1
|
Many Ways to Communicate-Crosstalk between the HBV-Infected Cell and Its Environment. Pathogens 2022; 12:pathogens12010029. [PMID: 36678377 PMCID: PMC9866324 DOI: 10.3390/pathogens12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) affects an estimated 257 million people worldwide and can lead to liver diseases such as cirrhosis and liver cancer. Viral replication is generally considered not to be cytopathic, and although some HBV proteins may have direct carcinogenic effects, the majority of HBV infection-related disease is related to chronic inflammation resulting from disrupted antiviral responses and aberrant innate immune reactions. Like all cells, healthy and HBV-infected cells communicate with each other, as well as with other cell types, such as innate and adaptive immune cells. They do so by both interacting directly and by secreting factors into their environment. Such factors may be small molecules, such as metabolites, single viral proteins or host proteins, but can also be more complex, such as virions, protein complexes, and extracellular vesicles. The latter are small, membrane-enclosed vesicles that are exchanged between cells, and have recently gained a lot of attention for their potential to mediate complex communication and their potential for therapeutic repurposing. Here, we review how HBV infection affects the communication between HBV-infected cells and cells in their environment. We discuss the impact of these interactions on viral persistence in chronic infection, as well as their relation to HBV infection-related pathology.
Collapse
|
2
|
Ren H, Li H, Cao L, Wang Z, Zhou Y, Guo J, Zhang Y, Liu H, Xu W. Intranasal immunization with HRSV prefusion F protein and CpG adjuvant elicits robust protective effects in mice. Vaccine 2022; 40:6830-6838. [PMID: 36253219 DOI: 10.1016/j.vaccine.2022.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/09/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of lower respiratory tract infections in elderly individuals and young children/infants and can cause bronchiolitis and even death. There is no licensed HRSV vaccine. An ideal vaccine should induce high titers of neutralizing antibodies and a Th1-biased immune response. In this study, we used EXPI293 cells to express the fusion (F) protein with a prefusion conformation (PrF) and compared the safety and efficacy of intranasal immunization with PrF in combination with two mucosal adjuvants (CpG ODN and liposomes) in mice. After two intranasal administrations, mice in the PrF + CpG group produced high titers of neutralizing antibodies (4961) and a Th1-biased immune response compared with the PrF + Lipo group. The lung viral load of mice in the PrF + CpG group was significantly reduced (3.5 log) compared with that in the adjuvant control group, and the survival rate was 100 %, while the survival rate of mice in the PrF + Lipo group was only 67 %. At the same time, this immunization strategy reduced the pathological damage to the lungs in mice. In conclusion, the combination of PrF and CpG adjuvant is immunogenic, elicits a Th1 type immune response, and completely protects mice from a lethal HRSV challenge. It is worthy of further evaluation as an HRSV vaccine in clinical trials. Clinical trial registration. This study was not related to human participation or experimentation.
Collapse
Affiliation(s)
- Hu Ren
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hai Li
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Cao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhan Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yangzi Zhou
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinyuan Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongtu Liu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.
| | - Wenbo Xu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Ko CN, Zang S, Zhou Y, Zhong Z, Yang C. Nanocarriers for effective delivery: modulation of innate immunity for the management of infections and the associated complications. J Nanobiotechnology 2022; 20:380. [PMID: 35986268 PMCID: PMC9388998 DOI: 10.1186/s12951-022-01582-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens. Innate immune cells can recognize invading pathogens through recognizing pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). The recognition of PAMPs by PRRs triggers immune defense mechanisms and the secretion of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. However, sustained and overwhelming activation of immune system may disrupt immune homeostasis and contribute to inflammatory disorders. Immunomodulators targeting PRRs may be beneficial to treat infectious diseases and their associated complications. However, therapeutic performances of immunomodulators can be negatively affected by (1) high immune-mediated toxicity, (2) poor solubility and (3) bioactivity loss after long circulation. Recently, nanocarriers have emerged as a very promising tool to overcome these obstacles owning to their unique properties such as sustained circulation, desired bio-distribution, and preferred pharmacokinetic and pharmacodynamic profiles. In this review, we aim to provide an up-to-date overview on the strategies and applications of nanocarrier-assisted innate immune modulation for the management of infections and their associated complications. We first summarize examples of important innate immune modulators. The types of nanomaterials available for drug delivery, as well as their applications for the delivery of immunomodulatory drugs and vaccine adjuvants are also discussed.
