1
|
Roth P, Jeckelmann JM, Fender I, Ucurum Z, Lemmin T, Fotiadis D. Structure and mechanism of a phosphotransferase system glucose transporter. Nat Commun 2024; 15:7992. [PMID: 39266522 PMCID: PMC11393339 DOI: 10.1038/s41467-024-52100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024] Open
Abstract
Glucose is the primary source of energy for many organisms and is efficiently taken up by bacteria through a dedicated transport system that exhibits high specificity. In Escherichia coli, the glucose-specific transporter IICBGlc serves as the major glucose transporter and functions as a component of the phosphoenolpyruvate-dependent phosphotransferase system. Here, we report cryo-electron microscopy (cryo-EM) structures of the glucose-bound IICBGlc protein. The dimeric transporter embedded in lipid nanodiscs was captured in the occluded, inward- and occluded, outward-facing conformations. Together with biochemical and biophysical analyses, and molecular dynamics (MD) simulations, we provide insights into the molecular basis and dynamics for substrate recognition and binding, including the gates regulating the binding sites and their accessibility. By combination of these findings, we present a mechanism for glucose transport across the plasma membrane. Overall, this work provides molecular insights into the structure, dynamics, and mechanism of the IICBGlc transporter in a native-like lipid environment.
Collapse
Affiliation(s)
- Patrick Roth
- Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland
| | - Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland
| | - Inken Fender
- Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland
| | - Thomas Lemmin
- Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, Medical Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Raslan MA, Raslan SA, Shehata EM, Mahmoud AS, Lundstrom K, Barh D, Azevedo V, Sabri NA. Associations between Nutrigenomic Effects and Incidences of Microbial Resistance against Novel Antibiotics. Pharmaceuticals (Basel) 2023; 16:1093. [PMID: 37631008 PMCID: PMC10458141 DOI: 10.3390/ph16081093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Nutrigenomics is the study of the impact of diets or nutrients on gene expression and phenotypes using high-throughput technologies such as transcriptomics, proteomics, metabolomics, etc. The bioactive components of diets and nutrients, as an environmental factor, transmit information through altered gene expression and hence the overall function and traits of the organism. Dietary components and nutrients not only serve as a source of energy but also, through their interactions with genes, regulate gut microbiome composition, the production of metabolites, various biological processes, and finally, health and disease. Antimicrobial resistance in pathogenic and probiotic microorganisms has emerged as a major public health concern due to the presence of antimicrobial resistance genes in various food products. Recent evidence suggests a correlation between the regulation of genes and two-component and other signaling systems that drive antibiotic resistance in response to diets and nutrients. Therefore, diets and nutrients may be alternatively used to overcome antibiotic resistance against novel antibiotics. However, little progress has been made in this direction. In this review, we discuss the possible implementations of nutrigenomics in antibiotic resistance against novel antibiotics.
Collapse
Affiliation(s)
- Mohamed A. Raslan
- Drug Research Centre, Cairo P.O. Box 11799, Egypt or (M.A.R.); or (S.A.R.); (E.M.S.)
| | - Sara A. Raslan
- Drug Research Centre, Cairo P.O. Box 11799, Egypt or (M.A.R.); or (S.A.R.); (E.M.S.)
| | - Eslam M. Shehata
- Drug Research Centre, Cairo P.O. Box 11799, Egypt or (M.A.R.); or (S.A.R.); (E.M.S.)
| | - Amr S. Mahmoud
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, Cairo P.O. Box 11566, Egypt;
| | | | - Debmalya Barh
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.B.); (V.A.)
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (D.B.); (V.A.)
| | - Nagwa A. Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo P.O. Box 11566, Egypt
| |
Collapse
|
3
|
Xu T, Tao X, He H, Kempher ML, Zhang S, Liu X, Wang J, Wang D, Ning D, Pan C, Ge H, Zhang N, He YX, Zhou J. Functional and structural diversification of incomplete phosphotransferase system in cellulose-degrading clostridia. THE ISME JOURNAL 2023; 17:823-835. [PMID: 36899058 PMCID: PMC10203250 DOI: 10.1038/s41396-023-01392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 05/24/2023]
Abstract
Carbohydrate utilization is critical to microbial survival. The phosphotransferase system (PTS) is a well-documented microbial system with a prominent role in carbohydrate metabolism, which can transport carbohydrates through forming a phosphorylation cascade and regulate metabolism by protein phosphorylation or interactions in model strains. However, those PTS-mediated regulated mechanisms have been underexplored in non-model prokaryotes. Here, we performed massive genome mining for PTS components in nearly 15,000 prokaryotic genomes from 4,293 species and revealed a high prevalence of incomplete PTSs in prokaryotes with no association to microbial phylogeny. Among these incomplete PTS carriers, a group of lignocellulose degrading clostridia was identified to have lost PTS sugar transporters and carry a substitution of the conserved histidine residue in the core PTS component, HPr (histidine-phosphorylatable phosphocarrier). Ruminiclostridium cellulolyticum was then selected as a representative to interrogate the function of incomplete PTS components in carbohydrate metabolism. Inactivation of the HPr homolog reduced rather than increased carbohydrate utilization as previously indicated. In addition to regulating distinct transcriptional profiles, PTS associated CcpA (Catabolite Control Protein A) homologs diverged from previously described CcpA with varied metabolic relevance and distinct DNA binding motifs. Furthermore, the DNA binding of CcpA homologs is independent of HPr homolog, which is determined by structural changes at the interface of CcpA homologs, rather than in HPr homolog. These data concordantly support functional and structural diversification of PTS components in metabolic regulation and bring novel understanding of regulatory mechanisms of incomplete PTSs in cellulose-degrading clostridia.
