1
|
Wale YM, Roberts JA, Wolie ZT, Sime FB. Is there evidence on the optimal duration of aminoglycoside therapy in β-lactam/aminoglycoside combination regimens used for the treatment of gram-negative bacterial infections? A systematic review. Int J Antimicrob Agents 2024; 64:107297. [PMID: 39111709 DOI: 10.1016/j.ijantimicag.2024.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND The optimal duration of therapy of aminoglycosides in combination regimens is expected to be different from that of monotherapy regimens, and shorter durations could help minimize toxicity without compromising efficacy. The aim of this review was to assess the evidence for the optimal duration of aminoglycosides in β-lactam/aminoglycoside combinations used for the treatment of Gram-negative bacterial infections. MATERIALS AND METHODS PubMed, Cochrane, Embase, Scopus, Web of Science, and CINHAL databases were searched. Covidence software was used for article screening and management. Studies were included if they clearly reported the duration of therapy of aminoglycosides in β-lactam/aminoglycoside combinations used against Gram-negative bacteria. The protocol is registered with PROSPERO (CRD42023392709). RESULTS A total of 45 β-lactam/aminoglycoside combination courses from 32 articles were evaluated. The duration of therapy of aminoglycosides in combinations regimens ranged from 1 to 14 days, varying with the type of infection treated. In half (51.1%; (23/45) of the combinations, aminoglycosides were administered for a duration ranging from 6 to 9 days. In 26.7% (12/45) of the combinations, the duration of aminoglycoside therapy was ≤ 5 days. In the remaining 22.2% (10/45) of these combinations, the aminoglycosides were administered for a duration of ≥ 10 days. Aminoglycosides were administered for a longer duration of 7-14 days in 12 (75%) of the 16 combination courses that induced toxicity. CONCLUSIONS Long duration of aminoglycoside use is associated with increased risk of toxicity. However, there is a lack of evidence on defining an optimal duration of aminoglycoside therapy in β-lactam/aminoglycoside combination regimens that ensures clinical efficacy outcomes whilst minimizing toxicity outcomes.
Collapse
Affiliation(s)
- Yalew M Wale
- UQ Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jason A Roberts
- UQ Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France; Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
| | - Zenaw T Wolie
- UQ Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Fekade B Sime
- UQ Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Breen SKJ, Harper M, López-Causapé C, Rogers KE, Tait JR, Smallman TR, Lang Y, Lee WL, Zhou J, Zhang Y, Bulitta JB, Nation RL, Oliver A, Boyce JD, Landersdorfer CB. Synergistic effects of inhaled aztreonam plus tobramycin on hypermutable cystic fibrosis Pseudomonas aeruginosa isolates in a dynamic biofilm model evaluated by mechanism-based modelling and whole genome sequencing. Int J Antimicrob Agents 2024; 63:107161. [PMID: 38561094 DOI: 10.1016/j.ijantimicag.2024.107161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Hypermutable Pseudomonas aeruginosa strains are highly prevalent in chronic lung infections of patients with cystic fibrosis (CF). Acute exacerbations of these infections have limited treatment options. This study aimed to investigate inhaled aztreonam and tobramycin against clinical hypermutable P. aeruginosa strains using the CDC dynamic in vitro biofilm reactor (CBR), mechanism-based mathematical modelling (MBM) and genomic studies. METHODS Two CF multidrug-resistant strains were investigated in a 168 h CBR (n = 2 biological replicates). Regimens were inhaled aztreonam (75 mg 8-hourly) and tobramycin (300 mg 12-hourly) in monotherapies and combination. The simulated pharmacokinetic profiles of aztreonam and tobramycin (t1/2 = 3 h) were based on published lung fluid concentrations in patients with CF. Total viable and resistant counts were determined for planktonic and biofilm bacteria. MBM of total and resistant bacterial counts and whole genome sequencing were completed. RESULTS Both isolates showed reproducible bacterial regrowth and resistance amplification for the monotherapies by 168 h. The combination performed synergistically, with minimal resistant subpopulations compared to the respective monotherapies at 168 h. Mechanistic synergy appropriately described the antibacterial effects of the combination regimen in the MBM. Genomic analysis of colonies recovered from monotherapy regimens indicated noncanonical resistance mechanisms were likely responsible for treatment failure. CONCLUSION The combination of aztreonam and tobramycin was required to suppress the regrowth and resistance of planktonic and biofilm bacteria in all biological replicates of both hypermutable multidrug-resistant P. aeruginosa CF isolates. The developed MBM could be utilised for future investigations of this promising inhaled combination.
Collapse
Affiliation(s)
- Siobhonne K J Breen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Marina Harper
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Kate E Rogers
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jessica R Tait
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Thomas R Smallman
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yinzhi Lang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Wee L Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jieqiang Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yongzhen Zhang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Jurgen B Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - John D Boyce
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Zhang X, Wang Y, Li S, Xie F, Yi H. Simulated drug disposition in critically ill patients to evaluate effective PK/PD targets for combating Pseudomonas aeruginosa resistance to meropenem. Antimicrob Agents Chemother 2024; 68:e0154123. [PMID: 38319075 PMCID: PMC10916391 DOI: 10.1128/aac.01541-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024] Open
Abstract
Bacterial infections, including those caused by Pseudomonas aeruginosa, often lead to sepsis, necessitating effective antibiotic treatment like carbapenems. The key pharmacokinetic/pharmacodynamic (PK/PD) index correlated to carbapenem efficacy is the fraction time of unbound plasma concentration above the minimum inhibitory concentration (MIC) of the pathogen (%fT > MIC). While multiple targets exist, determining the most effective one for critically ill patients remains a matter of debate. This study evaluated meropenem's bactericidal potency and its ability to combat drug resistance in Pseudomonas aeruginosa under three representative PK/PD targets: 40% fT > MIC, 100% fT > MIC, and 100% fT > 4× MIC. The hollow fiber infection model (HFIM) was constructed, validated, and subsequently inoculated with a substantial Pseudomonas aeruginosa load (1 × 108 CFU/mL). Different meropenem regimens were administered to achieve the specified PK/PD targets. At specified intervals, samples were collected from the HFIM system and subjected to centrifugation. The resulting supernatant was utilized to determine drug concentrations, while the precipitates were used to track changes in both total and drug-resistant bacterial populations over time by the spread plate method. The HFIM accurately reproduced meropenem's pharmacokinetics in critically ill patients. All three PK/PD target groups exhibited a rapid bactericidal response within 6 h of the initial treatment. However, the 40% fT > MIC and 100% fT > MIC groups subsequently showed bacterial resurgence and resistance, whereas the 100% fT > 4× MIC group displayed sustained bactericidal activity with no evidence of drug resistance. The HFIM system revealed that maintaining 100% fT > 4× MIC offers a desirable microbiological response for critically ill patients, demonstrating strong bactericidal capacity and effective prevention of drug resistance.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yan Wang