Collapse
|
4
|
Zhao H, Han Q, Yang A, Wang Y, Wang G, Lin A, Wang X, Yin C, Zhang J. CpG-C ODN M362 as an immunoadjuvant for HBV therapeutic vaccine reverses the systemic tolerance against HBV. Int J Biol Sci 2022; 18:154-165. [PMID: 34975324 PMCID: PMC8692134 DOI: 10.7150/ijbs.62424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic Hepatitis B virus (CHB) infection is a global public health problem. Oligodeoxynucleotides (ODNs) containing class C unmethylated cytosine-guanine dinucleotide (CpG-C) motifs may provide potential adjuvants for the immunotherapeutic strategy against CHB, since CpG-C ODNs stimulate both B cell and dendritic cell (DC) activation. However, the efficacy of CpG-C ODN as an anti-HBV vaccine adjuvant remains unclear. In this study, we demonstrated that CpG M362 (CpG-C ODN) as an adjuvant in anti-HBV vaccine (cHBV-vaccine) successfully and safely eliminated the virus in HBV-carrier mice. The cHBV-vaccine enhanced DC maturation both in vivo and in vitro, overcame immune tolerance, and recovered exhausted T cells in HBV-carrier mice. Furthermore, the cHBV-vaccine elicited robust hepatic HBV-specific CD8+ and CD4+ T cell responses, with increased cellular proliferation and IFN-γ secretion. Additionally, the cHBV-vaccine invoked a long-lasting follicular CXCR5+ CD8+ T cell response following HBV re-challenge. Taken together, CpG M362 in combination with rHBVvac cleared persistent HBV and achieved long-term virological control, making it a promising candidate for treating CHB.
Collapse
Affiliation(s)
- Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ailu Yang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yucan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Guan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Ang Lin
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Chunlai Yin
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
5
|
Zhong Q, Lu Y, Xu W, Rong Z, Chang X, Qin L, Chen X, Zhou F. The differentiation of new human CD303 + Plasmacytoid dendritic cell subpopulations expressing CD205 and/or CD103 regulated by Non-Small-Cell lung cancer cells. Int Immunopharmacol 2021; 99:107983. [PMID: 34298400 DOI: 10.1016/j.intimp.2021.107983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/26/2022]
Abstract
CD303+ plasmacytoid dendritic cells (pDCs) play an important role in the induction of immune tolerance and antitumor immunity. Here, we focused on the effect of NSCLC cells on the development of CD303+ pDC subsets expressing CD205 and/or CD103. The NSCLC cell line H1299 and primary NSCLC cells were incubated with DCs. The protein expression of costimulatory molecules on CD303+ pDCs, the production of pro-inflammatory and anti-inflammatory cytokines by CD303+ pDCs and the development of CD303+ pDC subsets were detected by using flow cytometry. Coculture with NSCLC cells modulates the protein expression of CD86 and HLA-DR on CD303+ pDCs. Moreover, NSCLC cells suppressed the production of IL-12 and IL-23 but facilitated the secretion of IL-27 and TGF-β by CD303+ pDCs. There were new CD303+ pDC subsets expressing CD205 and/or CD103 in healthy donors and NSCLC patients: CD303+CD205+CD103+, CD303+CD205+CD103-, CD303+CD205-CD103+ and CD303+CD205-CD103- pDCs. NSCLC cells modulated the differentiation of CD303+ pDC subpopulations by regulating the protein expression of CD205 and/or CD103 on CD303+ pDCs. NSCLC cells may regulate the immune functions of CD303+ pDCs by modulating the expression of costimulatory molecules on DCs and the production of pro-inflammatory/anti-inflammatory cytokines by DCs. NSCLC cells also regulate the development of CD303+ pDC subsets expressing CD205 and/or CD103. These outcomes may reveal a new cellular mechanism leading to the NSCLC-induced immune-suppressive microenvironment.
