gertjan Kaspers
- Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Festus Njuguna
- Egypt Healthcare Authority Medication Management and Pharmacy Affairs, Cairo, Egypt
- Department of Child Health and Paediatrics, Moi University, Eldoret, Kenya
| |
Collapse
|
2
|
Ding J, Hoglund RM, Tagbor H, Tinto H, Valéa I, Mwapasa V, Kalilani‐Phiri L, Van Geertruyden J, Nambozi M, Mulenga M, Hachizovu S, Ravinetto R, D'Alessandro U, Tarning J. Population pharmacokinetics of amodiaquine and piperaquine in African pregnant women with uncomplicated Plasmodium falciparum infections. CPT Pharmacometrics Syst Pharmacol 2024; 13:1893-1903. [PMID: 39228131 PMCID: PMC11578137 DOI: 10.1002/psp4.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 09/05/2024] Open
Abstract
Artemisinin-based combination therapy (ACT) is the first-line recommended treatment for uncomplicated malaria. Pharmacokinetic (PK) properties in pregnant women are often based on small studies and need to be confirmed and validated in larger pregnant patient populations. This study aimed to evaluate the PK properties of amodiaquine and its active metabolite, desethylamodiaquine, and piperaquine in women in their second and third trimester of pregnancy with uncomplicated P. falciparum infections. Eligible pregnant women received either artesunate-amodiaquine (200/540 mg daily, n = 771) or dihydroartemisinin-piperaquine (40/960 mg daily, n = 755) for 3 days (NCT00852423). Population PK properties were evaluated using nonlinear mixed-effects modeling, and effect of gestational age and trimester was evaluated as covariates. 1071 amodiaquine and 1087 desethylamodiaquine plasma concentrations, and 976 piperaquine plasma concentrations, were included in the population PK analysis. Amodiaquine concentrations were described accurately with a one-compartment disposition model followed by a two-compartment disposition model of desethylamodiaquine. The relative bioavailability of amodiaquine increased with gestational age (1.25% per week). The predicted exposure to desethylamodiaquine was 2.8%-32.2% higher in pregnant women than that reported in non-pregnant women, while day 7 concentrations were comparable. Piperaquine concentrations were adequately described by a three-compartment disposition model. Neither gestational age nor trimester had significant impact on the PK of piperaquine. The predicted exposure and day 7 concentrations of piperaquine were similar to that reported in non-pregnant women. In conclusion, the exposure to desethylamodiaquine and piperaquine was similar to that in non-pregnant women. Dose adjustment is not warranted for women in their second and their trimester of pregnancy.
Collapse
Affiliation(s)
- Junjie Ding
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - Richard M. Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | | | | | | | - Victor Mwapasa
- Department of Community and Environmental Health, Kamuzu University of Health SciencesBlantyreMalawi
| | - Linda Kalilani‐Phiri
- Department of Community and Environmental Health, Kamuzu University of Health SciencesBlantyreMalawi
| | | | | | | | | | - Raffaella Ravinetto
- Public Health DepartmentInstitute of Tropical MedicineAntwerpBelgium
- School of Public HealthUniversity of the Western CapeCape TownSouth Africa
| | - Umberto D'Alessandro
- MRC Unit The Gambia at the London School of Hygiene and Tropical MedicineFajaraGambia
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
- The WorldWide Antimalarial Resistance NetworkOxfordUK
| |
Collapse
|
3
|
Simeon S, Hughes E, Wallender E, P. Solans B, Savic R. Optimizing Lumefantrine Dosing for Young Children in High-Malaria-Burden Countries Using Pharmacokinetic-Pharmacodynamic Simulations. Open Forum Infect Dis 2024; 11:ofae627. [PMID: 39544493 PMCID: PMC11561580 DOI: 10.1093/ofid/ofae627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
Background Artemether-lumefantrine is the most widely used treatment for uncomplicated malaria and it is dosed based on weight bands according to World Health Organization (WHO) guidelines. However, children are vulnerable to underdosing. Inadequate dosing can lead to treatment failure and drug resistance. Methods Nutritional parameters for 372 363 children <5 years old in 25 high-malaria-burden countries were acquired from the Demographic and Health Surveys program. Prevalence of attaining day 7 lumefantrine concentrations ≥200 ng/mL and remaining reinfection free for 42 days were evaluated using a simulation-based approach with a population pharmacokinetic-pharmacodynamic model. Besides the WHO-recommended lumefantrine dosing regimen (twice daily for 3 days), we explored 3 adjusted regimens: extended (2 extra days of dosing), increased (1 extra 120-mg tablet per dose), and intensified (thrice daily for 3 days). We also explored an alternative method dosing malnourished children based on expected weight for age. Results We estimated that 75% of children reached the 200 ng/mL lumefantrine threshold and 77% were malaria free for 42 days when using WHO treatment guidelines. By switching to the alternative dosing method, 5% more children achieved target lumefantrine levels; 22% more achieved the target using the alternative dosing and the extended regimen. With combined alternative plus extended dosing, 97% of children reached 200 ng/mL lumefantrine and 88% were malaria free for 42 days. Conclusions This study highlights the inadequacies of weight-based lumefantrine dosing for young and underweight children and supports the need of clinical trials using extended dosing based on expected weight in malnourished children.
Collapse
Affiliation(s)
- Segolene Simeon
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Emma Hughes
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Erika Wallender
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, California, USA
| | - Belén P. Solans
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Rada Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Thomford NE, Kellermann T, Biney RP, Dixon C, Nyarko SB, Ateko RO, Ekor M, Kyei GB. Therapeutic efficacy of generic artemether-lumefantrine in the treatment of uncomplicated malaria in Ghana: assessing anti-malarial efficacy amidst pharmacogenetic variations. Malar J 2024; 23:125. [PMID: 38685044 PMCID: PMC11059713 DOI: 10.1186/s12936-024-04930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Despite efforts made to reduce morbidity and mortality associated with malaria, especially in sub-Saharan Africa, malaria continues to be a public health concern that requires innovative efforts to reach the WHO-set zero malaria agenda. Among the innovations is the use of artemisinin-based combination therapy (ACT) that is effective against Plasmodium falciparum. Generic artemether-lumefantrine (AL) is used to treat uncomplicated malaria after appropriate diagnosis. AL is metabolized by the cytochrome P450 family of enzymes, such as CYP2B6, CYP3A4 and CYP3A5, which can be under pharmacogenetic influence. Pharmacogenetics affecting AL metabolism, significantly influence the overall anti-malarial activity leading to variable therapeutic efficacy. This study focused on generic AL drugs used in malarial treatment as prescribed at health facilities and evaluated pharmacogenomic influences on their efficacy. METHODS Patients who have been diagnosed with malaria and confirmed through RDT and microscopy were recruited in this study. Blood samples were taken on days 1, 2, 3 and 7 for parasite count and blood levels of lumefantrine, artemisinin, desbutyl-lumefantrine (DBL), and dihydroartemisinin (DHA), the active metabolites of lumefantrine and artemether, respectively, were analysed using established methods. Pharmacogene variation analysis was undertaken using iPLEX microarray and PCR-RFLP. RESULTS A total of 52 patients completed the study. Median parasite density from day 1 to 7 ranged from 0-2666/μL of blood, with days 3 and 7 recording 0 parasite density. Highest median plasma concentration for lumefantrine and desbutyl lumefantrine, which are the long-acting components of artemisinin-based combinations, was 4123.75 ng/mL and 35.87 ng/mL, respectively. Day 7 plasma lumefantrine concentration across all generic ACT brands was ≥ 200 ng/mL which potentially accounted for the parasitaemia profile observed. Monomorphism was observed for CYP3A4 variants, while there were observed variations in CYP2B6 and CYP3A5 alleles. Among the CYP3A5 genotypes, significant differences in genotypes and plasma concentration for DBL were seen on day 3 between 1/*1 versus *1/*6 (p = 0.002), *1/*3 versus *1/*6 (p = 0.006) and *1/*7 versus *1/*6 (p = 0.008). Day 7 plasma DBL concentrations showed a significant difference between *1/*6 and *1/*3 (p = 0.026) expressors. CONCLUSIONS The study findings show that CYP2B6 and CYP3A5 pharmacogenetic variations may lead to higher plasma exposure of AL metabolites.