Collapse
Affiliation(s)
- Tao Xu
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Xuanyu Tao
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Hongxi He
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Megan L Kempher
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaochun Liu
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Jun Wang
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Dongyu Wang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Daliang Ning
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Chongle Pan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
- School of computer science, University of Oklahoma, Norman, OK, USA
| | - Honghua Ge
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Nannan Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, PR China.
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China.
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jizhong Zhou
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
4
|
Wang Y, Wu Y, Niu H, Liu Y, Ma Y, Wang X, Li Z, Dong Q. Different cellular fatty acid pattern and gene expression of planktonic and biofilm state Listeria monocytogenes under nutritional stress. Food Res Int 2023; 167:112698. [PMID: 37087265 DOI: 10.1016/j.foodres.2023.112698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023]
Abstract
Listeria monocytogenes is a Gram-positive bacterium frequently involved in food-borne disease outbreaks and is widely distributed in the food-processing environment. This work aims to depict the impact of nutrition deficiency on the survival strategy of L. monocytogenes both in planktonic and biofilm states. In the present study, cell characteristics (autoaggression, hydrophobicity and motility), membrane fatty acid composition of MRL300083 (Lm83) in the forms of planktonic and biofilm-associated cells cultured in TSB-YE and 10-fold dilutions of TSB-YE (DTSB-YE) were investigated. Additionally, the relative expression of related genes were also determined by RT-qPCR. It was observed that cell growth in different bacterial life modes under nutritional stress rendered the cells a distinct phenotype. The higher autoaggression (AAG) and motility of the planktonic cells in DTSB-YE is associated with better biofilm formation. An increased proportion of unsaturated fatty acid/saturated fatty acid (USFA/SFA) indicates more fluidic biophysical properties for cell membranes of L. monocytogenes in planktonic and biofilm cells in DTSB-YE. Biofilm cells produced a higher percentage of USFA and straight fatty acids than the corresponding planktonic cells. An appropriate degree of membrane fluidity is crucial for survival, and alteration of membrane lipids is an essential adaptive response. The adaptation of bacteria to stress is a multifactorial cellular process, the expression of flagella-related genes fliG, fliP, flgE and the two-component chemotactic system cheA/Y genes of planktonic cells in DTSB-YE significantly increased compared to that in TSB-YE (p < 0.05). This study provides new information on the role of the physiological adaptation and gene expression of L. monocytogenes for planktonic and biofilm growth under nutritional stress.
Collapse
Affiliation(s)
- Yuan Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Food and Drugs, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China
| | - Youzhi Wu
- School of Food and Drugs, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China
| | - Hongmei Niu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
5
|
Ramamurthy T, Ghosh A, Chowdhury G, Mukhopadhyay AK, Dutta S, Miyoshi SI. Deciphering the genetic network and programmed regulation of antimicrobial resistance in bacterial pathogens. Front Cell Infect Microbiol 2022; 12:952491. [PMID: 36506027 PMCID: PMC9727169 DOI: 10.3389/fcimb.2022.952491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance (AMR) in bacteria is an important global health problem affecting humans, animals, and the environment. AMR is considered as one of the major components in the "global one health". Misuse/overuse of antibiotics in any one of the segments can impact the integrity of the others. In the presence of antibiotic selective pressure, bacteria tend to develop several defense mechanisms, which include structural changes of the bacterial outer membrane, enzymatic processes, gene upregulation, mutations, adaptive resistance, and biofilm formation. Several components of mobile genetic elements (MGEs) play an important role in the dissemination of AMR. Each one of these components has a specific function that lasts long, irrespective of any antibiotic pressure. Integrative and conjugative elements (ICEs), insertion sequence elements (ISs), and transposons carry the antimicrobial resistance genes (ARGs) on different genetic backbones. Successful transfer of ARGs depends on the class of plasmids, regulons, ISs proximity, and type of recombination systems. Additionally, phage-bacterial networks play a major role in the transmission of ARGs, especially in bacteria from the environment and foods of animal origin. Several other functional attributes of bacteria also get successfully modified to acquire ARGs. These include efflux pumps, toxin-antitoxin systems, regulatory small RNAs, guanosine pentaphosphate signaling, quorum sensing, two-component system, and clustered regularly interspaced short palindromic repeats (CRISPR) systems. The metabolic and virulence state of bacteria is also associated with a range of genetic and phenotypic resistance mechanisms. In spite of the availability of a considerable information on AMR, the network associations between selection pressures and several of the components mentioned above are poorly understood. Understanding how a pathogen resists and regulates the ARGs in response to antimicrobials can help in controlling the development of resistance. Here, we provide an overview of the importance of genetic network and regulation of AMR in bacterial pathogens.