- Yueyang Inspection and Testing Center, Yueyang, China
| | - Sanwang Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feifan Xie
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hanxi Yi
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
4
|
Zhou J, Qian Y, Lang Y, Zhang Y, Tao X, Moya B, Sayed ARM, Landersdorfer CB, Shin E, Werkman C, Smith NM, Kim TH, Kumaraswamy M, Shin BS, Tsuji BT, Bonomo RA, Lee RE, Bulitta JB. Comprehensive stability analysis of 13 β-lactams and β-lactamase inhibitors in in vitro media, and novel supplement dosing strategy to mitigate thermal drug degradation. Antimicrob Agents Chemother 2024; 68:e0139923. [PMID: 38329330 PMCID: PMC10916406 DOI: 10.1128/aac.01399-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/06/2024] [Indexed: 02/09/2024] Open
Abstract
Non-clinical antibiotic development relies on in vitro susceptibility and infection model studies. Validating the achievement of the targeted drug concentrations is essential to avoid under-estimation of drug effects and over-estimation of resistance emergence. While certain β-lactams (e.g., imipenem) and β-lactamase inhibitors (BLIs; clavulanic acid) are believed to be relatively unstable, limited tangible data on their stability in commonly used in vitro media are known. We aimed to determine the thermal stability of 10 β-lactams and 3 BLIs via LC-MS/MS in cation-adjusted Mueller Hinton broth at 25 and 36°C as well as agar at 4 and 37°C, and in water at -20, 4, and 25°C. Supplement dosing algorithms were developed to achieve broth concentrations close to their target over 24 h. During incubation in broth (pH 7.25)/agar, degradation half-lives were 16.9/21.8 h for imipenem, 20.7/31.6 h for biapenem, 29.0 h for clavulanic acid (studied in broth only), 23.1/71.6 h for cefsulodin, 40.6/57.9 h for doripenem, 46.5/64.6 h for meropenem, 50.8/97.7 h for cefepime, 61.5/99.5 h for piperacillin, and >120 h for all other compounds. Broth stability decreased at higher pH. All drugs were ≥90% stable for 72 h in agar at 4°C. Degradation half-lives in water at 25°C were >200 h for all drugs except imipenem (14.7 h, at 1,000 mg/L) and doripenem (59.5 h). One imipenem supplement dose allowed concentrations to stay within ±31% of their target concentration. This study provides comprehensive stability data on β-lactams and BLIs in relevant in vitro media using LC-MS/MS. Future studies are warranted applying these data to antimicrobial susceptibility testing and assessing the impact of β-lactamase-related degradation.
Collapse
Affiliation(s)
- Jieqiang Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yuli Qian
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yinzhi Lang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yongzhen Zhang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Xun Tao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de investigación, Hospital Universitario Son Espases, Instituto de investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Alaa R. M. Sayed
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Eunjeong Shin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Carolin Werkman
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Nicholas M. Smith
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Tae Hwan Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Gyeongbuk, South Korea
| | - Monika Kumaraswamy
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Infectious Diseases Section, VA San Diego Healthcare System, San Diego, California, USA
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Brian T. Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Pharmacology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, and the CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
5
|
Farrington N, Dubey V, Johnson A, Horner I, Stevenson A, Unsworth J, Jimenez-Valverde A, Schwartz J, Das S, Hope W, Darlow CA. Molecular pharmacodynamics of meropenem for nosocomial pneumonia caused by Pseudomonas aeruginosa. mBio 2024; 15:e0316523. [PMID: 38236031 PMCID: PMC10865990 DOI: 10.1128/mbio.03165-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Hospital-acquired pneumonia (HAP) is a leading cause of morbidity and mortality, commonly caused by Pseudomonas aeruginosa. Meropenem is a commonly used therapeutic agent, although emergent resistance occurs during treatment. We used a rabbit HAP infection model to assess the bacterial kill and resistance pharmacodynamics of meropenem. Meropenem 5 mg/kg administered subcutaneously (s.c.) q8h (±amikacin 3.33-5 mg/kg q8h administered intravenously[i.v.]) or meropenem 30 mg/kg s.c. q8h regimens were assessed in a rabbit lung infection model infected with P. aeruginosa, with bacterial quantification and phenotypic/genotypic characterization of emergent resistant isolates. The pharmacokinetic/pharmacodynamic output was fitted to a mathematical model, and human-like regimens were simulated to predict outcomes in a clinical context. Increasing meropenem monotherapy demonstrated a dose-response effect to bacterial kill and an inverted U relationship with emergent resistance. The addition of amikacin to meropenem suppressed the emergence of resistance. A network of porin loss, efflux upregulation, and increased expression of AmpC was identified as the mechanism of this emergent resistance. A bridging simulation using human pharmacokinetics identified meropenem 2 g i.v. q8h as the licensed clinical regimen most likely to suppress resistance. We demonstrate an innovative experimental platform to phenotypically and genotypically characterize bacterial emergent resistance pharmacodynamics in HAP. For meropenem, we have demonstrated the risk of resistance emergence during therapy and identified two mitigating strategies: (i) regimen intensification and (ii) use of combination therapy. This platform will allow pre-clinical assessment of emergent resistance risk during treatment of HAP for other antimicrobials, to allow construction of clinical regimens that mitigate this risk.IMPORTANCEThe emergence of antimicrobial resistance (AMR) during antimicrobial treatment for hospital-acquired pneumonia (HAP) is a well-documented problem (particularly in pneumonia caused by Pseudomonas aeruginosa) that contributes to the wider global antimicrobial resistance crisis. During drug development, regimens are typically determined by their sufficiency to achieve bactericidal effect. Prevention of the emergence of resistance pharmacodynamics is usually not characterized or used to determine the regimen. The innovative experimental platform described here allows characterization of the emergence of AMR during the treatment of HAP and the development of strategies to mitigate this. We have demonstrated this specifically for meropenem-a broad-spectrum antibiotic commonly used to treat HAP. We have characterized the antimicrobial resistance pharmacodynamics of meropenem when used to treat HAP, caused by initially meropenem-susceptible P. aeruginosa, phenotypically and genotypically. We have also shown that intensifying the regimen and using combination therapy are both strategies that can both treat HAP and suppress the emergence of resistance.