Collapse
Affiliation(s)
- Qifeng Zhong
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Yong Lu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Wenlong Xu
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Zhien Rong
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Xu Chang
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Li Qin
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China
| | - Xiaoping Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510820, PR China; State Key Laboratory of Respiratory Disease, Center of Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China; Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China.
| | - Fang Zhou
- Department of Experimental and Clinical Immunology, CAS Lamvac Biotech Co., Ltd. Huangpu, Guangzhou, Guangdong, PR China.
| |
Collapse
|
6
|
Vaillant A. HBsAg, Subviral Particles, and Their Clearance in Establishing a Functional Cure of Chronic Hepatitis B Virus Infection. ACS Infect Dis 2021; 7:1351-1368. [PMID: 33302622 DOI: 10.1021/acsinfecdis.0c00638] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In diverse viral infections, the production of excess viral particles containing only viral glycoproteins (subviral particles or SVP) is commonly observed and is a commonly evolved mechanism for immune evasion. In hepatitis B virus (HBV) infection, spherical particles contain the hepatitis B surface antigen, outnumber infectious virus 10 000-100 000 to 1, and have diverse inhibitory effects on the innate and adaptive immune response, playing a major role in the chronic nature of HBV infection. The current goal of therapies in development for HBV infection is a clinical outcome called functional cure, which signals a persistent and effective immune control of the infection. Although removal of spherical SVP (and the HBsAg they carry) is an important milestone in achieving functional cure, this outcome is rarely achieved with current therapies due to distinct mechanisms for assembly, secretion, and persistence of SVP, which are poorly targeted by direct acting antivirals or immunotherapies. In this Review, the current understanding of the distinct mechanisms involved in the production and persistence of spherical SVP in chronic HBV infection and their immunoinhibitory activity will be reviewed as well as current therapies in development with the goal of clearing spherical SVP and achieving functional cure.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec H8Y 3E6, Canada
| |
Collapse
|
7
|
Roca Suarez AA, Testoni B, Baumert TF, Lupberger J. Nucleic Acid-Induced Signaling in Chronic Viral Liver Disease. Front Immunol 2021; 11:624034. [PMID: 33613561 PMCID: PMC7892431 DOI: 10.3389/fimmu.2020.624034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
A hallmark for the development and progression of chronic liver diseases is the persistent dysregulation of signaling pathways related to inflammatory responses, which eventually promotes the development of hepatic fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The two major etiological agents associated with these complications in immunocompetent patients are hepatitis B virus (HBV) and hepatitis C virus (HCV), accounting for almost 1.4 million liver disease-associated deaths worldwide. Although both differ significantly from the point of their genomes and viral life cycles, they exert not only individual but also common strategies to divert innate antiviral defenses. Multiple virus-modulated pathways implicated in stress and inflammation illustrate how chronic viral hepatitis persistently tweaks host signaling processes with important consequences for liver pathogenesis. The following review aims to summarize the molecular events implicated in the sensing of viral nucleic acids, the mechanisms employed by HBV and HCV to counter these measures and how the dysregulation of these cellular pathways drives the development of chronic liver disease and the progression toward HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- DNA, Viral/immunology
- Hepacivirus/immunology
- Hepatitis B virus/immunology
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/mortality
- Hepatitis B, Chronic/pathology
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/mortality
- Hepatitis C, Chronic/pathology
- Humans
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- RNA, Viral/immunology