Collapse
Affiliation(s)
- Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India,*Correspondence: Thandavarayan Ramamurthy,
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-inchi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR- National Institute of Cholera and Enteric Diseases, Kolkata, India,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Molecular Characteristics and Quantitative Proteomic Analysis of Klebsiella pneumoniae Strains with Carbapenem and Colistin Resistance. Antibiotics (Basel) 2022; 11:antibiotics11101341. [PMID: 36289999 PMCID: PMC9598126 DOI: 10.3390/antibiotics11101341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 12/05/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) are usually multidrug resistant (MDR) and cause serious therapeutic problems. Colistin is a critical last-resort therapeutic option for MDR bacterial infections. However, increasing colistin use has led to the emergence of extensively drug-resistant (XDR) strains, raising a significant challenge for healthcare. In order to gain insight into the antibiotic resistance mechanisms of CRKP and identify potential drug targets, we compared the molecular characteristics and the proteomes among drug-sensitive (DS), MDR, and XDR K. pneumoniae strains. All drug-resistant isolates belonged to ST11, harboring blaKPC and hypervirulent genes. None of the plasmid-encoded mcr genes were detected in the colistin-resistant XDR strains. Through a tandem mass tag (TMT)-labeled proteomic technique, a total of 3531 proteins were identified in the current study. Compared to the DS strains, there were 247 differentially expressed proteins (DEPs) in the MDR strains and 346 DEPs in the XDR strains, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that a majority of the DEPs were involved in various metabolic pathways, which were beneficial to the evolution of drug resistance in K. pneumoniae. In addition, a total of 67 DEPs were identified between the MDR and XDR strains. KEGG enrichment and protein-protein interaction network analysis showed their participation in cationic antimicrobial peptide resistance and two-component systems. In conclusion, our results highlight the emergence of colistin-resistant and hypervirulent CRKP, which is a noticeable superbug. The DEPs identified in our study are of great significance for the exploration of effective control strategies against infections of CRKP.
Collapse
|
7
|
Liu X, Pang X, Wu Y, Wu Y, Shi Y, Zhang X, Chen Q. Synergistic Antibacterial Mechanism of Mannosylerythritol Lipid-A and Lactic Acid on Listeria monocytogenes Based on Transcriptomic Analysis. Foods 2022; 11:foods11172660. [PMID: 36076848 PMCID: PMC9455235 DOI: 10.3390/foods11172660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
Mannosylerythritol lipids-A (MEL-A) is a novel biosurfactant with multiple biological effects. The synergistic antibacterial activity and mechanism of MEL-A and lactic acid (LA) against Listeria monocytogenes were investigated. The synergistic effect resulted in a significant increase in the antibacterial rate compared to LA treatment alone. Genome-wide transcriptomic analysis was applied to deeply investigate the synergistic antibacterial mechanism. Gene Ontology (GO) enrichment analysis showed that the synergy between MEL-A and LA affected many potential cellular responses, including the sugar phosphotransferase system, carbohydrate transport, and ribosomes. KEGG enrichment analysis showed that the PTS system and ribosome-related pathways were significantly enriched. In addition, synergistic treatment affected locomotion and membrane-related cellular responses in GO enrichment analysis and carbohydrate metabolism and amino acid metabolism pathways in KEGG enrichment analysis compared to LA treatment alone. The accuracy of the transcriptome analysis results was verified by qPCR (R2 = 0.9903). This study will provide new insights for the prevention and control of L. monocytogenes.
Collapse
Affiliation(s)
- Xiayu Liu
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Xinxin Pang
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Yansha Wu
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Yajing Wu
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
| | - Xinglin Zhang
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
- College of Agriculture and Forestry, Linyi University, Linyi 276005, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Yuhangtang Rd. 866, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-86984316
| |
Collapse
|
8
|
Chan J, Geng D, Pan B, Zhang Q, Xu Q. Gut Microbial Divergence Between Three Hadal Amphipod Species from the Isolated Hadal Trenches. MICROBIAL ECOLOGY 2022; 84:627-637. [PMID: 34545412 DOI: 10.1007/s00248-021-01851-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Amphipods are the dominant scavenging metazoan species in the hadal trenches at water depths below 6,000 m. The gut microbiota have been considered to be contribution to the adaptation of deep-sea organisms; however, few comparative analyses of animal gut microbiota between different isolated hadal environments have been done so far. Here, we employed high-throughput 16S rRNA sequencing to compare the gut microbial taxonomic composition and functional potential diversity of three hadal amphipod species, Hirondellea gigas, Bathycallisoma schellenbergi, and Alicella gigantea, collected from the Mariana Trench, Marceau Trench, and New Britain Trench in the Pacific Ocean, respectively. Results showed that different community compositions were detected across all the amphipod specimens based on the analyses of alpha-diversity, hierarchical cluster tree, and PCoA (principal coordinate analysis). Moreover, almost no correlation was observed between genera overrepresented in different amphipods by microbe-microbe correlations analysis, which suggested that the colonization of symbionts were host-specific. At genus level, Psychromonas was dominant in H. gigas, and Candidatus Hepatoplasma was overall dominant in A. gigantea and B. schellenbergi. Comparison of the functional potential showed that, though three hadal amphipod species shared the same predominant functional pathways, the abundances of those most shared pathways showed distinct differences across all the specimens. These findings pointed to the enrichment of particular functional pathways in the gut microbiota of the different isolated trench amphipods. Moreover, in terms of species relative abundance, alpha-diversity and beta-diversity, there was high similarity of gut microbiota between the two A. gigantea populations, which dwelled in two different localities of the same hadal trench. Altogether, this study provides an initial investigation into the gut-microbial interactions and evolution at the hadal depths within amphipod. Each of these three amphipod species would be a model taxa for future studies investigating the influence habitat difference and geography on gut-microbial communities.
Collapse
Affiliation(s)
- Jiulin Chan
- Shanghai Engineering Research Center of Hadal Science & Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China
| | - Daoqiang Geng
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China
| | - Binbin Pan
- Shanghai Engineering Research Center of Hadal Science & Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China
| | - Qiming Zhang
- Shanghai Rainbowfish Ocean Technology Co., Ltd., Lingang New City, Shanghai, 201306, People's Republic of China
| | - Qianghua Xu
- Shanghai Engineering Research Center of Hadal Science & Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New City, Shanghai, 201306, People's Republic of China.