Collapse
Affiliation(s)
- Nicola Farrington
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Vineet Dubey
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Adam Johnson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Iona Horner
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Adam Stevenson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Jennifer Unsworth
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Ana Jimenez-Valverde
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | | | - Shampa Das
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| | - Christopher A. Darlow
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology, University of Liverpool, Liverpool Health Partners, Liverpool, United Kingdom
| |
Collapse
|
6
|
Alieva KN, Golikova MV, Dovzhenko SA, Kobrin MB, Strukova EN, Ageevets VA, Avdeeva AA, Sulian OS, Sidorenko SV, Zinner SH. Testing the mutant selection window hypothesis with meropenem: In vitro model study with OXA-48-producing Klebsiella pneumoniae. PLoS One 2023; 18:e0288660. [PMID: 37540701 PMCID: PMC10403107 DOI: 10.1371/journal.pone.0288660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/01/2023] [Indexed: 08/06/2023] Open
Abstract
OXA-48 carbapenemases are frequently expressed by Klebsiella pneumoniae clinical isolates; they decrease the effectiveness of carbapenem therapy, particularly with meropenem. Among these isolates, meropenem-susceptible carbapenemase-producers may show decreased meropenem effectiveness. However, the probability of the emergence of resistance in susceptible carbapenemase-producing isolates and its dependence on specific K. pneumoniae meropenem MICs is not completely known. It is also not completely clear what resistance patterns will be exhibited by these bacteria exposed to meropenem, if they would follow the patterns of non-beta-lactamase-producing bacteria and other than beta-lactams antibiotics. These issues might be clarified if patterns of meropenem resistance related to the mutant selection window (MSW) hypothesis. To test the applicability of the MSW hypothesis to meropenem, OXA-48-carbapenemase-producing K. pneumoniae clinical isolates with MICs in a 64-fold range (from susceptible to resistant) were exposed to meropenem in a hollow-fiber infection model; epithelial lining fluid meropenem pharmacokinetics were simulated following administration of 2 grams every 8 hours in a 3-hour infusion. Strong bell-shaped relationships between the meropenem daily dose infused to the model as related to the specific isolate MIC and both the antimicrobial effect and the emergence of resistance were observed. The applicability of the MSW hypothesis to meropenem and carbapenemase producing K. pneumoniae was confirmed. Low meropenem efficacy indicates very careful prescribing of meropenem to treat K. pneumoniae infections when the causative isolate is confirmed as an OXA-48-carbapenemase producer.
Collapse
Affiliation(s)
- Kamilla N Alieva
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, Moscow, Russia
| | - Maria V Golikova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, Moscow, Russia
| | - Svetlana A Dovzhenko
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, Moscow, Russia
| | - Mikhail B Kobrin
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, Moscow, Russia
| | - Elena N Strukova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, Moscow, Russia
| | - Vladimir A Ageevets
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - Alisa A Avdeeva
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - Ofeliia S Sulian
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
| | - Sergey V Sidorenko
- Pediatric Research and Clinical Center for Infectious Diseases, St. Petersburg, Russia
- North-Western State Medical University named after I. I. Mechnikov of the Ministry of Health of the Russian Federation, St. Petersburg, Russia
| | - Stephen H Zinner
- Department of Medicine, Harvard Medical School, Mount Auburn Hospital, Cambridge, MA, United States of America
| |
Collapse
|
7
|
Hong LT, Downes KJ, FakhriRavari A, Abdul-Mutakabbir JC, Kuti JL, Jorgensen S, Young DC, Alshaer MH, Bassetti M, Bonomo RA, Gilchrist M, Jang SM, Lodise T, Roberts JA, Tängdén T, Zuppa A, Scheetz MH. International consensus recommendations for the use of prolonged-infusion beta-lactam antibiotics: Endorsed by the American College of Clinical Pharmacy, British Society for Antimicrobial Chemotherapy, Cystic Fibrosis Foundation, European Society of Clinical Microbiology and Infectious Diseases, Infectious Diseases Society of America, Society of Critical Care Medicine, and Society of Infectious Diseases Pharmacists. Pharmacotherapy 2023; 43:740-777. [PMID: 37615245 DOI: 10.1002/phar.2842] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 08/25/2023]
Abstract
Intravenous β-lactam antibiotics remain a cornerstone in the management of bacterial infections due to their broad spectrum of activity and excellent tolerability. β-lactams are well established to display time-dependent bactericidal activity, where reductions in bacterial burden are directly associated with the time that free drug concentrations remain above the minimum inhibitory concentration (MIC) of the pathogen during the dosing interval. In an effort to take advantage of these bactericidal characteristics, prolonged (extended and continuous) infusions (PIs) can be applied during the administration of intravenous β-lactams to increase time above the MIC. PI dosing regimens have been implemented worldwide, but implementation is inconsistent. We report consensus therapeutic recommendations for the use of PI β-lactams developed by an expert international panel with representation from clinical pharmacy and medicine. This consensus guideline provides recommendations regarding pharmacokinetic and pharmacodynamic targets, therapeutic drug-monitoring considerations, and the use of PI β-lactam therapy in the following patient populations: severely ill and nonseverely ill adult patients, pediatric patients, and obese patients. These recommendations provide the first consensus guidance for the use of β-lactam therapy administered as PIs and have been reviewed and endorsed by the American College of Clinical Pharmacy (ACCP), the British Society for Antimicrobial Chemotherapy (BSAC), the Cystic Fibrosis Foundation (CFF), the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), the Infectious Diseases Society of America (IDSA), the Society of Critical Care Medicine (SCCM), and the Society of Infectious Diseases Pharmacists (SIDP).