Collapse
Affiliation(s)
- Nicholas Ekow Thomford
- Pharmacogenomics and Genomic Medicine Group, Department of Medical Biochemistry, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.
| | - Tracy Kellermann
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robert Peter Biney
- Pharmacogenomics and Genomic Medicine Group, Department of Medical Biochemistry, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Pharmacotherpaeutics and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Charné Dixon
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Samuel Badu Nyarko
- Pharmacogenomics and Genomic Medicine Group, Department of Medical Biochemistry, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Richmond Owusu Ateko
- Department of Chemical Pathology, University of Ghana Medical School, University of Ghana, Legon, Accra, Ghana
- Division of Chemical Pathology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Martins Ekor
- Department of Pharmacology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - George B Kyei
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
5
|
Moreira FDL, Benzi JRDL, Pinto L, Thomaz MDL, Duarte G, Lanchote VL. Optimizing Therapeutic Drug Monitoring in Pregnant Women: A Critical Literature Review. Ther Drug Monit 2023; 45:159-172. [PMID: 36127797 DOI: 10.1097/ftd.0000000000001039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/18/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND More than 90% of pregnant women take at least one drug during pregnancy. Drug dose adjustments during pregnancy are sometimes necessary due to various pregnancy-induced physiological alterations frequently associated with lower plasma concentrations. However, the clinical relevance or benefits of therapeutic drug monitoring (TDM) in pregnant women have not been specifically studied. Clinical pharmacokinetic studies in pregnant women are incredibly challenging for many reasons. Despite this, regulatory agencies have made efforts to encourage the inclusion of this population in clinical trials to achieve more information on the pharmacotherapy of pregnant women. This review aims to provide support for TDM recommendations and dose adjustments in pregnant women. METHODS The search was conducted after a predetermined strategy on PubMed and Scopus databases using the MeSH term "pregnancy" alongside other terms such as "Pregnancy and dose adjustment," "Pregnancy and therapeutic drug monitoring," "Pregnancy and PBPK," "Pregnancy and pharmacokinetics," and "Pregnancy and physiological changes." RESULTS The main information on TDM in pregnant women is available for antiepileptics, antipsychotics, antidepressants, antibiotics, antimalarials, and oncologic and immunosuppressive drugs. CONCLUSIONS More data are needed to support informed benefit-risk decision making for the administration of drugs to pregnant women. TDM and/or pharmacokinetic studies could ensure that pregnant women receive an adequate dosage of an active drug. Mechanistic modeling approaches potentially could increase our knowledge about the pharmacotherapy of this special population, and they could be used to better design dosage regimens.
Collapse
Affiliation(s)
- Fernanda de Lima Moreira
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Jhohann Richard de Lima Benzi
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Leonardo Pinto
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Matheus de Lucca Thomaz
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| | - Geraldo Duarte
- Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vera Lucia Lanchote
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; and
| |
Collapse
|
6
|
Breiterová KH, Ritomská A, Fontinha D, Křoustková J, Suchánková D, Hošťálková A, Šafratová M, Kohelová E, Peřinová R, Vrabec R, Francisco D, Prudêncio M, Cahlíková L. Derivatives of Amaryllidaceae Alkaloid Ambelline as Selective Inhibitors of Hepatic Stage of Plasmodium berghei Infection In Vitro. Pharmaceutics 2023; 15:pharmaceutics15031007. [PMID: 36986868 PMCID: PMC10056443 DOI: 10.3390/pharmaceutics15031007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The incidence rate of malaria and the ensuing mortality prompts the development of novel antimalarial drugs. In this work, the activity of twenty-eight Amaryllidaceae alkaloids (1-28) belonging to seven different structural types was assessed, as well as twenty semisynthetic derivatives of the β-crinane alkaloid ambelline (28a-28t) and eleven derivatives of the α-crinane alkaloid haemanthamine (29a-29k) against the hepatic stage of Plasmodium infection. Six of these derivatives (28h, 28m, 28n and 28r-28t) were newly synthesized and structurally identified. The most active compounds, 11-O-(3,5-dimethoxybenzoyl)ambelline (28m) and 11-O-(3,4,5-trimethoxybenzoyl)ambelline (28n), displayed IC50 values in the nanomolar range of 48 and 47 nM, respectively. Strikingly, the derivatives of haemanthamine (29) with analogous substituents did not display any significant activity, even though their structures are quite similar. Interestingly, all active derivatives were strictly selective against the hepatic stage of infection, as they did not demonstrate any activity against the blood stage of Plasmodium infection. As the hepatic stage is a bottleneck of the plasmodial infection, liver-selective compounds can be considered crucial for further development of the malaria prophylactics.
Collapse
Affiliation(s)
- Kateřina Hradiská Breiterová
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Aneta Ritomská
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Diana Fontinha
- Prudêncio Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Edf. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Jana Křoustková
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Daniela Suchánková
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Anna Hošťálková
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Marcela Šafratová
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Eliška Kohelová
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Rozálie Peřinová
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Rudolf Vrabec
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Denise Francisco
- Prudêncio Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Edf. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Miguel Prudêncio
- Prudêncio Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Edf. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Lucie Cahlíková
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
7
|
Sugiarto SR, Singh B, Page-Sharp M, Davis WA, Salman S, Hii KC, Davis TME. The pharmacokinetic properties of artemether and lumefantrine in Malaysian patients with Plasmodium knowlesi malaria. Br J Clin Pharmacol 2021; 88:691-701. [PMID: 34296469 DOI: 10.1111/bcp.15001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS The aim of this study was to assess the pharmacokinetic properties of artemether, lumefantrine and their active metabolites in Plasmodium knowlesi malaria. METHODS Malaysian adults presenting with uncomplicated P. knowlesi infections received six doses of artemether (1.7 mg/kg) plus lumefantrine (10 mg/kg) over 3 days. Venous blood and dried blood spot (DBS) samples were taken at predetermined time-points over 28 days. Plasma and DBS artemether, dihydroartemisinin, lumefantrine and desbutyl-lumefantrine were measured using liquid chromatography-mass spectrometry. Multi-compartmental population pharmacokinetic models were developed using plasma with or without DBS drug concentrations. RESULTS Forty-one participants (mean age 45 years, 66% males) were recruited. Artemether-lumefantrine treatment was well tolerated and parasite clearance was prompt. Plasma and DBS lumefantrine concentrations were in close agreement and were used together in pharmacokinetic modelling, but only plasma concentrations of the other analytes were used because of poor correlation with DBS levels. The areas under the concentration-time curve (AUC0-∞ ) for artemether, dihydroartemisinin and lumefantrine (medians 1626, 1881 and 625 098 μg.h/L, respectively) were similar to those reported in previous pharmacokinetic studies in adults and children. There was evidence of auto-induction of artemether metabolism (mean increase in clearance relative to bioavailability 25.2% for each subsequent dose). The lumefantrine terminal elimination half-life (median 9.5 days) was longer than reported in healthy volunteers and adults with falciparum malaria. CONCLUSION The disposition of artemether, dihydroartemisinin and lumefantrine in knowlesi malaria largely parallels that in other human malarias. DBS lumefantrine concentrations can be used in pharmacokinetic studies but DBS technology is currently unreliable for the other analytes.
Collapse
Affiliation(s)
- Sri Riyati Sugiarto
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Balbir Singh
- Universiti Malaysia Sarawak (UNIMAS) Malaria Research Centre, Kota Samarahan, Sarawak, Malaysia
| | - Madhu Page-Sharp
- School of Pharmacy, Curtin University of Technology, Bentley, Australia
| | - Wendy A Davis
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Sam Salman
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia.,Clinical Pharmacology and Toxicology, PathWest, Nedlands, Western Australia, Australia.,Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | | | - Timothy M E Davis
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| |
Collapse
|
8
|
Hughes E, Wallender E, Mohamed Ali A, Jagannathan P, Savic RM. Malaria PK/PD and the Role Pharmacometrics Can Play in the Global Health Arena: Malaria Treatment Regimens for Vulnerable Populations. Clin Pharmacol Ther 2021; 110:926-940. [PMID: 33763871 PMCID: PMC8518425 DOI: 10.1002/cpt.2238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
Malaria is an infectious disease which disproportionately effects children and pregnant women. These vulnerable populations are often excluded from clinical trials resulting in one‐size‐fits‐all treatment regimens based on those established for a nonpregnant adult population. Pharmacokinetic/pharmacodynamic (PK/PD) models can be used to optimize dose selection as they define the drug exposure‐response relationship. Additionally, these models are able to identify patient characteristics that cause alterations in the expected PK/PD profiles and through simulations can recommend changes to dosing which compensate for the differences. In this review, we examine how PK/PD models have been applied to optimize antimalarial dosing recommendations for young children, including those who are malnourished, pregnant women, and individuals receiving concomitant therapies such as those for HIV treatment. The malaria field has had great success in utilizing PK/PD models as a foundation to update treatment guidelines and propose the next generation of dosing regimens to investigate in clinical trials. We propose how the malaria field can continue to use modeling to improve therapies by further integrating PK data into clinical studies and including data on drug resistance and host immunity in PK/PD models. Finally, we suggest that other disease areas can achieve similar success in applying pharmacometrics to improve outcomes by implementing three key principals.