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Armando Andres Roca Suarez
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
| | - Thomas F. Baumert
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Joachim Lupberger
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
8
|
Voloshin SA, Feyzkhanova GU, Savvateeva EN, Smoldovskaya OV, Rubina A. Microarray for Quantitative Determination of Inflammatory Biomarkers in a Culture Medium. Mol Biol 2021. [DOI: 10.1134/s0026893320060138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Janovec V, Hodek J, Clarova K, Hofman T, Dostalik P, Fronek J, Chlupac J, Chaperot L, Durand S, Baumert TF, Pichova I, Lubyova B, Hirsch I, Weber J. Toll-like receptor dual-acting agonists are potent inducers of PBMC-produced cytokines that inhibit hepatitis B virus production in primary human hepatocytes. Sci Rep 2020; 10:12767. [PMID: 32728070 PMCID: PMC7392756 DOI: 10.1038/s41598-020-69614-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Recombinant interferon-α (IFN-α) treatment functionally cures chronic hepatitis B virus (HBV) infection in some individuals and suppresses virus replication in hepatocytes infected in vitro. We studied the antiviral effect of conditioned media (CM) from peripheral blood mononuclear cells (PBMCs) stimulated with agonists of Toll-like receptors (TLRs) 2, 7, 8 and 9. We found that CM from PBMCs stimulated with dual-acting TLR7/8 (R848) and TLR2/7 (CL413) agonists were more potent drivers of inhibition of HBe and HBs antigen secretion from HBV-infected primary human hepatocytes (PHH) than CM from PBMCs stimulated with single-acting TLR7 (CL264) or TLR9 (CpG-B) agonists. Inhibition of HBV in PHH did not correlate with the quantity of PBMC-produced IFN-α, but it was a complex function of multiple secreted cytokines. More importantly, we found that the CM that efficiently inhibited HBV production in freshly isolated PHH via various cytokine repertoires and mechanisms did not reduce covalently closed circular (ccc)DNA levels. We confirmed our data with a cell culture model based on HepG2-NTCP cells and the plasmacytoid dendritic cell line GEN2.2. Collectively, our data show the importance of dual-acting TLR agonists inducing broad cytokine repertoires. The development of poly-specific TLR agonists provides novel opportunities towards functional HBV cure.
Collapse
Affiliation(s)
- Vaclav Janovec
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25150, Vestec, Czech Republic.,IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic
| | - Jan Hodek
- IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic
| | - Kamila Clarova
- IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic
| | - Tomas Hofman
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25150, Vestec, Czech Republic.,IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic
| | - Pavel Dostalik
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25150, Vestec, Czech Republic
| | - Jiri Fronek
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine, 14021, Prague, Czech Republic.,Department of Anatomy, Second Faculty of Medicine, Charles University, 15006, Prague, Czech Republic
| | - Jaroslav Chlupac
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine, 14021, Prague, Czech Republic.,Department of Anatomy, Second Faculty of Medicine, Charles University, 15006, Prague, Czech Republic
| | - Laurence Chaperot
- CNRS UMR5309, Inserm U1209, CHU Grenoble Alpes, IAB, EFS, Université Grenoble Alpes, 38000, Grenoble, France
| | - Sarah Durand
- Inserm, Institut de Recherche Sur Les Maladies Virales Et Hepatiques UMRS 1110, Universite de Strasbourg, 67000, Strasbourg, France
| | - Thomas F Baumert
- Inserm, Institut de Recherche Sur Les Maladies Virales Et Hepatiques UMRS 1110, Universite de Strasbourg, 67000, Strasbourg, France.,Pole Hepato-Digestif, Institut Hospitalo-Universitaire, Hopitaux Universitaires de Strasbourg, 67000, Strasbourg, France
| | - Iva Pichova
- IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic
| | - Barbora Lubyova
- IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic
| | - Ivan Hirsch
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25150, Vestec, Czech Republic. .,IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic. .,Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic.
| | - Jan Weber
- IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic.