Collapse
Affiliation(s)
- Lisa T Hong
- Loma Linda University School of Pharmacy, Loma Linda, California, USA
| | - Kevin J Downes
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Jacinda C Abdul-Mutakabbir
- Loma Linda University School of Pharmacy, Loma Linda, California, USA
- Divisions of Clinical Pharmacy and Black Diaspora and African American Studies, University of California San Diego, La Jolla, California, USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | | | - David C Young
- University of Utah College of Pharmacy, Salt Lake City, Utah, USA
| | | | | | - Robert A Bonomo
- Cleveland Veteran Affairs Medical Center, Cleveland, Ohio, USA
- Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark Gilchrist
- Imperial College Healthcare National Health Services Trust, London, UK
| | - Soo Min Jang
- Loma Linda University School of Pharmacy, Loma Linda, California, USA
| | - Thomas Lodise
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Center for Clinical Research, Brisbane, Queensland, Australia
- Herston Infectious Diseases Institute, Metro North Health, Brisbane, Queensland, Australia
- Departments of Pharmacy and Intensive Care, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Athena Zuppa
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marc H Scheetz
- College of Pharmacy, Pharmacometric Center of Excellence, Midwestern University, Downers Grove, Illinois, USA
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA
| |
Collapse
|
8
|
Shi AX, Qu Q, Zhuang HH, Teng XQ, Xu WX, Liu YP, Xiao YW, Qu J. Individualized antibiotic dosage regimens for patients with augmented renal clearance. Front Pharmacol 2023; 14:1137975. [PMID: 37564179 PMCID: PMC10410082 DOI: 10.3389/fphar.2023.1137975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Objectives: Augmented renal clearance (ARC) is a state of enhanced renal function commonly observed in 30%-65% of critically ill patients despite normal serum creatinine levels. Using unadjusted standard dosing regimens of renally eliminated drugs in ARC patients often leads to subtherapeutic concentrations, poor clinical outcomes, and the emergence of multidrug-resistant bacteria. We summarized pharmaceutical, pharmacokinetic, and pharmacodynamic research on the definition, underlying mechanisms, and risk factors of ARC to guide individualized dosing of antibiotics and various strategies for optimizing outcomes. Methods: We searched for articles between 2010 and 2022 in the MEDLINE database about ARC patients and antibiotics and further provided individualized antibiotic dosage regimens for patients with ARC. Results: 25 antibiotic dosage regimens for patients with ARC and various strategies for optimization of outcomes, such as extended infusion time, continuous infusion, increased dosage, and combination regimens, were summarized according to previous research. Conclusion: ARC patients, especially critically ill patients, need to make individualized adjustments to antibiotics, including dose, frequency, and method of administration. Further comprehensive research is required to determine ARC staging, expand the range of recommended antibiotics, and establish individualized dosing guidelines for ARC patients.
Collapse
Affiliation(s)
- A-Xi Shi
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Hai-Hui Zhuang
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Qi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wei-Xin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Ping Liu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Wen Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| |
Collapse
|
9
|
Effectiveness and Safety of Beta-Lactam Antibiotics with and without Therapeutic Drug Monitoring in Patients with Pseudomonas aeruginosa Pneumonia or Bloodstream Infection. Antimicrob Agents Chemother 2022; 66:e0064622. [PMID: 36073943 PMCID: PMC9578394 DOI: 10.1128/aac.00646-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This objective of this study was to compare clinical outcomes in hospitalized patients with Pseudomonas aeruginosa pneumonia (PNA) or bloodstream infection (BSI) receiving beta-lactam antibiotic (BLA) infusions with and without the guidance of therapeutic drug monitoring (TDM). A retrospective, parallel cohort study was conducted at two academic medical centers between December 2015 and January 2020, UF Shands Gainesville, which uses BLA TDM for select patients (BLA TDM), and UF Health Jacksonville, which does not use BLA TDM (No-BLA TDM). All hospitalized adult patients with respiratory or blood culture positive for P. aeruginosa who met diagnosis criteria for lower respiratory tract infection with a positive P. aeruginosa respiratory culture and who received ≥48 h of intravenous BLA with in vitro susceptibility within 72 h of positive culture collection were included. The primary outcome was a composite of presumed treatment failure defined as the presence of any of the following from index-positive P. aeruginosa culture collection to the end of BLA therapy: all-cause mortality, escalation of and/or additional antimicrobial therapy for P. aeruginosa infection after 48 h of treatment with susceptible BLA due to worsening clinical status, or transfer to a higher level of care (i.e., the intensive care unit [ICU]). Analyses were adjusted for possible confounding with inverse probability of treatment weighting (IPTW). Two-hundred patients were included (BLA TDM, n = 95; No-BLA TDM, n = 105). In IPTW-adjusted analysis of the primary composite endpoint, BLA TDM demonstrated a significant decrease in presumed treatment failure compared to No-BLA TDM (adjusted odds ratio [aOR] 0.037, 95% confidence interval [CI] [0.013 to 0.107]; P < 0.001). BLA TDM had more 30-, 60- and 90-day infection-related readmissions ([aOR], 11.301, 95% CI (3.595 to 35.516); aOR 10.389, 95% CI [2.496 to 43.239], and aOR 24.970, 95% CI [6.703 to 93.028]) in IPTW analyses. For both unadjusted and IPTW-adjusted cohorts, there was no significant difference in hospital and ICU length of stay, adverse effects while on BLA, or microbiological eradication between BLA TDM and No-BLA TDM. In hospitalized adult patients with P. aeruginosa PNA or BSI, the use of TDM-guided BLA infusions decreased the odds of presumed treatment failure compared to patients receiving BLA infusions without TDM guidance. Future studies should evaluate BLA TDM impact on readmission.
Collapse
|
10
|
Bulman ZP, Wicha SG, Nielsen EI, Lenhard JR, Nation RL, Theuretzbacher U, Derendorf H, Tängdén T, Zeitlinger M, Landersdorfer CB, Bulitta JB, Friberg LE, Li J, Tsuji BT. Research priorities towards precision antibiotic therapy to improve patient care. THE LANCET. MICROBE 2022; 3:e795-e802. [PMID: 35777386 DOI: 10.1016/s2666-5247(22)00121-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
Abstract
Antibiotic resistance presents an incessant threat to our drug armamentarium that necessitates novel approaches to therapy. Over the past several decades, investigation of pharmacokinetic and pharmacodynamic (PKPD) principles has substantially improved our understanding of the relationships between the antibiotic, pathogen, and infected patient. However, crucial gaps in our understanding of the pharmacology of antibacterials and their optimal use in the care of patients continue to exist; simply attaining antibiotic exposures that are considered adequate based on traditional targets can still result in treatment being unsuccessful and resistance proliferation for some infections. It is this salient paradox that points to key future directions for research in antibiotic therapeutics. This Personal View discusses six priority areas for antibiotic pharmacology research: (1) antibiotic-pathogen interactions, (2) antibiotic targets for combination therapy, (3) mechanistic models that describe the time-course of treatment response, (4) understanding and modelling of host response to infection, (5) personalised medicine through therapeutic drug management, and (6) application of these principles to support development of novel therapies. Innovative approaches that enhance our understanding of antibiotic pharmacology and facilitate more accurate predictions of treatment success, coupled with traditional pharmacology research, can be applied at the population level and to individual patients to improve outcomes.