Collapse
Affiliation(s)
- Emma Hughes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Erika Wallender
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Ali Mohamed Ali
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | | | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Hazenberg P, Navaratnam K, Busuulwa P, Waitt C. Anti-Infective Dosing in Special Populations: Pregnancy. Clin Pharmacol Ther 2021; 109:977-986. [PMID: 33548055 DOI: 10.1002/cpt.2192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/28/2021] [Indexed: 12/29/2022]
Abstract
Substantial anatomical and physiological changes occur during pregnancy and labor, which impact on drug absorption, distribution, metabolism, and elimination. Reduced maternal concentrations may have a clinically important impact on the efficacy of anti-infectives for mother, fetus, and neonate, with potential dosing implications. However, there is a paucity of pregnancy-specific data examining this. Existing data on the pharmacokinetics of anti-infectives in pregnancy are summarized and evaluated, with emphasis on agents that are used in treatment of HIV, tuberculosis, malaria, and common bacterial infections. Limitations and challenges in achieving ideal study designs in pregnant populations are highlighted, and key quality considerations for the generation of the highest quality evidence are outlined. PubMed was searched for each chosen anti-infective. Pharmacokinetic studies which either compared pharmacokinetics from pregnant women against nonpregnant controls, or which assessed concentrations against a known minimum inhibitory concentration were included. Two independent reviewers extracted data from each study and appraised them using the 24-point ClinPK Checklist. The main finding was that there is a lack of published data for anti-infectives in pregnancy, despite their clinical importance. Of the studies identified, only those investigating cobicistat-boosted antiretroviral regimens firmly concluded that these should not be used in pregnancy. Most studies concluded either that further research was needed, or that there were significant pharmacokinetic differences between pregnant and nonpregnant participants which had uncertain clinical significance. Challenges in applying existing quality grading systems to these studies were noted, suggesting a development of a refined system for appraisal of pharmacokinetic studies in "special populations" may be warranted.
Collapse
Affiliation(s)
- Phoebe Hazenberg
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Kate Navaratnam
- Centre for Women's Health Research, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Paula Busuulwa
- Centre for Women's Health Research, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Catriona Waitt
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK.,Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
10
|
Adegbola AJ, Soyinka JO, Bolaji OO. Effect of CYP3A5*3 genotypes on lumefantrine plasma concentrations among malaria-HIV-infected women. Pharmacogenomics 2020; 21:1289-1297. [PMID: 33243092 DOI: 10.2217/pgs-2020-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: We aimed to assess the effect of a functional polymorphism of CYP3A5 on lumefantrine pharmacokinetics. Patients & methods: Sixty-nine women diagnosed with malaria received standard doses of artemether-lumefantrine. Concentration-time data for lumefantrine and genotyping data were obtained for each participant. Pharmacokinetic-genotype associative relationships were assessed using linear regressions, Mann-Whitney U-test or Kruskal-Wallis statistics. Results: Average age and weight (standard deviation) of the patients were 33 (6.8) years and 59.5 (11.6) kg, respectively. CYP3A5*3 genotype associated with the log-transformed maximum concentration with the median (interquartile range) values of 8279 (6516-13,420) and 6331 (4093-8631) ng/ml (p = 0.032) among the carriers and noncarriers of CYP3A5*3, respectively. Besides, the NR1I3 c.152-1089T>C genotypes had an associative trend with the lumefantrine area under the curve (AUC0-96h) and clearance. Conclusion: CYP3A5*3 genetic variant is associated with a high maximum plasma concentration of lumefantrine. This warrants further investigations on the association between CYP3A5*3 gene variants, lumefantrine pharmacokinetics and electrophysiological effect.
Collapse
Affiliation(s)
- Adebanjo J Adegbola
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Julius O Soyinka
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| | - Oluseye O Bolaji
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile Ife, Nigeria
| |
Collapse
|
11
|
Moore BR, Davis TM. Updated pharmacokinetic considerations for the use of antimalarial drugs in pregnant women. Expert Opin Drug Metab Toxicol 2020; 16:741-758. [PMID: 32729740 DOI: 10.1080/17425255.2020.1802425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The association between pregnancy and altered drug pharmacokinetic (PK) properties is acknowledged, as is its impact on drug plasma concentrations and thus therapeutic efficacy. However, there have been few robust PK studies of antimalarial use in pregnancy. Given that inadequate dosing for prevention or treatment of malaria in pregnancy can result in negative maternal/infant outcomes, along with the potential to select for parasite drug resistance, it is imperative that reliable pregnancy-specific dosing recommendations are established. AREAS COVERED PK studies of antimalarial drugs in pregnancy. The present review summarizes the efficacy and PK properties of WHO-recommended therapies used in pregnancy, with a focus on PK studies published since 2014. EXPERT OPINION Changes in antimalarial drug disposition in pregnancy are well described, yet pregnant women continue to receive treatment regimens optimized for non-pregnant adults. Contemporary in silico modeling has recently identified a series of alternative dosing regimens that are predicted to provide optimal therapeutic efficacy for pregnant women.
Collapse
Affiliation(s)
- Brioni R Moore
- School of Pharmacy and Biomedical Sciences, Curtin University , Bentley, Western Australia, Australia.,Medical School, University of Western Australia , Crawley, Western Australia, Australia
| | - Timothy M Davis
- Medical School, University of Western Australia , Crawley, Western Australia, Australia
| |
Collapse
|
12
|
Saito M, Mansoor R, Kennon K, Anvikar AR, Ashley EA, Chandramohan D, Cohee LM, D'Alessandro U, Genton B, Gilder ME, Juma E, Kalilani-Phiri L, Kuepfer I, Laufer MK, Lwin KM, Meshnick SR, Mosha D, Mwapasa V, Mwebaza N, Nambozi M, Ndiaye JLA, Nosten F, Nyunt M, Ogutu B, Parikh S, Paw MK, Phyo AP, Pimanpanarak M, Piola P, Rijken MJ, Sriprawat K, Tagbor HK, Tarning J, Tinto H, Valéa I, Valecha N, White NJ, Wiladphaingern J, Stepniewska K, McGready R, Guérin PJ. Efficacy and tolerability of artemisinin-based and quinine-based treatments for uncomplicated falciparum malaria in pregnancy: a systematic review and individual patient data meta-analysis. THE LANCET. INFECTIOUS DISEASES 2020; 20:943-952. [PMID: 32530424 PMCID: PMC7391007 DOI: 10.1016/s1473-3099(20)30064-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Malaria in pregnancy affects both the mother and the fetus. However, evidence supporting treatment guidelines for uncomplicated (including asymptomatic) falciparum malaria in pregnant women is scarce and assessed in varied ways. We did a systematic literature review and individual patient data (IPD) meta-analysis to compare the efficacy and tolerability of different artemisinin-based or quinine-based treatments for malaria in pregnant women. METHODS We did a systematic review of interventional or observational cohort studies assessing the efficacy of artemisinin-based or quinine-based treatments in pregnancy. Seven databases (MEDLINE, Embase, Global Health, Cochrane Library, Scopus, Web of Science, and Literatura Latino Americana em Ciencias da Saude) and two clinical trial registries (International Clinical Trials Registry Platform and ClinicalTrials.gov) were searched. The final search was done on April 26, 2019. Studies that assessed PCR-corrected treatment efficacy in pregnancy with follow-up of 28 days or more were included. Investigators of identified studies were invited to share data from individual patients. The outcomes assessed included PCR-corrected efficacy, PCR-uncorrected efficacy, parasite clearance, fever clearance, gametocyte development, and acute adverse events. One-stage IPD meta-analysis using Cox and logistic regression with random-effects was done to estimate the risk factors associated with PCR-corrected treatment failure, using artemether-lumefantrine as the reference. This study is registered with PROSPERO, CRD42018104013. FINDINGS Of the 30 studies assessed, 19 were included, representing 92% of patients in the literature (4968 of 5360 episodes). Risk of PCR-corrected treatment failure was higher for the quinine monotherapy (n=244, adjusted hazard ratio [aHR] 6·11, 95% CI 2·57-14·54, p<0·0001) but lower for artesunate-amodiaquine (n=840, 0·27, 95% 0·14-0·52, p<0·0001), artesunate-mefloquine (n=1028, 0·56, 95% 0·34-0·94, p=0·03), and dihydroartemisinin-piperaquine (n=872, 0·35, 95% CI 0·18-0·68, p=0·002) than artemether-lumefantrine (n=1278) after adjustment for baseline asexual parasitaemia and parity. The risk of gametocyte carriage on day 7 was higher after quinine-based therapy than artemisinin-based treatment (adjusted odds ratio [OR] 7·38, 95% CI 2·29-23·82). INTERPRETATION Efficacy and tolerability of artemisinin-based combination therapies (ACTs) in pregnant women are better than quinine. The lower efficacy of artemether-lumefantrine compared with other ACTs might require dose optimisation. FUNDING The Bill & Melinda Gates Foundation, ExxonMobil Foundation, and the University of Oxford Clarendon Fund.