- National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
9
|
Antimicrobial tolerance and its role in the development of resistance: Lessons from enterococci. Adv Microb Physiol 2022; 81:25-65. [PMID: 36167442 DOI: 10.1016/bs.ampbs.2022.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacteria have developed resistance against every antimicrobial in clinical use at an alarming rate. There is a critical need for more effective use of antimicrobials to both extend their shelf life and prevent resistance from arising. Significantly, antimicrobial tolerance, i.e., the ability to survive but not proliferate during antimicrobial exposure, has been shown to precede the development of bona fide antimicrobial resistance (AMR), sparking a renewed and rapidly increasing interest in this field. As a consequence, problematic infections for the first time are now being investigated for antimicrobial tolerance, with increasing reports demonstrating in-host evolution of antimicrobial tolerance. Tolerance has been identified in a wide array of bacterial species to all bactericidal antimicrobials. Of particular interest are enterococci, which contain the opportunistic bacterial pathogens Enterococcus faecalis and Enterococcus faecium. Enterococci are one of the leading causes of hospital-acquired infection and possess intrinsic tolerance to a number of antimicrobial classes. Persistence of these infections in the clinic is of growing concern, particularly for the immunocompromised. Here, we review current known mechanisms of antimicrobial tolerance, and include an in-depth analysis of those identified in enterococci with implications for both the development and prevention of AMR.
Collapse
|
10
|
Chen Q, Li Q, Guo A, Liu L, Gu L, Liu W, Zhang X, Ruan Y. Transcriptome analysis of suspended aggregates formed by Listeria monocytogenes co-cultured with Ralstonia insidiosa. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Chan J, Geng D, Pan B, Zhang Q, Xu Q. Metagenomic Insights Into the Structure and Function of Intestinal Microbiota of the Hadal Amphipods. Front Microbiol 2021; 12:668989. [PMID: 34163447 PMCID: PMC8216301 DOI: 10.3389/fmicb.2021.668989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Hadal trenches are the deepest known areas of the ocean. Amphipods are considered to be the dominant scavengers in the hadal food webs. The studies on the structure and function of the hadal intestinal microbiotas are largely lacking. Here, the intestinal microbiotas of three hadal amphipods, Hirondellea gigas, Scopelocheirus schellenbergi, and Alicella gigantea, from Mariana Trench, Marceau Trench, and New Britain Trench, respectively, were investigated. The taxonomic analysis identified 358 microbial genera commonly shared within the three amphipods. Different amphipod species possessed their own characteristic dominant microbial component, Psychromonas in H. gigas and Candidatus Hepatoplasma in A. gigantea and S. schellenbergi. Functional composition analysis showed that “Carbohydrate Metabolism,” “Lipid Metabolism,” “Cell Motility,” “Replication and Repair,” and “Membrane Transport” were among the most represented Gene Ontology (GO) Categories in the gut microbiotas. To test the possible functions of “Bacterial Chemotaxis” within the “Cell Motility” category, the methyl-accepting chemotaxis protein (MCP) gene involved in the “Bacterial Chemotaxis” pathway was obtained and used for swarming motility assays. Results showed that bacteria transformed with the gut bacterial MCP gene showed significantly faster growths compared with the control group, suggesting MCP promoted the bacterial swimming capability and nutrient utilization ability. This result suggested that hadal gut microbes could promote their survival in poor nutrient conditions by enhancing chemotaxis and motility. In addition, large quantities of probiotic genera were detected in the hadal amphipod gut microbiotas, which indicated that those probiotics would be possible contributors for promoting the host’s growth and development, which could facilitate adaptation of hadal amphipods to the extreme environment.
Collapse
Affiliation(s)
- Jiulin Chan
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Daoqiang Geng
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Binbin Pan
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Qiming Zhang
- Shanghai Rainbowfish Ocean Technology Co., Ltd, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
12
|
Tan S, Hua X, Xue Z, Ma J. Cajanin Stilbene Acid Inhibited Vancomycin-Resistant Enterococcus by Inhibiting Phosphotransferase System. Front Pharmacol 2020; 11:473. [PMID: 32372958 PMCID: PMC7179074 DOI: 10.3389/fphar.2020.00473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/26/2020] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance has become a serious threat to human and animal health, and vancomycin-resistant Enterococcus has become an important nosocomial infection pathogen, causing thousands of deaths each year. In this study, after screening a variety of natural products, we found that cajanin stilbene acid (CSA) had significant inhibitory effect on sensitive and vancomycin-resistant Enterococcus (VRE) in vitro. And we also confirmed that CSA had significant anti-VRE infection ability in vivo. Subsequently, we studied the antibacterial mechanism of CSA through proteomics experiments, and the results showed that CSA killed Enterococcus by inhibiting the phosphotransferase system of Enterococcus, thus hinders the normal growth and metabolic functions of bacteria. The results of this study provided evidence for the in-depth study on the mechanism of the antibacterial action of CSA and also provided a candidate for the development of anti-VRE drugs.
Collapse
Affiliation(s)
- Shengnan Tan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.,College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.,College of Life Science, Northeast Forestry University, Harbin, China
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.,College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.,College of Life Science, Northeast Forestry University, Harbin, China
| | - Jianzhang Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
13
|
Adaptation to Adversity: the Intermingling of Stress Tolerance and Pathogenesis in Enterococci. Microbiol Mol Biol Rev 2019; 83:83/3/e00008-19. [PMID: 31315902 DOI: 10.1128/mmbr.00008-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Enterococcus is a diverse and rugged genus colonizing the gastrointestinal tract of humans and numerous hosts across the animal kingdom. Enterococci are also a leading cause of multidrug-resistant hospital-acquired infections. In each of these settings, enterococci must contend with changing biophysical landscapes and innate immune responses in order to successfully colonize and transit between hosts. Therefore, it appears that the intrinsic durability that evolved to make enterococci optimally competitive in the host gastrointestinal tract also ideally positioned them to persist in hospitals, despite disinfection protocols, and acquire new antibiotic resistances from other microbes. Here, we discuss the molecular mechanisms and regulation employed by enterococci to tolerate diverse stressors and highlight the role of stress tolerance in the biology of this medically relevant genus.