Collapse
Affiliation(s)
- Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois Chicago, Chicago, IL, USA.
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | | | - Justin R Lenhard
- Department of Clinical and Administrative Sciences, California Northstate University College of Pharmacy, Elk Grove, CA, USA
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | | | - Hartmut Derendorf
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cornelia B Landersdorfer
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jürgen B Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Brian T Tsuji
- Department of Pharmacy Practice, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
11
|
Islam K, Sime FB, Wallis SC, Bauer MJ, Naicker S, Won H, Zowawi HM, Choudhury MA, Shirin T, Habib ZH, Harris PNA, Flora MS, Roberts JA. Pharmacodynamics of Piperacillin-Tazobactam/Amikacin Combination versus Meropenem against Extended-Spectrum β-Lactamase-Producing Escherichia coli in a Hollow Fiber Infection Model. Antimicrob Agents Chemother 2022; 66:e0016222. [PMID: 35924928 PMCID: PMC9487465 DOI: 10.1128/aac.00162-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Carbapenems are recommended for the treatment of urosepsis caused by extended-spectrum β-lactamase (ESBL)-producing, multidrug-resistant Escherichia coli; however, due to selection of carbapenem resistance, there is an increasing interest in alternative treatment regimens including the use of β-lactam-aminoglycoside combinations. We compared the pharmacodynamic activity of piperacillin-tazobactam and amikacin as mono and combination therapy versus meropenem monotherapy against extended-spectrum β-lactamase (ESBL)-producing, piperacillin-tazobactam resistant E. coli using a dynamic hollow fiber infection model (HFIM) over 7 days. Broth-microdilution was performed to determine the MIC of E. coli isolates. Whole genome sequencing was conducted. Four E. coli isolates were tested in HFIM with an initial inoculum of ~107 CFU/mL. Dosing regimens tested were piperacillin-tazobactam 4.5 g, 6-hourly, plus amikacin 30 mg/kg, 24-hourly, as combination therapy, and piperacillin-tazobactam 4.5 g, 6-hourly, amikacin 30 mg/kg, 24-hourly, and meropenem 1 g, 8-hourly, each as monotherapy. We observed that piperacillin-tazobactam and amikacin monotherapy demonstrated initial rapid bacterial killing but then led to amplification of resistant subpopulations. The piperacillin-tazobactam/amikacin combination and meropenem experiments both attained a rapid bacterial killing (~4-5 log10) within 24 h and did not result in any emergence of resistant subpopulations. Genome sequencing demonstrated that all ESBL-producing E. coli clinical isolates carried multiple antibiotic resistance genes including blaCTX-M-15, blaOXA-1, blaEC, blaTEM-1, and aac(6')-Ib-cr. These results suggest that the combination of piperacillin-tazobactam/amikacin may have a potential role as a carbapenem-sparing regimen, which should be tested in future urosepsis clinical trials.
Collapse
Affiliation(s)
- Kamrul Islam
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Fekade B. Sime
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Steven C. Wallis
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Michelle J. Bauer
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Saiyuri Naicker
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Hayoung Won
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Hosam M. Zowawi
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Md Abu Choudhury
- School of Nursing, Midwifery & Public Health, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research, Mohakhali, Dhaka, Bangladesh
| | - Zakir H. Habib
- Institute of Epidemiology, Disease Control and Research, Mohakhali, Dhaka, Bangladesh
| | - Patrick N. A. Harris
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Queensland, Australia
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - Meerjady S. Flora
- Directorate General of Health Services, Mohakhali, Dhaka, Bangladesh
| | - Jason A. Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Queensland, Australia
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
12
|
Avent ML, McCarthy KL, Sime FB, Naicker S, Heffernan AJ, Wallis SC, Paterson DL, Roberts JA. Evaluating Mono- and Combination Therapy of Meropenem and Amikacin against Pseudomonas aeruginosa Bacteremia in the Hollow-Fiber Infection Model. Microbiol Spectr 2022; 10:e0052522. [PMID: 35442072 PMCID: PMC9241727 DOI: 10.1128/spectrum.00525-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Debate continues as to the role of combination antibiotic therapy for the management of Pseudomonas aeruginosa infections. We studied the extent of bacterial killing by and the emergence of resistance to meropenem and amikacin as monotherapies and as a combination therapy against susceptible and resistant P. aeruginosa isolates from bacteremic patients using the dynamic in vitro hollow-fiber infection model. Three P. aeruginosa isolates (meropenem MICs of 0.125, 0.25, and 64 mg/L) were used, simulating bacteremia with an initial inoculum of ~1 × 105 CFU/mL and the expected pharmacokinetics of meropenem and amikacin in critically ill patients. For isolates susceptible to amikacin and meropenem (isolates 1 and 2), the extent of bacterial killing was increased with the combination regimen compared with the killing by monotherapy of either antibiotic. Both the combination and meropenem monotherapy were able to sustain bacterial killing throughout the 7-day treatment course, whereas regrowth of bacteria occurred with amikacin monotherapy after 12 h. For the meropenem-resistant P. aeruginosa isolate (isolate 3), only the combination regimen demonstrated bacterial killing. Given that tailored antibiotic regimens can maximize potential synergy against some isolates, future studies should explore the benefit of combination therapy against resistant P. aeruginosa. IMPORTANCE Current guidelines recommend that aminoglycosides should be used in combination with β-lactam antibiotics as initial empirical therapy for serious infections, and otherwise, patients should receive β-lactam antibiotic monotherapy. Given the challenges associated with studying the clinical effect of different antibiotic strategies on patient outcomes, useful data for subsequent informed clinical testing can be obtained from in vitro models like the hollow-fiber infection model (HFIM). Based on the findings of our HFIM, we propose that the initial use of combination therapy with meropenem and amikacin provides some bacterial killing against carbapenem-resistant P. aeruginosa isolates. For susceptible isolates, combination therapy may only be of benefit in specific patient populations, such as critically ill or immunocompromised patients. Therefore, clinicians may want to consider using the combination therapy for the initial management and ceasing the aminoglycosides once antibiotic susceptibility results have been obtained.