Collapse
Affiliation(s)
- Makoto Saito
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK,Infectious Diseases Data Observatory (IDDO), Oxford, UK,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK,Dr Makoto Saito, Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX3 7LG, UK
| | - Rashid Mansoor
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK,Infectious Diseases Data Observatory (IDDO), Oxford, UK,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Kalynn Kennon
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK,Infectious Diseases Data Observatory (IDDO), Oxford, UK,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Anupkumar R Anvikar
- Indian Council of Medical Research, National Institute of Malaria Research, New Delhi, India
| | - Elizabeth A Ashley
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK,Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos
| | - Daniel Chandramohan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Lauren M Cohee
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Umberto D'Alessandro
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Blaise Genton
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland,University Center of General Medicine and Public Health, Lausanne, Switzerland
| | - Mary Ellen Gilder
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Linda Kalilani-Phiri
- Department of Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| | - Irene Kuepfer
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khin Maung Lwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, NC, USA
| | | | - Victor Mwapasa
- Department of Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| | - Norah Mwebaza
- Infectious Disease Research Collaboration, Makerere University, Kampala, Uganda
| | - Michael Nambozi
- Department of Clinical Sciences, Tropical Diseases Research Centre, Ndola, Zambia
| | | | - François Nosten
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Myaing Nyunt
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | | | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Moo Kho Paw
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand,Myanmar–Oxford Clinical Research Unit, Yangon, Myanmar
| | - Mupawjay Pimanpanarak
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Patrice Piola
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Marcus J Rijken
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand,Department of Obstetrics and Gynecology, Division of Woman and Baby, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Harry K Tagbor
- School of Medicine, University of Health and Allied Sciences, Ho, Ghana
| | - Joel Tarning
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK,Infectious Diseases Data Observatory (IDDO), Oxford, UK,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Halidou Tinto
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Innocent Valéa
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Neena Valecha
- Indian Council of Medical Research, National Institute of Malaria Research, New Delhi, India
| | - Nicholas J White
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jacher Wiladphaingern
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kasia Stepniewska
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK,Infectious Diseases Data Observatory (IDDO), Oxford, UK,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Rose McGready
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Philippe J Guérin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK,Infectious Diseases Data Observatory (IDDO), Oxford, UK,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK,Correspondence to: Prof Philippe J Guérin, Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX3 7LG, UK
| |
Collapse
|
13
|
Efavirenz-Based Antiretroviral Therapy Reduces Artemether-Lumefantrine Exposure for Malaria Treatment in HIV-Infected Pregnant Women. J Acquir Immune Defic Syndr 2020; 83:140-147. [PMID: 31929402 DOI: 10.1097/qai.0000000000002237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The choice of malaria treatment for HIV-infected pregnant women receiving efavirenz-based antiretroviral therapy must consider the potential impact of drug interactions on antimalarial exposure and clinical response. The aim of this study was to investigate the effects of efavirenz on artemether-lumefantrine (AL) because no studies have isolated the impact of efavirenz for HIV-infected pregnant women. METHODS A prospective clinical pharmacokinetic (PK) study compared HIV-infected, efavirenz-treated pregnant women with HIV-uninfected pregnant women in Tororo, Uganda. All women received the standard 6-dose AL treatment regimen for Plasmodium falciparum malaria with intensive PK samples collected over 21 days and 42-days of clinical follow-up. PK exposure parameters were calculated for artemether, its active metabolite dihydroartemisinin (DHA), and lumefantrine to determine the impact of efavirenz. RESULTS Nine HIV-infected and 30 HIV-uninfected pregnant women completed intensive PK evaluations. Relative to controls, concomitant efavirenz therapy lowered the 8-hour artemether concentration by 76% (P = 0.013), DHA peak concentration by 46% (P = 0.033), and day 7 and 14 lumefantrine concentration by 61% and 81% (P = 0.046 and 0.023), respectively. In addition, there were nonsignificant reductions in DHA area under the concentration-time curve0-8hr (35%, P = 0.057) and lumefantrine area under the concentration-time curve0-∞ (34%, P = 0.063) with efavirenz therapy. CONCLUSIONS Pregnant HIV-infected women receiving efavirenz-based antiretroviral therapy during malaria treatment with AL showed reduced exposure to both the artemisinin and lumefantrine. These data suggest that malaria and HIV coinfected pregnant women may require adjustments in AL dosage or treatment duration to achieve exposure comparable with HIV-uninfected pregnant women.
Collapse
|
14
|
Karbwang J, Na‐Bangchang K. The Role of Clinical Pharmacology in Chemotherapy of Multidrug‐Resistant
Plasmodium falciparum. J Clin Pharmacol 2020; 60:830-847. [DOI: 10.1002/jcph.1589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/21/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Juntra Karbwang
- Graduate Program in Bioclinical SciencesChulabhorn International College of MedicineThammasat University (Rangsit Campus) Pathumthani Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat University (Rangsit Campus) Pathumthani Thailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat University (Rangsit Campus) Pathumthani Thailand
- Department of Clinical Product developmentNagasaki Institute of Tropical MedicineNagasaki University Nagasaki Japan
| | - Kesara Na‐Bangchang
- Graduate Program in Bioclinical SciencesChulabhorn International College of MedicineThammasat University (Rangsit Campus) Pathumthani Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat University (Rangsit Campus) Pathumthani Thailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat University (Rangsit Campus) Pathumthani Thailand
| |
Collapse
|
15
|
A Randomized Controlled Trial of Three- versus Five-Day Artemether-Lumefantrine Regimens for Treatment of Uncomplicated Plasmodium falciparum Malaria in Pregnancy in Africa. Antimicrob Agents Chemother 2020; 64:AAC.01140-19. [PMID: 31818818 PMCID: PMC7038309 DOI: 10.1128/aac.01140-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/24/2019] [Indexed: 01/09/2023] Open
Abstract
Artemether-lumefantrine antimalarial efficacy in pregnancy could be compromised by reduced drug exposure. Population-based simulations suggested that therapeutic efficacy would be improved if the treatment duration was increased. Artemether-lumefantrine antimalarial efficacy in pregnancy could be compromised by reduced drug exposure. Population-based simulations suggested that therapeutic efficacy would be improved if the treatment duration was increased. We assessed the efficacy, tolerability, and pharmacokinetics of an extended 5-day regimen of artemether-lumefantrine compared to the standard 3-day treatment in 48 pregnant women and 48 nonpregnant women with uncomplicated falciparum malaria in an open-label, randomized clinical trial. Babies were assessed at birth and 1, 3, 6, and 12 months. Nonlinear mixed-effects modeling was used to characterize the plasma concentration-time profiles of artemether and lumefantrine and their metabolites. Both regimens were highly efficacious (100% PCR-corrected cure rates) and well tolerated. Babies followed up to 1 year had normal development. Parasite clearance half-lives were longer in pregnant women (median [range], 3.30 h [1.39 to 7.83 h]) than in nonpregnant women (2.43 h [1.05 to 6.00 h]) (P=0.005). Pregnant women had lower exposures to artemether and dihydroartemisinin than nonpregnant women, resulting in 1.2% decreased exposure for each additional week of gestational age. By term, these exposures were reduced by 48% compared to nonpregnant patients. The overall exposure to lumefantrine was improved with the extended regimen, with no significant differences in exposures to lumefantrine or desbutyl-lumefantrine between pregnant and nonpregnant women. The extended artemether-lumefantrine regimen was well tolerated and safe and increased the overall antimalarial drug exposure and so could be a promising treatment option in pregnancy in areas with lower rates of malaria transmission and/or emerging drug resistance. (This study has been registered at ClinicalTrials.gov under identifier NCT01916954.)