Collapse
|
14
|
Enterococcus faecalis Gluconate Phosphotransferase System Accelerates Experimental Colitis and Bacterial Killing by Macrophages. Infect Immun 2019; 87:IAI.00080-19. [PMID: 31036600 DOI: 10.1128/iai.00080-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/21/2019] [Indexed: 02/07/2023] Open
Abstract
Enterococcus faecalis strains are resident intestinal bacteria associated with invasive infections, inflammatory bowel diseases, and colon cancer. Although factors promoting E. faecalis colonization of intestines are not fully known, one implicated pathway is a phosphotransferase system (PTS) in E. faecalis strain OG1RF that phosphorylates gluconate and contains the genes OG1RF_12399 to OG1RF_12402 (OG1RF_12399-12402). We hypothesize that this PTS permits growth in gluconate, facilitates E. faecalis intestinal colonization, and exacerbates colitis. We generated E. faecalis strains containing deletions/point mutations in this PTS and measured bacterial growth and PTS gene expression in minimal medium supplemented with selected carbohydrates. We show that E. faecalis upregulates OG1RF_12399 transcription specifically in the presence of gluconate and that E. faecalis strains lacking, or harboring a single point mutation in, OG1RF_12399-12402 are unable to grow in minimal medium containing gluconate. We colonized germfree wild-type and colitis-prone interleukin-10-deficient mice with defined bacterial consortia containing the E. faecalis strains and measured inflammation and bacterial abundance in the colon. We infected macrophage and intestinal epithelial cell lines with the E. faecalis strains and measured intracellular bacterial survival and proinflammatory cytokine secretion. The presence of OG1RF_12399-12402 is not required for E. faecalis colonization of the mouse intestine but is associated with an accelerated onset of experimental colitis in interleukin-10-deficient mice, altered bacterial composition in the colon, enhanced E. faecalis survival within macrophages, and increased proinflammatory cytokine secretion by colon tissue and macrophages. Further studies of bacterial carbohydrate metabolism in general, and E. faecalis PTS-gluconate in particular, during inflammation may identify new mechanisms of disease pathogenesis.
Collapse
|
15
|
Tierney AR, Rather PN. Roles of two-component regulatory systems in antibiotic resistance. Future Microbiol 2019; 14:533-552. [PMID: 31066586 DOI: 10.2217/fmb-2019-0002] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Two-component regulatory systems (TCSs) are a major mechanism by which bacteria sense and respond to changes in their environment. TCSs typically consist of two proteins that bring about major regulation of the cell genome through coordinated action mediated by phosphorylation. Environmental conditions that activate TCSs are numerous and diverse and include exposure to antibiotics as well as conditions inside a host. The resulting regulatory action often involves activation of antibiotic defenses and changes to cell physiology that increase antibiotic resistance. Examples of resistance mechanisms enacted by TCSs contained in this review span those found in both Gram-negative and Gram-positive species and include cell surface modifications, changes in cell permeability, increased biofilm formation, and upregulation of antibiotic-degrading enzymes.
Collapse
Affiliation(s)
- Aimee Rp Tierney
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Philip N Rather
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA.,Research Service, Department of Veterans' Affairs, Atlanta VA Health Care System, Decatur, GA, 30033 USA
| |
Collapse
|
16
|
Suo Y, Gao S, Baranzoni GM, Xie Y, Liu Y. Comparative transcriptome RNA-Seq analysis of Listeria monocytogenes with sodium lactate adaptation. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Convergence of PASTA Kinase and Two-Component Signaling in Response to Cell Wall Stress in Enterococcus faecalis. J Bacteriol 2018; 200:JB.00086-18. [PMID: 29632091 DOI: 10.1128/jb.00086-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Two common signal transduction mechanisms used by bacteria to sense and respond to changing environments are two-component systems (TCSs) and eukaryote-like Ser/Thr kinases and phosphatases (eSTK/Ps). Enterococcus faecalis is a Gram-positive bacterium and a serious opportunistic pathogen that relies on both a TCS and an eSTK/P pathway for intrinsic resistance to cell wall-targeting antibiotics. The TCS consists of a histidine kinase (CroS) and a response regulator (CroR) that become activated upon exposure of cells to cell wall-targeting antibiotics, leading to a modulation of gene expression. The eSTK/P pathway consists of a transmembrane kinase (IreK) and its cognate phosphatase (IreP), which act antagonistically to mediate antibiotic resistance through an unknown mechanism. Because both CroS/R and IreK/P contribute to enterococcal resistance toward cell wall-targeting antibiotics, we hypothesized that these signaling systems are intertwined. To test this hypothesis, we analyzed CroR phosphorylation and CroS/R-dependent gene expression to probe the influence of IreK and IreP on CroS/R signaling. In addition, we analyzed the phosphorylation state of CroS, which revealed the IreK-dependent phosphorylation of a Thr residue important for CroS function. Our results are consistent with a model in which IreK positively influences CroR-dependent gene expression through the phosphorylation of CroS to promote antimicrobial resistance in E. faecalis IMPORTANCE Two-component signaling systems (TCSs) and eukaryote-like Ser/Thr kinases (eSTKs) are used by bacteria to sense and adapt to changing environments. Understanding how these pathways are regulated to promote bacterial survival is critical for a more complete understanding of bacterial stress responses and physiology. The opportunistic pathogen Enterococcus faecalis relies on both a TCS (CroS/R) and an eSTK (IreK) for intrinsic resistance to cell wall-targeting antibiotics. We probed the relationship between CroS/R and IreK, revealing the convergence of IreK and the sensor kinase CroS to enhance signaling through CroS/R and increase antimicrobial resistance in E. faecalis This newly described example of eSTK/TCS convergence adds to our understanding of the signaling networks mediating antimicrobial resistance in E. faecalis.