Collapse
Affiliation(s)
- Minyon L. Avent
- The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland, Australia
- Queensland Statewide Antimicrobial Stewardship Program, Royal Brisbane and Women’s Hospital, Herston, Queensland, Australia
| | - Kate L. McCarthy
- The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland, Australia
- Department of Infectious Diseases, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Fekade B. Sime
- The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland, Australia
| | - Saiyuri Naicker
- The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland, Australia
| | - Aaron J. Heffernan
- The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland, Australia
- School of Medicine, Griffith University, Southport, Queensland, Australia
- Department of Pharmacy, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Steven C. Wallis
- The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland, Australia
| | - David L. Paterson
- The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland, Australia
| | - Jason A. Roberts
- The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland, Australia
- Department of Pharmacy, Royal Brisbane and Women’s Hospital, Brisbane, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women’s Hospital, Brisbane, Australia
- Division of Anaesthesiology, Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
13
|
Tait JR, Barnett TC, Rogers KE, Lee WL, Page-Sharp M, Manning L, Boyd BJ, Carapetis JR, Nation RL, Landersdorfer CB. Penicillin G concentrations required for prophylaxis against Group A Streptococcus infection evaluated using a hollow fibre model and mathematical modelling. J Antimicrob Chemother 2022; 77:1923-1930. [PMID: 35470370 PMCID: PMC9244232 DOI: 10.1093/jac/dkac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Acute rheumatic fever (ARF), an autoimmune reaction to Group A Streptococcus (Streptococcus pyogenes; Strep A) infection, can cause rheumatic heart disease (RHD). New formulations of long-acting penicillins are being developed for secondary prophylaxis of ARF and RHD. OBJECTIVES To evaluate the penicillin G concentrations required to suppress growth of Strep A. METHODS Broth microdilution MIC and MBC for Strep A strains M75611024, M1T15448 and M18MGAS8232 were determined. All strains were studied in a hollow fibre model (initial inoculum 4 log10 cfu/mL). Constant penicillin G concentrations of 0.008, 0.016 and 0.05 mg/L were examined against all strains, plus 0.012 mg/L against M18MGAS8232. Viable counts were determined over 144 h. Subsequently, all penicillin G-treated cartridges were emptied, reinoculated with 5 log10 cfu/mL and counts determined over a further 144 h. Mathematical modelling was performed. RESULTS MIC and MBC were 0.008 mg/L for all strains; small subpopulations of M75611024 and M1T15448, but not M18MGAS8232, grew at 1× MIC. Following the first inoculation, 0.008 mg/L achieved limited killing and/or stasis against M75611024 and M1T15448, with subsequent growth to ∼6 log10 cfu/mL. Following both inocula, concentrations ≥0.016 mg/L suppressed M75611024 and M1T15448 to <1 log10 cfu/mL from 6 h onwards with eradication. Concentrations ≥0.008 mg/L suppressed M18MGAS8232 to <1 log10 cfu/mL from 24 h onwards with eradication after both inoculations. Mathematical modelling well described all strains using a single set of parameter estimates, except for different maximum bacterial concentrations and proportions of bacteria growing at 1× MIC. CONCLUSIONS In the absence of validated animal and human challenge models, the study provides guidance on penicillin G target concentrations for development of new penicillin formulations.
Collapse
Affiliation(s)
- Jessica R Tait
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Timothy C Barnett
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Kate E Rogers
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Wee Leng Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Madhu Page-Sharp
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Laurens Manning
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jonathan R Carapetis
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Department of Infectious Diseases, Perth Children’s Hospital, Perth, Western Australia, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Pharmacodynamic evaluation of piperacillin/tazobactam against extended-spectrum β-lactamase-producing versus non-producing Escherichia coli in a hollow-fibre infection model. Int J Antimicrob Agents 2022; 60:106623. [PMID: 35728714 DOI: 10.1016/j.ijantimicag.2022.106623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/04/2022] [Accepted: 06/12/2022] [Indexed: 11/20/2022]
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli is a global public health concern. We evaluated the pharmacodynamic activity of piperacillin/tazobactam dosing regimens against ESBL-producing versus non-producing E. coli. E. coli clinical isolates were obtained from Bangladesh. Broth microdilution and WGS were performed on the 5 studied isolates. Three piperacillin/tazobactam susceptible ESBL-producing and two non-producing E. coli were exposed to piperacillin/tazobactam regimens (4.5 g, every 6 h and 4.5 g, every 8 h, as 30 min infusion) in a dynamic hollow-fibre infection model over 7 days. The extent of bacterial killing was ∼4-5 log10 CFU/mL against ESBL-producing and non-producing E. coli with piperacillin/tazobactam, every 6 h and every 8 h regimens over the first 8 h. Bacterial killing was similar between two of three ESBL-producing (CTAP#168, CTAP169) and two non-ESBL-producing (CTAP#179, CTAP#180) E. coli over the experiment. ESBL-producing CTAP#173 E. coli was poorly killed (∼1 log) compared to two non-ESBL-producing E. coli over 168 h. WGS revealed, ESBL-producing E. coli isolates co-harboured multiple antibiotic resistance genes such as blaCTX-M-15, blaEC, blaOXA-1, blaTEM-1, aac(6')-Ib-cr5. Overall, piperacillin/tazobactam, every 6 h and every 8 h dosing regimens attained >3 log bacterial kill against all ESBL-producing or non-ESBL-producing E. coli within 24 h, maintained and prevented emergence of resistance over the end of experiment. To conclude, piperacillin/tazobactam standard regimens resulted in similar bacterial killing and prevented emergence of resistance against blaCTX-M-15 type ESBL-producing and non-ESBL-producing E. coli clinical isolates.