Collapse
|
16
|
Kilonzi M, Minzi O, Mutagonda R, Baraka V, Sasi P, Aklillu E, Kamuhabwa A. Usefulness of day 7 lumefantrine plasma concentration as a predictor of malaria treatment outcome in under-fives children treated with artemether-lumefantrine in Tanzania. Malar J 2020; 19:66. [PMID: 32046718 PMCID: PMC7014606 DOI: 10.1186/s12936-020-3150-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
Background Day 7 plasma lumefantrine concentration is suggested as a predictor for malaria treatment outcomes and a cut-off of ≥ 200 ng/ml is associated with day 28 cure rate in the general population. However, day 7 lumefantrine plasma concentration can be affected by age, the extent of fever, baseline parasitaemia, and bodyweight. Therefore, this study assessed the usefulness of day 7 lumefantrine plasma concentration as a predictor of malaria treatment outcome in under-fives children treated with generic or innovator drug-containing artemether-lumefantrine (ALu) in Tanzania. Methods This study was nested in an equivalence prospective study that aimed at determining the effectiveness of a generic ALu (Artefan®) in comparison with the innovator’s product (Coartem®). Children with uncomplicated malaria aged 6–59 months were recruited and randomized to receive either generic or innovator’s product. Children were treated with ALu as per World Health Organization recommendations. The clinical and parasitological outcomes were assessed after 28 days of follow up. PCR was performed to distinguish recrudescence and re-infections among children with recurrent malaria. Analysis of day 7 lumefantrine plasma concentration was carried out using a high-performance liquid chromatographic method with UV detection. Results The PCR corrected cure rates were 98.7% for children treated with generic and 98.6% for those treated with the innovator product (p = 1.00). The geometric mean (± SD) of day 7 plasma lumefantrine concentration was 159.3 (± 2.4) ng/ml for the generic and 164 (± 2.5) ng/ml for the innovator groups, p = 0.87. Geometric mean (± SD) day 7 lumefantrine plasma concentration between cured and recurrent malaria was not statistically different in both treatment arms [158.5 (± 2.4) vs 100.0 (± 1.5) ng/ml, (p = 0.28) for generic arm and 158.5 (± 2.3) vs 251.2 (± 4.2) ng/ml, (p = 0.24) for innovator arm]. Nutritional status was found to be a determinant of recurrent malaria (adjusted hazardous ratio (95% confidence interval) = 3(1.1–8.2), p = 0.029. Conclusion Using the recommended cut-off point of ≥ 200 ng/ml, day 7 plasma lumefantrine concentration failed to predict malaria treatment outcome in children treated with ALu in Tanzania. Further studies are recommended to establish the day 7 plasma lumefantrine concentration cut-off point to predict malaria treatment outcome in children.
Collapse
Affiliation(s)
- Manase Kilonzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P. O. BOX 65013, Dar es Salaam, Tanzania.
| | - Omary Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P. O. BOX 65013, Dar es Salaam, Tanzania
| | - Ritah Mutagonda
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P. O. BOX 65013, Dar es Salaam, Tanzania
| | - Vito Baraka
- Department of Research, National Institute of Medical Research, Tanga Centre, P O Box 5004, Tanga, Tanzania
| | - Philip Sasi
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, P. O. BOX 6515, Dar es Salaam, Tanzania
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital-Huddinge, C1:68, SE-141 86, Stockholm, Sweden
| | - Appolinary Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P. O. BOX 65013, Dar es Salaam, Tanzania
| |
Collapse
|
17
|
Lehane A, Were M, Wade M, Hamadu M, Cahill M, Kiconco S, Kajubi R, Aweeka F, Mwebaza N, Li F, Parikh S. Comparison on simultaneous caillary and venous parasite density and genotyping results from children and adults with uncomplicated malaria: a prospective observational study in Uganda. BMC Infect Dis 2019; 19:559. [PMID: 31242863 PMCID: PMC6595677 DOI: 10.1186/s12879-019-4174-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/09/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Blood smear microscopy remains the gold-standard method to diagnose and quantify malaria parasite density. In addition, parasite genotyping of select loci is the most utilized method for distinguishing recrudescent and new infections and to determine the number of strains per sample. In research settings, blood may be obtained from capillary or venous compartments, and results from these matrices have been used interchangeably. Our aim was to compare quantitative results for parasite density and strain complexity from both compartments. METHODS In a prospective observational study, children and adults presenting with uncomplicated Plasmodium falciparum malaria, simultaneous capillary and venous blood smears and dried blood spots were collected over 42-days following treatment with artemether-lumefantrine. Blood smears were read by two microscopists, any discrepancies resolved by a third reader. Parasite DNA fingerprinting was conducted using six microsatellites. Bland Altman analysis and paired t-test/McNemar's test were used to assess the difference in density readings and measurements. RESULTS Two hundred twenty-three participants were included in the analysis (177 children (35 HIV-infected/142 HIV-uninfected), 21 HIV-uninfected pregnant women, and 25 HIV-uninfected non-pregnant adults). Parasite density measurements did not statistically differ between capillary and venous blood smears at the time of presentation, nor over the course of 42-day follow-up. Characterization of merozoite surface protein-2 (MSP-2) genetic polymorphism demonstrated a higher level of strain diversity at the time of presentation in venous samples, as compared with capillary specimens (p = 0.02). There was a high degree of variability in genotype-corrected outcomes when pairs of samples from each compartment were compared using MSP-2 alone, although the variability was reduced with the use of multiple markers. CONCLUSIONS Parasite density measurements do not statistically differ between capillary and venous compartments in all studied demographic groups at the time of presentation with malaria, or over the course of follow-up. More strains were detected by MSP-2 genotyping in venous samples than in capillary samples at the time of malaria diagnosis. The use of multiple polymorphic markers reduces the impact of variability in strain detection on genotype-corrected outcomes. This study confirms that both capillary and venous compartments can be used for sampling with confidence in the clinical research setting. TRIAL REGISTRATION The trial was registered at ClinicalTrials.gov under registration no. NCT01717885 .
Collapse
Affiliation(s)
- Aine Lehane
- Yale School of Public Health, New Haven, CT USA
| | - Moses Were
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | | | - Sylvia Kiconco
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Richard Kajubi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Norah Mwebaza
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Fangyong Li
- Yale School of Public Health, New Haven, CT USA
| | | |
Collapse
|
18
|
Saito M, Gilder ME, McGready R, Nosten F. Antimalarial drugs for treating and preventing malaria in pregnant and lactating women. Expert Opin Drug Saf 2018; 17:1129-1144. [PMID: 30351243 DOI: 10.1080/14740338.2018.1535593] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Malaria in pregnancy and postpartum cause maternal mortality and adverse fetal outcomes. Efficacious and safe antimalarials are needed to treat and prevent such serious consequences. However, because of the lack of evidence on fetal safety, quinine, an old and less efficacious drug has long been recommended for pregnant women. Uncertainty about safety in relation to breastfeeding leads to withholding of efficacious treatments postpartum or cessation of breastfeeding. Areas covered: A search identified literature on humans in three databases (MEDLINE, Embase and Global health) using pregnancy or lactation, and the names of antimalarial drugs as search terms. Adverse reactions to the mother, fetus or breastfed infant were summarized together with efficacies. Expert opinion: Artemisinins are more efficacious and well-tolerated than quinine in pregnancy. Furthermore, the risks of miscarriage, stillbirth or congenital abnormality were not higher in pregnancies exposed to artemisinin derivatives for treatment of malaria than in pregnancies exposed to quinine or in the comparable background population unexposed to any antimalarials, and this was true for treatment in any trimester. Assessment of safety and efficacy of antimalarials including dose optimization for pregnant women is incomplete. Resistance to sulfadoxine-pyrimethamine in Plasmodium falciparum and long unprotected intervals between intermittent treatment doses begs reconsideration of current preventative recommendations in pregnancy. Data remain limited on antimalarials during breastfeeding; while most first-line drugs appear safe, further research is needed.
Collapse
Affiliation(s)
- Makoto Saito
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK.,c WorldWide Antimalarial Resistance Network (WWARN) , Oxford , UK
| | - Mary Ellen Gilder
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand
| | - Rose McGready
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| | - François Nosten
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
19
|
Population Pharmacokinetics of Artemether, Dihydroartemisinin, and Lumefantrine in Rwandese Pregnant Women Treated for Uncomplicated Plasmodium falciparum Malaria. Antimicrob Agents Chemother 2018; 62:AAC.00518-18. [PMID: 30061282 PMCID: PMC6153812 DOI: 10.1128/aac.00518-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
The artemisinin-based combination therapy artemether-lumefantrine is commonly used in pregnant malaria patients. However, the effect of pregnancy-related changes on exposure is unclear, and pregnancy has been associated with decreased efficacy in previous studies. This study aimed to characterize the population pharmacokinetics of artemether, its active metabolite dihydroartemisinin, and lumefantrine in 22 Rwandese pregnant women in their second (n = 11) or third (n = 11) trimester with uncomplicated Plasmodium falciparum malaria. These patients were enrolled from Rwamagana district hospital and received the standard fixed oral dose combination of 80 mg of artemether and 480 mg of lumefantrine twice daily for 3 days. Venous plasma concentrations were quantified for all three analytes using liquid chromatography coupled with tandem mass spectroscopy, and data were analyzed using nonlinear mixed-effects modeling. Lumefantrine pharmacokinetics was described by a flexible but highly variable absorption, with a mean absorption time of 4.04 h, followed by a biphasic disposition model. The median area under the concentration-time curve from 0 h to infinity (AUC0-∞) for lumefantrine was 641 h · mg/liter. Model-based simulations indicated that 11.7% of the study population did not attain the target day 7 plasma concentration (280 ng/ml), a threshold associated with increased risk of recrudescence. The pharmacokinetics of artemether was time dependent, and the autoinduction of its clearance was described using an enzyme turnover model. The turnover half-life was predicted to be 30.4 h. The typical oral clearance, which started at 467 liters/h, increased 1.43-fold at the end of treatment. Simulations suggested that lumefantrine pharmacokinetic target attainment appeared to be reassuring in Rwandese pregnant women, particularly compared to target attainment in Southeast Asia. Larger cohorts will be required to confirm this finding.