Collapse
|
18
|
Banla IL, Kommineni S, Hayward M, Rodrigues M, Palmer KL, Salzman NH, Kristich CJ. Modulators of Enterococcus faecalis Cell Envelope Integrity and Antimicrobial Resistance Influence Stable Colonization of the Mammalian Gastrointestinal Tract. Infect Immun 2018; 86:e00381-17. [PMID: 29038125 PMCID: PMC5736811 DOI: 10.1128/iai.00381-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
The Gram-positive bacterium Enterococcus faecalis is both a colonizer of the gastrointestinal tract (GIT) and an agent of serious nosocomial infections. Although it is typically required for pathogenesis, GIT colonization by E. faecalis is poorly understood. E. faecalis tolerates high concentrations of GIT antimicrobials, like cholate and lysozyme, leading us to hypothesize that resistance to intestinal antimicrobials is essential for long-term GIT colonization. Analyses of E. faecalis mutants exhibiting defects in antimicrobial resistance revealed that IreK, a determinant of envelope integrity and antimicrobial resistance, is required for long-term GIT colonization. IreK is a member of the PASTA kinase protein family, bacterial transmembrane signaling proteins implicated in the regulation of cell wall homeostasis. Among several determinants of cholate and lysozyme resistance in E. faecalis, IreK was the only one found to be required for intestinal colonization, emphasizing the importance of this protein to enterococcal adaptation to the GIT. By studying ΔireK suppressor mutants that recovered the ability to colonize the GIT, we identified two conserved enterococcal proteins (OG1RF_11271 and OG1RF_11272) that function antagonistically to IreK and interfere with cell envelope integrity, antimicrobial resistance, and GIT colonization. Our data suggest that IreK, through its kinase activity, inhibits the actions of these proteins. IreK, OG1RF_11271, and OG1RF_11272 are found in all enterococci, suggesting that their effect on GIT colonization is universal across enterococci. Thus, we have defined conserved genes in the enterococcal core genome that influence GIT colonization through their effect on enterococcal envelope integrity and antimicrobial resistance.
Collapse
Affiliation(s)
- Ismael L Banla
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sushma Kommineni
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael Hayward
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Marinelle Rodrigues
- Department of Biological Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| | - Nita H Salzman
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
19
|
Muller C, Massier S, Le Breton Y, Rincé A. The role of the CroR response regulator in resistance of Enterococcus faecalis to D-cycloserine is defined using an inducible receiver domain. Mol Microbiol 2017; 107:416-427. [PMID: 29205552 DOI: 10.1111/mmi.13891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 11/28/2022]
Abstract
Enterococcus faecalis is an opportunistic multidrug-resistant human pathogen causing severe nosocomial infections. Previous investigations revealed that the CroRS two-component regulatory pathway likely displays a pleiotropic role in E. faecalis, involved in virulence, macrophage survival, oxidative stress response as well as antibiotic resistance. Therefore, CroRS represents an attractive potential new target for antibiotherapy. In this report, we further explored CroRS cellular functions by characterizing the CroR regulon: the 'domain swapping' method was applied and a CroR chimera protein was generated by fusing the receiver domain from NisR to the output domain from CroR. After demonstrating that the chimera CroR complements a croR gene deletion in E. faecalis (stress response, virulence), we conducted a global gene expression analysis using RNA-Seq and identified 50 potential CroR targets involved in multiple cellular functions such as cell envelope homeostasis, substrate transport, cell metabolism, gene expression regulation, stress response, virulence and antibiotic resistance. For validation, CroR direct binding to several candidate targets was demonstrated by EMSA. Further, this work identified alr, the gene encoding the alanine racemase enzyme involved in E. faecalis resistance to D-cycloserine, a promising antimicrobial drug to treat enterococcal infections, as a member of the CroR regulon.