| |
Collapse
|
10
|
Vaillant A. REP 2139: Antiviral Mechanisms and Applications in Achieving Functional Control of HBV and HDV Infection. ACS Infect Dis 2019; 5:675-687. [PMID: 30199230 DOI: 10.1021/acsinfecdis.8b00156] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleic acid polymers (NAPs) are broad spectrum antiviral agents whose antiviral activity in hepatitis B virus (HBV) infection is derived from their ability to block the release of the hepatitis B virus surface antigen (HBsAg). This pharmacological activity blocks replenishment of HBsAg in the circulation, allowing host mediated clearance. This effect has important clinical significance as the clearance of circulating HBsAg dramatically potentiates the ability of immunotherapies to restore functional control of HBV infection which persists after antiviral therapy is removed. These effects are reproducible in preclinical evaluations and in several clinical trials that have evaluated the activity of the lead NAP, REP 2139, in monotherapy and in combination with immunotherapy in hepatitis B e antigen (HBeAg) negative and HBeAg positive HBV infection and also in HBeAg negative HBV/hepatitis D virus (HDV) coinfection. These antiviral effects of REP 2139 are achieved in the absence of any direct immunostimulatory effect in the liver and also without any discernible direct interaction with viral components. The search for the host protein interaction with NAPs that drives their antiviral effects is ongoing, and the interaction targeted by REP 2139 within infected cells has not yet been elucidated. This article provides an updated review of available data on the effects of REP 2139 in HBV and HDV infection and the ability of REP 2139-based combination therapy to achieve functional control of HBV and HDV infection in patients.
Collapse
Affiliation(s)
- Andrew Vaillant
- Replicor Inc., 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| |
Collapse
|
11
|
Mijočević H, Karimzadeh H, Seebach J, Usman Z, Al-Mahtab M, Bazinet M, Vaillant A, Roggendorf M. Variants of hepatitis B virus surface antigen observed during therapy with nucleic acid polymer REP 2139-Ca have no influence on treatment outcome and its detection by diagnostic assays. J Viral Hepat 2019; 26:485-495. [PMID: 30450662 DOI: 10.1111/jvh.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022]
Abstract
The treatment of patients suffering from HBeAg-positive chronic hepatitis B with REP 2139-Ca resulted in potent reductions in HBsAg and HBV DNA, seroconversion to anti-HBs and the establishment of functional control of infection. In this cohort of 12 patients, we investigated whether differences between HBsAg sequences might explain the lack of response to REP 2139-Ca observed in 3 of 12 patients. We also assessed if the reduction or complete loss of HBsAg in serum observed during therapy were caused by mutations in the "a" determinant preventing the detection of HBsAg by standard diagnostic assays. The complete pre-S/S open reading frame (ORF) was sequenced and pre-S1, pre-S2 and S amino acid sequences were analysed. We found no major differences between pre-S1, pre-S2 and S sequences in responders and nonresponders correlated with low reduction in HBsAg. In addition, we found no mutations in the "a" determinant that would significantly affect the reactivity of HBsAg in diagnostic assays. These results demonstrate that the amino acid sequence of complete pre-S/S ORF has no direct influence on response to REP 2139-Ca therapy.
Collapse
Affiliation(s)
- Hrvoje Mijočević
- Institute of Virology, Technische Universität München, Munich, Germany
| | - Hadi Karimzadeh
- Institute of Virology, Technische Universität München, Munich, Germany.,Department of Medicine II, University Hospital Munich-Grosshadern, Munich, Germany
| | - Judith Seebach
- Institute of Virology, Technische Universität München, Munich, Germany
| | - Zainab Usman
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Mamun Al-Mahtab
- Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | | | | |
Collapse
|
12
|
Virus entry and its inhibition to prevent and treat hepatitis B and hepatitis D virus infections. Curr Opin Virol 2018; 30:68-79. [DOI: 10.1016/j.coviro.2018.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
|