Collapse
|
20
|
Huang L, Mwebaza N, Kajubi R, Marzan F, Forsman C, Parikh S, Aweeka FT. Strong correlation of lumefantrine concentrations in capillary and venous plasma from malaria patients. PLoS One 2018; 13:e0202082. [PMID: 30114201 PMCID: PMC6095545 DOI: 10.1371/journal.pone.0202082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/27/2018] [Indexed: 11/19/2022] Open
Abstract
Background Lumefantrine is a long-acting antimalarial drug with an elimination half-life of over 3 days and protein binding of 99 percent. Correlation of lumefantrine concentrations from capillary plasma via fingerprick (Cc) versus venous plasma (Cv) remains to be defined. Methods Venous and capillary plasma samples were collected simultaneously from children, pregnant women, and non-pregnant adults at 2, 24, 120hr post last dose of a standard 3-day artemether-lumefantrine regimen they received for uncomplicated malaria. Some of the enrolled children and pregnant women were also HIV-infected. Samples were analyzed via liquid chromatography tandem mass spectrometry. Linear regression analysis was performed using the program Stata® SE12.1. Results In children, the linear regression equations for Cc vs Cv at 2, 24, and 120hr (day 7) post dose are [Cc] = 1.05*[Cv]+95.0 (n = 142, R2 = 0.977), [Cc] = 0.995*[Cv]+56.7 (n = 147, R2 = 0.990) and [Cc] = 0.958*[Cv]+18.6 (n = 139, R2 = 0.994), respectively. For pregnant women, the equations are [Cc] = 1.04*[Cv]+68.1 (n = 43, R2 = 0.990), [Cc] = 0.997*[Cv]+37.3 (n = 43, R2 = 0.993) and [Cc] = 0.941*[Cv]+11.1 (n = 41, R2 = 0.941), respectively. For non-pregnant adults, the equations are [Cc] = 1.05*[Cv]-117 (n = 32, R2 = 0.958), [Cc] = 0.962*[Cv]+9.21 (n = 32, R2 = 0.964) and [Cc] = 1.04*[Cv]-40.1 (n = 32, R2 = 0.988), respectively. In summary, a linear relationship with a slope of ~1 was found for capillary and venous lumefantrine levels in children, pregnant women and non-pregnant adults at 2hr, 24hr and 120hr post last dose, representing absorption, distribution, and elimination phases. Conclusions Capillary and venous plasma concentration of lumefantrine can be used interchangeably at 1:1 ratio. Capillary sampling method via finger prick is a suitable alternative for sample collection in clinical studies.
Collapse
Affiliation(s)
- Liusheng Huang
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, CA, United States of America
- * E-mail: (LH); (FTA)
| | - Norah Mwebaza
- Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Richard Kajubi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Florence Marzan
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, CA, United States of America
| | - Camilla Forsman
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, CA, United States of America
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Francesca T. Aweeka
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, CA, United States of America
- * E-mail: (LH); (FTA)
| |
Collapse
|
21
|
Kloprogge F, Workman L, Borrmann S, Tékété M, Lefèvre G, Hamed K, Piola P, Ursing J, Kofoed PE, Mårtensson A, Ngasala B, Björkman A, Ashton M, Friberg Hietala S, Aweeka F, Parikh S, Mwai L, Davis TME, Karunajeewa H, Salman S, Checchi F, Fogg C, Newton PN, Mayxay M, Deloron P, Faucher JF, Nosten F, Ashley EA, McGready R, van Vugt M, Proux S, Price RN, Karbwang J, Ezzet F, Bakshi R, Stepniewska K, White NJ, Guerin PJ, Barnes KI, Tarning J. Artemether-lumefantrine dosing for malaria treatment in young children and pregnant women: A pharmacokinetic-pharmacodynamic meta-analysis. PLoS Med 2018; 15:e1002579. [PMID: 29894518 PMCID: PMC5997317 DOI: 10.1371/journal.pmed.1002579] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 05/04/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The fixed dose combination of artemether-lumefantrine (AL) is the most widely used treatment for uncomplicated Plasmodium falciparum malaria. Relatively lower cure rates and lumefantrine levels have been reported in young children and in pregnant women during their second and third trimester. The aim of this study was to investigate the pharmacokinetic and pharmacodynamic properties of lumefantrine and the pharmacokinetic properties of its metabolite, desbutyl-lumefantrine, in order to inform optimal dosing regimens in all patient populations. METHODS AND FINDINGS A search in PubMed, Embase, ClinicalTrials.gov, Google Scholar, conference proceedings, and the WorldWide Antimalarial Resistance Network (WWARN) pharmacology database identified 31 relevant clinical studies published between 1 January 1990 and 31 December 2012, with 4,546 patients in whom lumefantrine concentrations were measured. Under the auspices of WWARN, relevant individual concentration-time data, clinical covariates, and outcome data from 4,122 patients were made available and pooled for the meta-analysis. The developed lumefantrine population pharmacokinetic model was used for dose optimisation through in silico simulations. Venous plasma lumefantrine concentrations 7 days after starting standard AL treatment were 24.2% and 13.4% lower in children weighing <15 kg and 15-25 kg, respectively, and 20.2% lower in pregnant women compared with non-pregnant adults. Lumefantrine exposure decreased with increasing pre-treatment parasitaemia, and the dose limitation on absorption of lumefantrine was substantial. Simulations using the lumefantrine pharmacokinetic model suggest that, in young children and pregnant women beyond the first trimester, lengthening the dose regimen (twice daily for 5 days) and, to a lesser extent, intensifying the frequency of dosing (3 times daily for 3 days) would be more efficacious than using higher individual doses in the current standard treatment regimen (twice daily for 3 days). The model was developed using venous plasma data from patients receiving intact tablets with fat, and evaluations of alternative dosing regimens were consequently only representative for venous plasma after administration of intact tablets with fat. The absence of artemether-dihydroartemisinin data limited the prediction of parasite killing rates and recrudescent infections. Thus, the suggested optimised dosing schedule was based on the pharmacokinetic endpoint of lumefantrine plasma exposure at day 7. CONCLUSIONS Our findings suggest that revised AL dosing regimens for young children and pregnant women would improve drug exposure but would require longer or more complex schedules. These dosing regimens should be evaluated in prospective clinical studies to determine whether they would improve cure rates, demonstrate adequate safety, and thereby prolong the useful therapeutic life of this valuable antimalarial treatment.