Collapse
Affiliation(s)
- Cécile Muller
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| | - Sébastien Massier
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| | - Yoann Le Breton
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| | - Alain Rincé
- Normandie Univ, UNICAEN, U2RM - Unité de Recherche Risques Microbiens, Caen, France
| |
Collapse
|
20
|
Djorić D, Kristich CJ. Extracellular SalB Contributes to Intrinsic Cephalosporin Resistance and Cell Envelope Integrity in Enterococcus faecalis. J Bacteriol 2017; 199:e00392-17. [PMID: 28874409 PMCID: PMC5686589 DOI: 10.1128/jb.00392-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/30/2017] [Indexed: 11/20/2022] Open
Abstract
Enterococci are major causes of hospital-acquired infections. Intrinsic resistance to cephalosporins is a universal trait among clinically relevant enterococci. Cephalosporin resistance enables enterococci to proliferate to high densities in the intestines of patients undergoing cephalosporin treatment, a precursor to the emergence of infection. However, the genetic and biochemical mechanisms of intrinsic cephalosporin resistance in enterococci are not well understood. A two-component signal transduction system, CroR/S, is required for cephalosporin resistance in enterococci. Although the CroR/S regulon is not well defined, one gene reported to be CroR dependent in Enterococcus faecalis JH2-2 encodes an extracellular putative peptidoglycan hydrolase, SalB. To test the hypothesis that SalB is responsible for CroR-dependent cephalosporin resistance, we examined ΔsalB mutants in multiple genetic lineages of E. faecalis, revealing that SalB is required not only for intrinsic cephalosporin resistance but also for maintenance of cell envelope integrity in the absence of antibiotic stress. The N-terminal signal sequence is necessary for SalB secretion, and secretion is required for SalB to promote cephalosporin resistance. Functional dissection revealed that the C-terminal SCP domain of SalB is essential for biological activity and identified three residues within the SCP domain that are required for the stability and function of SalB. Additionally, we found that in contrast to what is seen in E. faecalis JH2-2, SalB is not regulated by the CroR/S two-component system in E. faecalis OG1, suggesting diversity in the CroR/S regulon among distinct lineages of E. faecalis IMPORTANCE Resistance to cephalosporins is universal among clinically relevant enterococci, enabling enterococcal proliferation to high densities in the intestines of patients undergoing cephalosporin treatment, a precursor to the emergence of infection. Disabling cephalosporin resistance could therefore reduce the incidence of enterococcal infections. However, the genetic and biochemical mechanisms of cephalosporin resistance are not well understood. The significance of this work is the identification of a novel extracellular factor (SalB) that promotes cephalosporin resistance in E. faecalis, which could potentially serve as a target for therapeutics that impair enterococcal cephalosporin resistance. Additionally, our work highlights the importance of the C-terminal SCP domain of SalB, including several conserved residues within the SCP domain, for the ability of SalB to promote cephalosporin resistance.
Collapse
Affiliation(s)
- Dušanka Djorić
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
21
|
Glucose-Specific Enzyme IIA of the Phosphoenolpyruvate:Carbohydrate Phosphotransferase System Modulates Chitin Signaling Pathways in Vibrio cholerae. J Bacteriol 2017; 199:JB.00127-17. [PMID: 28461445 DOI: 10.1128/jb.00127-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022] Open
Abstract
In Vibrio cholerae, the genes required for chitin utilization and natural competence are governed by the chitin-responsive two-component system (TCS) sensor kinase ChiS. In the classical TCS paradigm, a sensor kinase specifically phosphorylates a cognate response regulator to activate gene expression. However, our previous genetic study suggested that ChiS stimulates the non-TCS transcriptional regulator TfoS by using mechanisms distinct from classical phosphorylation reactions (S. Yamamoto, J. Mitobe, T. Ishikawa, S. N. Wai, M. Ohnishi, H. Watanabe, and H. Izumiya, Mol Microbiol 91:326-347, 2014, https://doi.org/10.1111/mmi.12462). TfoS specifically activates the transcription of tfoR, encoding a small regulatory RNA essential for competence gene expression. Whether ChiS and TfoS interact directly remains unknown. To determine if other factors mediate the communication between ChiS and TfoS, we isolated transposon mutants that turned off tfoR::lacZ expression but possessed intact chiS and tfoS genes. We demonstrated an unexpected association of chitin-induced signaling pathways with the glucose-specific enzyme IIA (EIIAglc) of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) for carbohydrate uptake and catabolite control of gene expression. Genetic and physiological analyses revealed that dephosphorylated EIIAglc inactivated natural competence and tfoR transcription. Chitin-induced expression of the chb operon, which is required for chitin transport and catabolism, was also repressed by dephosphorylated EIIAglc Furthermore, the regulation of tfoR and chb expression by EIIAglc was dependent on ChiS and intracellular levels of ChiS were not affected by disruption of the gene encoding EIIAglc These results define a previously unknown connection between the PTS and chitin signaling pathways in V. cholerae and suggest a strategy whereby this bacterium can physiologically adapt to the existing nutrient status.IMPORTANCE The EIIAglc protein of the PTS coordinates a wide variety of physiological functions with carbon availability. In this report, we describe an unexpected association of chitin-activated signaling pathways in V. cholerae with EIIAglc The signaling pathways are governed by the chitin-responsive TCS sensor kinase ChiS and lead to the induction of chitin utilization and natural competence. We show that dephosphorylated EIIAglc inhibits both signaling pathways in a ChiS-dependent manner. This inhibition is different from classical catabolite repression that is caused by lowered levels of cyclic AMP. This work represents a newly identified connection between the PTS and chitin signaling pathways in V. cholerae and suggests a strategy whereby this bacterium can physiologically adapt to the existing nutrient status.