Collapse
|
15
|
Simulated intravenous versus inhaled tobramycin with and without intravenous ceftazidime evaluated against hypermutable Pseudomonas aeruginosa via a dynamic biofilm model and mechanism-based modeling. Antimicrob Agents Chemother 2022; 66:e0220321. [PMID: 35041509 DOI: 10.1128/aac.02203-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute exacerbations of chronic respiratory infections in patients with cystic fibrosis are highly challenging due to hypermutable Pseudomonas aeruginosa, biofilm formation and resistance emergence. We aimed to systematically evaluate the effects of intravenous versus inhaled tobramycin with and without intravenous ceftazidime. Two hypermutable P. aeruginosa isolates, CW30 (MICCAZ 0.5mg/L, MICTOB 2mg/L) and CW8 (MICCAZ 2mg/L, MICTOB 8mg/L), were investigated for 120h in dynamic in vitro biofilm studies. Treatments were: intravenous ceftazidime 9g/day (33% lung fluid penetration); intravenous tobramycin 10mg/kg 24-hourly (50% lung fluid penetration); inhaled tobramycin 300mg 12-hourly, and both ceftazidime-tobramycin combinations. Total and less-susceptible planktonic and biofilm bacteria were quantified over 120h. Mechanism-based modeling was performed. All monotherapies were ineffective for both isolates, with regrowth of planktonic (≥4.7log10 CFU/mL) and biofilm (>3.8log10 CFU/cm2) bacteria, and resistance amplification by 120h. Both combination treatments demonstrated synergistic or enhanced bacterial killing of planktonic and biofilm bacteria. With the combination simulating tobramycin inhalation, planktonic bacterial counts of the two isolates at 120h were 0.47% and 36% of those for the combination with intravenous tobramycin; for biofilm bacteria the corresponding values were 8.2% and 13%. Combination regimens achieved substantial suppression of resistance of planktonic and biofilm bacteria compared to each antibiotic in monotherapy for both isolates. Mechanism-based modeling well described all planktonic and biofilm counts, and indicated synergy of the combination regimens despite reduced activity of tobramycin in biofilm. Combination regimens of inhaled tobramycin with ceftazidime hold promise to treat acute exacerbations caused by hypermutable P. aeruginosa strains and warrant further investigation.
Collapse
|
16
|
Tait JR, Bilal H, Rogers KE, Lang Y, Kim TH, Zhou J, Wallis SC, Bulitta JB, Kirkpatrick CMJ, Paterson DL, Lipman J, Bergen PJ, Roberts JA, Nation RL, Landersdorfer CB. Effect of Different Piperacillin-Tazobactam Dosage Regimens on Synergy of the Combination with Tobramycin against Pseudomonas aeruginosa for the Pharmacokinetics of Critically Ill Patients in a Dynamic Infection Model. Antibiotics (Basel) 2022; 11:101. [PMID: 35052977 PMCID: PMC8772788 DOI: 10.3390/antibiotics11010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
We evaluated piperacillin-tazobactam and tobramycin regimens against Pseudomonas aeruginosa isolates from critically ill patients. Static-concentration time-kill studies (SCTK) assessed piperacillin-tazobactam and tobramycin monotherapies and combinations against four isolates over 72 h. A 120 h-dynamic in vitro infection model (IVM) investigated isolates Pa1281 (MICpiperacillin 4 mg/L, MICtobramycin 0.5 mg/L) and CR380 (MICpiperacillin 32 mg/L, MICtobramycin 1 mg/L), simulating the pharmacokinetics of: (A) tobramycin 7 mg/kg q24 h (0.5 h-infusions, t1/2 = 3.1 h); (B) piperacillin 4 g q4 h (0.5 h-infusions, t1/2 = 1.5 h); (C) piperacillin 24 g/day, continuous infusion; A + B; A + C. Total and less-susceptible bacteria were determined. SCTK demonstrated synergy of the combination for all isolates. In the IVM, regimens A and B provided initial killing, followed by extensive regrowth by 72 h for both isolates. C provided >4 log10 CFU/mL killing, followed by regrowth close to initial inoculum by 96 h for Pa1281, and suppressed growth to <4 log10 CFU/mL for CR380. A and A + B initially suppressed counts of both isolates to <1 log10 CFU/mL, before regrowth to control or starting inoculum and resistance emergence by 72 h. Overall, the combination including intermittent piperacillin-tazobactam did not provide a benefit over tobramycin monotherapy. A + C, the combination regimen with continuous infusion of piperacillin-tazobactam, provided synergistic killing (counts <1 log10 CFU/mL) of Pa1281 and CR380, and suppressed regrowth to <2 and <4 log10 CFU/mL, respectively, and resistance emergence over 120 h. The shape of the concentration-time curve was important for synergy of the combination.
Collapse
Affiliation(s)
- Jessica R. Tait
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.R.T.); (K.E.R.); (R.L.N.)
| | - Hajira Bilal
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (H.B.); (C.M.J.K.); (P.J.B.)
| | - Kate E. Rogers
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.R.T.); (K.E.R.); (R.L.N.)
| | - Yinzhi Lang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (Y.L.); (J.Z.); (J.B.B.)
| | - Tae-Hwan Kim
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Korea;
| | - Jieqiang Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (Y.L.); (J.Z.); (J.B.B.)
| | - Steven C. Wallis
- The University of Queensland Center for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (S.C.W.); (D.L.P.); (J.L.); (J.A.R.)
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (Y.L.); (J.Z.); (J.B.B.)
| | - Carl M. J. Kirkpatrick
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (H.B.); (C.M.J.K.); (P.J.B.)
| | - David L. Paterson
- The University of Queensland Center for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (S.C.W.); (D.L.P.); (J.L.); (J.A.R.)
| | - Jeffrey Lipman
- The University of Queensland Center for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (S.C.W.); (D.L.P.); (J.L.); (J.A.R.)
- Intensive Care Unit, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, 30900 Nîmes, France
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Phillip J. Bergen
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (H.B.); (C.M.J.K.); (P.J.B.)
| | - Jason A. Roberts
- The University of Queensland Center for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (S.C.W.); (D.L.P.); (J.L.); (J.A.R.)
- Intensive Care Unit, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, 30900 Nîmes, France
| | - Roger L. Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.R.T.); (K.E.R.); (R.L.N.)
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.R.T.); (K.E.R.); (R.L.N.)
| |
Collapse
|
17
|
Landersdorfer CB, Nation RL. Limitations of Antibiotic MIC-Based PK-PD Metrics: Looking Back to Move Forward. Front Pharmacol 2021; 12:770518. [PMID: 34776982 PMCID: PMC8585766 DOI: 10.3389/fphar.2021.770518] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/14/2021] [Indexed: 12/28/2022] Open
Abstract
Within a few years after the first successful clinical use of penicillin, investigations were conducted in animal infection models to explore a range of factors that were considered likely to influence the antibacterial response to the drug. Those studies identified that the response was influenced by not only the total daily dose but also the interval between individual doses across the day, and whether penicillin was administered in an intermittent or continuous manner. Later, as more antibiotics were discovered and developed, antimicrobial pharmacologists began to measure antibiotic concentrations in biological fluids. This enabled the linking of antibacterial response at a single time point in an animal or in vitro infection model with one of three summary pharmacokinetic (PK) measures of in vivo exposure to the antibiotic. The summary PK exposure measures were normalised to the minimum inhibitory concentration (MIC), an in vitro measure of the pharmacodynamic (PD) potency of the drug. The three PK-PD indices (ratio of maximum concentration to MIC, ratio of area under the concentration-time curve to MIC, time concentration is above MIC) have been used extensively since the 1980s. While these MIC-based summary PK-PD metrics have undoubtedly facilitated the development of new antibiotics and the clinical application of both new and old antibiotics, it is increasingly recognised that they have a number of substantial limitations. In this article we use a historical perspective to review the origins of the three traditional PK-PD indices before exploring in detail their limitations and the implications arising from those limitations. Finally, in the interests of improving antibiotic development and dosing in patients, we consider a model-based approach of linking the full time-course of antibiotic concentrations with that of the antibacterial response. Such an approach enables incorporation of other factors that can influence treatment outcome in patients and has the potential to drive model-informed precision dosing of antibiotics into the future.