Collapse
Affiliation(s)
- Frank Kloprogge
- WorldWide Antimalarial Resistance Network, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Institute for Global Health, University College London, London, United Kingdom
| | - Lesley Workman
- WorldWide Antimalarial Resistance Network, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Steffen Borrmann
- Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Institute for Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Mamadou Tékété
- Institute for Tropical Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Kamal Hamed
- Novartis Pharmaceuticals, East Hanover, New Jersey, United States of America
| | | | - Johan Ursing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Danderyds Hospital, Stockholm, Sweden
- Bandim Health Project, Bissau, Guinea-Bissau
| | - Poul Erik Kofoed
- Bandim Health Project, Bissau, Guinea-Bissau
- Department of Paediatrics, Kolding Hospital, Kolding, Denmark
| | - Andreas Mårtensson
- Department of Women’s and Children’s Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Billy Ngasala
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Michael Ashton
- Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Friberg Hietala
- Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
- Pharmetheus, Uppsala, Sweden
| | - Francesca Aweeka
- UCSF School of Pharmacy, San Francisco, California, United States of America
| | - Sunil Parikh
- Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Leah Mwai
- Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Institute for Tropical Medicine and Joanna Briggs Institute Affiliate Centre for Evidence Based Health Care Evidence Synthesis and Translation Unit, Afya Research Africa, Nairobi, Kenya
- International Development Research Centre, Ottawa, Ontario, Canada
| | - Timothy M. E. Davis
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Harin Karunajeewa
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Sam Salman
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Francesco Checchi
- Epicentre, Paris, France
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Carole Fogg
- Epicentre, Paris, France
- Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Paul N. Newton
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Lao–Oxford–Mahosot Hospital–Wellcome Trust Research Unit, Vientiane, Laos
| | - Mayfong Mayxay
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Lao–Oxford–Mahosot Hospital–Wellcome Trust Research Unit, Vientiane, Laos
- Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Laos
| | - Philippe Deloron
- UMR216 Institut de Recherche pour le Développement, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | | | - François Nosten
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | - Rose McGready
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Michele van Vugt
- Shoklo Malaria Research Unit, Mae Sot, Thailand
- Amsterdam Medical Centre, Amsterdam, The Netherlands
| | - Stephane Proux
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mae Sot, Thailand
| | - Ric N. Price
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network, Darwin, Northern Territory, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Charles Darwin University, Darwin, Northern Territory, Australia
| | - Juntra Karbwang
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Farkad Ezzet
- Novartis Pharmaceuticals, East Hanover, New Jersey, United States of America
| | | | - Kasia Stepniewska
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
| | - Nicholas J. White
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Philippe J. Guerin
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
| | - Karen I. Barnes
- WorldWide Antimalarial Resistance Network, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Joel Tarning
- WorldWide Antimalarial Resistance Network, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
22
|
Ballard SB, Salinger A, Arguin PM, Desai M, Tan KR. Updated CDC Recommendations for Using Artemether-Lumefantrine for the Treatment of Uncomplicated Malaria in Pregnant Women in the United States. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT 2018; 67:424-431. [PMID: 29649190 PMCID: PMC5898222 DOI: 10.15585/mmwr.mm6714a4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Malaria infection during pregnancy is associated with an increased risk for maternal and fetal complications. In the United States, treatment options for uncomplicated, chloroquine-resistant Plasmodium falciparum and P. vivax malaria in pregnant women are limited to mefloquine or quinine plus clindamycin (1). However, limited availability of quinine and increasing resistance to mefloquine restrict these options. Strong evidence now demonstrates that artemether-lumefantrine (AL) (Coartem) is effective and safe in the treatment of malaria in pregnancy. The World Health Organization (WHO) has endorsed artemisinin-based combination therapies (ACTs), such as AL, for treatment of uncomplicated malaria during the second and third trimesters of pregnancy and is currently considering whether to add ACTs, including AL, as an option for malaria treatment during the first trimester (2,3). This policy note reviews the evidence and updates CDC recommendations to include AL as a treatment option for uncomplicated malaria during the second and third trimesters of pregnancy and during the first trimester of pregnancy when other treatment options are unavailable. These updated recommendations reflect current evidence and are consistent with WHO treatment guidelines.
Collapse
|
23
|
D'Alessandro U, Hill J, Tarning J, Pell C, Webster J, Gutman J, Sevene E. Treatment of uncomplicated and severe malaria during pregnancy. THE LANCET. INFECTIOUS DISEASES 2018; 18:e133-e146. [PMID: 29395998 DOI: 10.1016/s1473-3099(18)30065-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/19/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Over the past 10 years, the available evidence on the treatment of malaria during pregnancy has increased substantially. Owing to their relative ease of use, good sensitivity and specificity, histidine rich protein 2 based rapid diagnostic tests are appropriate for symptomatic pregnant women; however, such tests are less appropriate for systematic screening because they will not detect an important proportion of infections among asymptomatic women. The effect of pregnancy on the pharmacokinetics of antimalarial drugs varies greatly between studies and class of antimalarial drugs, emphasising the need for prospective studies in pregnant and non-pregnant women. For the treatment of malaria during the first trimester, international guidelines are being reviewed by WHO. For the second and third trimester of pregnancy, results from several trials have confirmed that artemisinin-based combination treatments are safe and efficacious, although tolerability and efficacy might vary by treatment. It is now essential to translate such evidence into policies and clinical practice that benefit pregnant women in countries where malaria is endemic. Access to parasitological diagnosis or appropriate antimalarial treatment remains low in many countries and regions. Therefore, there is a pressing need for research to identify quality improvement interventions targeting pregnant women and health providers. In addition, efficient and practical systems for pharmacovigilance are needed to further expand knowledge on the safety of antimalarial drugs, particularly in the first trimester of pregnancy.
Collapse
Affiliation(s)
- Umberto D'Alessandro
- Medical Research Council Unit, Banjul, The Gambia; London School of Hygiene & Tropical Medicine, London, UK.
| | - Jenny Hill
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christopher Pell
- Centre for Social Science and Global Health, University of Amsterdam, Amsterdam, Netherlands; Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands
| | - Jayne Webster
- London School of Hygiene & Tropical Medicine, London, UK
| | - Julie Gutman
- Malaria Branch, US Centers for Diseases Control and Prevention, Atlanta, GA, USA
| | - Esperanca Sevene
- Manhiça Health Research Center (CISM), Manhiça, Mozambique; Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| |
Collapse
|
24
|
Saito M, Gilder ME, Nosten F, Guérin PJ, McGready R. Methodology of assessment and reporting of safety in anti-malarial treatment efficacy studies of uncomplicated falciparum malaria in pregnancy: a systematic literature review. Malar J 2017; 16:491. [PMID: 29254487 PMCID: PMC5735519 DOI: 10.1186/s12936-017-2136-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/05/2017] [Indexed: 01/21/2023] Open
Abstract
Background Considering the uncertainty of safety of anti-malarial drugs in pregnancy, efficacy studies are one of the few sources of clinical safety data. Complete safety evaluation is not usually incorporated in efficacy studies due to financial and human resource constraints. This review reports the methods used for the assessment of safety of artemisinin-based and quinine-based treatments in efficacy studies in pregnancy. Methods Methodology of assessment and reporting of safety in efficacy studies of artemisinin-based and quinine-based treatment in pregnancy was reviewed using seven databases and two clinical trial registries. The protocol was registered to PROSPERO (CRD42017054808). Results Of 48 eligible efficacy studies the method of estimation of gestational age was reported in only 32 studies (67%, 32/48) and ultrasound was used in 18 studies (38%, 18/48). Seventeen studies (35%, 17/48) reported parity, 9 (19%, 9/48) reported gravidity and 13 (27%, 13/48) reported both. Thirty-eight studies (79%, 38/48) followed participants through to pregnancy outcome. Fetal loss was assessed in 34 studies (89%, 34/38), but the definition of miscarriage and stillbirth were defined only in 11 (32%, 11/34) and 7 (21%, 7/34) studies, respectively. Preterm birth was assessed in 26 studies (68%, 26/38) but was defined in 16 studies (62%, 16/26). Newborn weight was assessed in 30 studies (79%, 30/38) and length in 10 studies (26%, 10/38). Assessment of birth weight took gestational age into account in four studies (13%, 4/30). Congenital abnormalities were reported in 32 studies (84%, 32/38). Other common risk factors for adverse pregnancy outcomes were not well-reported. Conclusion Incomplete reporting and varied methodological assessment of pregnancy outcomes in anti-malarial drug efficacy studies limits comparison across studies. A standard list of minimal necessary parameters to assess and report the safety component of efficacy studies of anti-malarials in pregnancy is proposed. Electronic supplementary material The online version of this article (10.1186/s12936-017-2136-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Makoto Saito
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK. .,Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand.
| | - Mary Ellen Gilder
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK.,Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Philippe J Guérin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Rose McGready
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK.,Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| |
Collapse
|
25
|
Saito M, Gilder ME, Nosten F, McGready R, Guérin PJ. Systematic literature review and meta-analysis of the efficacy of artemisinin-based and quinine-based treatments for uncomplicated falciparum malaria in pregnancy: methodological challenges. Malar J 2017; 16:488. [PMID: 29237461 PMCID: PMC5729448 DOI: 10.1186/s12936-017-2135-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022] Open
Abstract
Background There is no agreed standard method to assess the efficacy of anti-malarials for uncomplicated falciparum in pregnancy despite an increased risk of adverse outcomes for the mother and the fetus. The aim of this review is to present the currently available evidence from both observational and interventional cohort studies on anti-malarial efficacy in pregnancy and summarize the variability of assessment and reporting found in the review process. Methods Efficacy methodology and assessment of artemisinin-based treatments (ABT) and quinine-based treatments (QBT) were reviewed systematically using seven databases and two clinical trial registries (protocol registration—PROSPERO: CRD42017054808). Pregnant women in all trimesters with parasitologically confirmed uncomplicated falciparum malaria were included irrespective of symptoms. This review attempted to re-calculate proportions of treatment success applying the same definition as the standard WHO methodology for non-pregnant populations. Aggregated data meta-analyses using data from randomized control trials (RCTs) comparing different treatments were performed by random effects model. Results A total of 48 eligible efficacy studies were identified including 7279 treated Plasmodium falciparum episodes. While polymerase chain reaction (PCR) was used in 24 studies for differentiating recurrence, the assessment and reporting of treatment efficacy was heterogeneous. When the same definition could be applied, PCR-corrected treatment failure of ≥ 10% at any time points was observed in 3/30 ABT and 3/7 QBT arms. Ten RCTs compared different combinations of ABT but there was a maximum of two published RCTs with PCR-corrected outcomes for each comparison. Five RCTs compared ABT and QBT. Overall, the risk of treatment failure was significantly lower in ABT than in QBT (risk ratio 0.22, 95% confidence interval 0.07–0.63), although the actual drug combinations and outcome endpoints were different. First trimester women were included in 12 studies none of which were RCTs of ABT. Conclusions Efficacy studies in pregnancy are not only limited in number but use varied methodological assessments. In five RCTs with comparable methodology, ABT resulted in higher efficacy than QBT in the second and third trimester of pregnancy. Individual patient data meta-analysis can include data from observational cohort studies and could overcome some of the limitations of the current assessment given the paucity of data in this vulnerable group. Electronic supplementary material The online version of this article (10.1186/s12936-017-2135-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Makoto Saito
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK. .,Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand.
| | - Mary Ellen Gilder
- Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK.,Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Rose McGready
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK.,Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand
| | - Philippe J Guérin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| |
Collapse
|
26
|
Sugiarto SR, Davis TME, Salman S. Pharmacokinetic considerations for use of artemisinin-based combination therapies against falciparum malaria in different ethnic populations. Expert Opin Drug Metab Toxicol 2017; 13:1115-1133. [PMID: 29027504 DOI: 10.1080/17425255.2017.1391212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Artemisinin-based combination therapy (ACT) is used extensively as first-line treatment for uncomplicated falciparum malaria. There has been no rigorous assessment of the potential for racial/ethnic differences in the pharmacokinetic properties of ACTs that might influence their efficacy. Areas covered: A comprehensive literature search was performed that identified 72 publications in which the geographical origin of the patients could be ascertained and the key pharmacokinetic parameters maximum drug concentration (Cmax), area under the plasma concentration-time curve (AUC) and elimination half-life (t½β) were available for one or more of the five WHO-recommended ACTs (artemether-lumefantrine, artesunate-amodiaquine, artesunate-mefloquine, dihydroartemisinin-piperaquine and artesunate-sulfadoxine-pyrimethamine). Comparisons of each of the three pharmacokinetic parameters of interest were made by drug (artemisinin derivative and long half-life partner), race/ethnicity (African, Asian, Caucasian, Melanesian, South American) and patient categories based on age and pregnancy status. Expert opinion: The review identified no evidence of a clinically significant influence of race/ethnicity on the pharmacokinetic properties of the nine component drugs in the five ACTs currently recommended by WHO for first-line treatment of uncomplicated falciparum malaria. This provides reassurance for health workers in malaria-endemic regions that ACTs can be given in recommended doses with the expectation of adequate blood concentrations regardless of race/ethnicity.
Collapse
Affiliation(s)
- Sri Riyati Sugiarto
- a Medical School , University of Western Australia, Fremantle Hospital , Fremantle , Australia
| | - Timothy M E Davis
- a Medical School , University of Western Australia, Fremantle Hospital , Fremantle , Australia
| | - Sam Salman
- a Medical School , University of Western Australia, Fremantle Hospital , Fremantle , Australia
| |
Collapse
|
27
|
Moore BR, Salman S, Davis TME. Treatment regimens for pregnant women with falciparum malaria. Expert Rev Anti Infect Ther 2016; 14:691-704. [PMID: 27322015 DOI: 10.1080/14787210.2016.1202758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION With increasing parasite drug resistance, the WHO has updated treatment recommendations for falciparum malaria including in pregnancy. This review assesses the evidence for choice of treatment for pregnant women. AREAS COVERED Relevant studies, primarily those published since 2010, were identified from reference databases and were used to identify secondary data sources. Expert commentary: WHO recommends use of intravenous artesunate for severe malaria, quinine-clindamycin for uncomplicated malaria in first trimester, and artemisinin combination therapy for uncomplicated malaria in second/third trimesters. Because fear of adverse outcomes has often excluded pregnant women from conventional drug development, available data for novel therapies are usually based on preclinical studies and cases of inadvertent exposure. Changes in antimalarial drug disposition in pregnancy have been observed but are yet to be translated into specific treatment recommendations. Such targeted regimens may become important as parasite resistance demands that drug exposure is optimized.
Collapse
Affiliation(s)
- Brioni R Moore
- a Fiona Stanley Hospital Unit, School of Medicine and Pharmacology , University of Western Australia , Perth , Australia.,b School of Pharmacy , Curtin University , Perth , Australia
| | - Sam Salman
- c Linear Clinical Research Limited, QEII Medical Centre , Nedlands , Australia.,d Fremantle Hospital Unit, School of Medicine and Pharmacology , University of Western Australia , Fremantle , Australia
| | - Timothy M E Davis
- d Fremantle Hospital Unit, School of Medicine and Pharmacology , University of Western Australia , Fremantle , Australia
| |
Collapse
|
28
|
Mutagonda RF, Kamuhabwa AAR, Minzi OMS, Massawe SN, Maganda BA, Aklillu E. Malaria prevalence, severity and treatment outcome in relation to day 7 lumefantrine plasma concentration in pregnant women. Malar J 2016; 15:278. [PMID: 27177586 PMCID: PMC4866074 DOI: 10.1186/s12936-016-1327-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/04/2016] [Indexed: 12/28/2022] Open
Abstract
Background Day 7 plasma concentrations of lumefantrine (LF) can serve as a marker to predict malaria treatment outcome in different study populations. Two main cut-off points (175 and 280 ng/ml) are used to indicate plasma concentrations of LF, below which treatment failure is anticipated. However, there is limited data on the cumulative risk of recurrent parasitaemia (RP) in relation to day 7 LF plasma concentrations in pregnant women. This study describes the prevalence, severity, factors influencing treatment outcome of malaria in pregnancy and day 7 LF plasma concentration therapeutic cut-off points that predicts treatment outcome in pregnant women. Methods This was a one-arm prospective cohort study whereby 89 pregnant women with uncomplicated Plasmodium falciparum malaria receiving artemether-lumefantrine (ALu) participated in pharmacokinetics and pharmacodynamics study. Blood samples were collected on days 0, 2, 7, 14, 21 and 28 for malaria parasite quantification. LF plasma concentrations were determined on day 7. The primary outcome measure was an adequate clinical and parasitological response (ACPR) after treatment with ALu. Results The prevalence of malaria in pregnant women was 8.1 % (95 % CI 6.85–9.35) of whom 3.4 % (95 % CI 1.49–8.51) had severe malaria. The overall PCR-uncorrected treatment failure rate was 11.7 % (95 % CI 0.54–13.46 %). Low baseline hemoglobin (<10 g/dl) and day 7 LF concentration <600 ng/ml were significant predictors of RP. The median day 7 LF concentration was significantly lower in pregnant women with RP (270 ng/ml) than those with ACPR (705 ng/ml) (p = 0.016). The relative risk of RP was 4.8 folds higher (p = 0.034) when cut-off of <280 ng/ml was compared to ≥280 ng/ml and 7.8-folds higher (p = 0.022) when cut-off of <600 ng/ml was compared to ≥600 ng/ml. The cut-off value of 175 ng/ml was not associated with the risk of RP (p = 0.399). Conclusions Pregnant women with day 7 LF concentration <600 ng/ml are at high risk of RP than those with ≥600 ng/ml. To achieve effective therapeutic outcome, higher day 7 venous plasma LF concentration ≥600 ng/ml is required for pregnant patients than the previously suggested cut-off value of 175 or 280 ng/ml for non-pregnant adult patients.
Collapse
Affiliation(s)
- Ritah F Mutagonda
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. BOX 65013, Dar es Salaam, Tanzania.
| | - Appolinary A R Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. BOX 65013, Dar es Salaam, Tanzania
| | - Omary M S Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. BOX 65013, Dar es Salaam, Tanzania
| | - Siriel N Massawe
- Department of Obstetrics and Gynaecology, School of Medicine, Muhimbili University of Allied Sciences, P.O. BOX 65013, Dar es Salaam, Tanzania
| | - Betty A Maganda
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P.O. BOX 65013, Dar es Salaam, Tanzania
| | - Eleni Aklillu
- Department of Laboratory of Medicine, Division of Clinical Pharmacology, Karolinska Institutet, 141 86, Stockholm, Sweden
| |
Collapse
|