Collapse
Affiliation(s)
- Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
18
|
Maguigan KL, Al-Shaer MH, Peloquin CA. Beta-Lactams Dosing in Critically Ill Patients with Gram-Negative Bacterial Infections: A PK/PD Approach. Antibiotics (Basel) 2021; 10:1154. [PMID: 34680734 PMCID: PMC8532626 DOI: 10.3390/antibiotics10101154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-lactam antibiotics are often the backbone of treatment for Gram-negative infections in the critically ill. Beta-lactams exhibit time-dependent killing, and their efficacy depends on the percentage of dosing interval that the concentration remains above the minimum inhibitory concentration. The Gram-negative resistance rates of pathogens are increasing in the intensive care unit (ICU), and critically ill patients often possess physiology that makes dosing more challenging. The volume of distribution is usually increased, and drug clearance is variable. Augmented renal clearance and hypermetabolic states increase the clearance of beta-lactams, while acute kidney injury reduces the clearance. To overcome the factors affecting ICU patients and decreasing susceptibilities, dosing strategies involving higher doses, and extended or continuous infusions may be required. In this review, we specifically examined pharmacokinetic models in ICU patients, to determine the desired beta-lactam regimens for clinical breakpoints of Enterobacterales and Pseudomonas aeruginosa, as determined by the European Committee on Antimicrobial Susceptibility Testing. The beta-lactams evaluated included penicillins, cephalosporins, carbapenems, and monobactams. We found that when treating less-susceptible pathogens, especially P. aeruginosa, continuous infusions are frequently needed to achieve the desired pharmacokinetic/pharmacodynamic targets. More studies are needed to determine optimal dosing strategies in the novel beta-lactams.
Collapse
Affiliation(s)
- Kelly L. Maguigan
- Pharmacy Department, University of Florida Health Shands Hospital, Gainesville, FL 32608, USA;
| | - Mohammad H. Al-Shaer
- Infectious Disease Pharmacokinetics Lab, College of Pharmacy and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Charles A. Peloquin
- Infectious Disease Pharmacokinetics Lab, College of Pharmacy and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
19
|
Agyeman AA, Rogers KE, Tait JR, Bergen PJ, Kirkpatrick CM, Wallis SC, Bulitta JB, Paterson DL, Lipman J, Nation RL, Roberts JA, Landersdorfer CB. Evaluation of Meropenem‐Ciprofloxacin Combination Dosage Regimens for the Pharmacokinetics of Critically Ill Patients With Augmented Renal Clearance. Clin Pharmacol Ther 2021; 109:1104-1115. [DOI: 10.1002/cpt.2191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Akosua A. Agyeman
- Centre for Medicine Use and Safety Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria Australia
| | - Kate E. Rogers
- Centre for Medicine Use and Safety Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria Australia
| | - Jessica R. Tait
- Centre for Medicine Use and Safety Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria Australia
| | - Phillip J. Bergen
- Centre for Medicine Use and Safety Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria Australia
| | - Carl M. Kirkpatrick
- Centre for Medicine Use and Safety Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria Australia
| | - Steven C. Wallis
- The University of Queensland Centre for Clinical Research Royal Brisbane and Women’s Hospital Brisbane Queensland Australia
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research College of Pharmacy University of Florida Orlando Florida USA
| | - David L. Paterson
- The University of Queensland Centre for Clinical Research Royal Brisbane and Women’s Hospital Brisbane Queensland Australia
| | - Jeffrey Lipman
- The University of Queensland Centre for Clinical Research Royal Brisbane and Women’s Hospital Brisbane Queensland Australia
| | - Roger L. Nation
- Drug Delivery, Disposition, and Dynamics Monash Institute of Pharmaceutical SciencesMonash University Parkville Victoria Australia
| | - Jason A. Roberts
- The University of Queensland Centre for Clinical Research Royal Brisbane and Women’s Hospital Brisbane Queensland Australia
| | - Cornelia B. Landersdorfer
- Centre for Medicine Use and Safety Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria Australia
| |
Collapse
|
20
|
Landersdorfer CB, Nation RL. Key Challenges in Providing Effective Antibiotic Therapy for Critically Ill Patients with Bacterial Sepsis and Septic Shock. Clin Pharmacol Ther 2021; 109:892-904. [PMID: 33570163 DOI: 10.1002/cpt.2203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
Early initiation of effective antibiotic therapy is vitally important for saving the lives of critically ill patients with sepsis or septic shock. The susceptibility of the infecting pathogen and the ability of the selected dosage regimen to safely achieve the required antibiotic exposure need to be carefully considered to achieve a high probability of a successful outcome. Critically ill patients commonly experience substantial pathophysiological changes that impact the functions of various organs, including the kidneys. Many antibiotics are predominantly renally eliminated and thus renal function is a major determinant of the regimen needed to achieve the required antibiotic exposure. However, currently, there is a paucity of guidelines to inform antibiotic dosing in critically ill patients, including those with sepsis or septic shock. This paper briefly reviews methods that are commonly used in critically ill patients to provide a measure of renal function, and approaches that describe the relationship between the exposure to an antibiotic and its antibacterial effects. Two common conditions that very substantially complicate the use of antibiotics in critically ill patients with sepsis, unstable renal function, and augmented renal clearance, are considered in detail and their potential therapeutic implications are explored. Suggestions are provided on how treatment of bacterial infections in critically ill patients with sepsis might be improved. Of high potential are model-informed approaches that aim to individualize initial treatment regimens based on patient and bacterial characteristics, with refinement of regimens during treatment in response to monitoring antibiotic concentrations, responsive measures of renal function, and other important clinical data.
Collapse
Affiliation(s)
- Cornelia B Landersdorfer
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Roger L Nation
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|