Collapse
|
22
|
Hall CL, Lytle BL, Jensen D, Hoff JS, Peterson FC, Volkman BF, Kristich CJ. Structure and Dimerization of IreB, a Negative Regulator of Cephalosporin Resistance in Enterococcus faecalis. J Mol Biol 2017; 429:2324-2336. [PMID: 28551334 DOI: 10.1016/j.jmb.2017.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/05/2017] [Accepted: 05/18/2017] [Indexed: 11/30/2022]
Abstract
Enterococcus faecalis, a leading cause of hospital-acquired infections, exhibits intrinsic resistance to most cephalosporins, which are antibiotics in the beta-lactam family that target cell-wall biosynthesis. A comprehensive understanding of the underlying genetic and biochemical mechanisms of cephalosporin resistance in E. faecalis is lacking. We previously determined that a transmembrane serine/threonine kinase (IreK) and its cognate phosphatase (IreP) reciprocally regulate cephalosporin resistance in E. faecalis, dependent on the kinase activity of IreK. Other than IreK itself, thus far the only known substrate for reversible phosphorylation by IreK and IreP is IreB, a small protein of unknown function that is well conserved in low-GC Gram-positive bacteria. We previously showed that IreB acts as a negative regulator of cephalosporin resistance in E. faecalis. However, the biochemical mechanism by which IreB modulates cephalosporin resistance remains unknown. As a next step toward an understanding of the mechanism by which IreB regulates resistance, we initiated a structure-function study on IreB. The NMR solution structure of IreB was determined, revealing that IreB adopts a unique fold and forms a dimer in vitro. Dimerization of IreB was confirmed in vivo. Substitutions at the dimer interface impaired IreB function and stability in vivo, indicating that dimerization is functionally important for the biological activity of IreB. Hence, these studies provide new insights into the structure and function of a widely conserved protein of unknown function that is an important regulator of antimicrobial resistance in E. faecalis.
Collapse
Affiliation(s)
- Cherisse L Hall
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Betsy L Lytle
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Davin Jensen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jessica S Hoff
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
23
|
Requirement of the CroRS Two-Component System for Resistance to Cell Wall-Targeting Antimicrobials in Enterococcus faecium. Antimicrob Agents Chemother 2017; 61:AAC.02461-16. [PMID: 28223383 DOI: 10.1128/aac.02461-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/13/2017] [Indexed: 11/20/2022] Open
Abstract
Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis, exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci.
Collapse
|
24
|
Functional Dissection of the CroRS Two-Component System Required for Resistance to Cell Wall Stressors in Enterococcus faecalis. J Bacteriol 2016; 198:1326-36. [PMID: 26883822 DOI: 10.1128/jb.00995-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/05/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacteria use two-component signal transduction systems (TCSs) to sense and respond to environmental changes via a conserved phosphorelay between a sensor histidine kinase and its cognate response regulator. The opportunistic pathogen Enterococcus faecalis utilizes a TCS comprised of the histidine kinase CroS and the response regulator CroR to mediate resistance to cell wall stresses such as cephalosporin antibiotics, but the molecular details by which CroRS promotes cephalosporin resistance have not been elucidated. Here, we analyzed mutants of E. faecalis carrying substitutions in CroR and CroS to demonstrate that phosphorylated CroR drives resistance to cephalosporins, and that CroS exhibits kinase and phosphatase activities to control the level of CroR phosphorylation in vivo. Deletion of croS in various lineages of E. faecalis revealed a CroS-independent mechanism for CroR phosphorylation and led to the identification of a noncognate histidine kinase capable of influencing CroR (encoded by OG1RF_12162; here called cisS). Further analysis of this TCS network revealed that both systems respond to cell wall stress. IMPORTANCE TCSs allow bacteria to sense and respond to many different environmental conditions. The opportunistic pathogen Enterococcus faecalis utilizes the CroRS TCS to mediate resistance to cell wall stresses, including clinically relevant antibiotics such as cephalosporins and glycopeptides. In this study, we use genetic and biochemical means to investigate the relationship between CroRS signaling and cephalosporin resistance in E. faecalis cells. Through this, we uncovered a signaling network formed between the CroRS TCS and a previously uncharacterized TCS that also responds to cell wall stress. This study provides mechanistic insights into CroRS signaling and cephalosporin resistance in E. faecalis.
Collapse
|
25
|
Mutation landscape of acquired cross-resistance to glycopeptide and β-lactam antibiotics in Enterococcus faecium. Antimicrob Agents Chemother 2015; 59:5306-15. [PMID: 26077262 DOI: 10.1128/aac.00634-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/10/2015] [Indexed: 02/03/2023] Open
Abstract
Bypass of the d,d-transpeptidase activity of penicillin-binding proteins by an l,d-transpeptidase (Ldtfm) results in resistance to ampicillin and glycopeptides in Enterococcus faecium M9, a mutant obtained by nine consecutive selection steps. Resistance requires activation of a cryptic locus for production of the essential tetrapeptide-containing substrate of Ldtfm and impaired activity of protein phosphatase StpA. Here, whole-genome sequencing revealed a high mutation rate for the entire selection procedure (79 mutations in 900 generations). Acquisition of a mutation in the mismatch repair gene mutL had little impact on the frequency of rifampin-resistant mutants although the mutation spectrum of M9 was typical of impaired MutL with high transversion to transition (40/11) and substitution to deletion (51/28) ratios. M9 did not mainly accumulate neutral mutations since base substitutions occurred more frequently in coding sequences than expected (χ(2) = 5.0; P < 0.05) and silent mutations were underrepresented (χ(2) = 5.72; P < 0.02). None of the mutations directly affected recognition of the tetrapeptide substrate of Ldtfm by peptidoglycan synthesis enzymes. Instead, mutations appear to remodel regulatory circuits involving two-component regulatory systems and sugar metabolism. The high number of mutations required for activation of the l,d-transpeptidase pathway may strongly limit emergence of cross-resistance to ampicillin and glycopeptides by this mechanism.
Collapse
|
26
|
The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 2015; 78:231-56. [PMID: 24847021 DOI: 10.1128/mmbr.00001-14] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) carries out both catalytic and regulatory functions. It catalyzes the transport and phosphorylation of a variety of sugars and sugar derivatives but also carries out numerous regulatory functions related to carbon, nitrogen, and phosphate metabolism, to chemotaxis, to potassium transport, and to the virulence of certain pathogens. For these different regulatory processes, the signal is provided by the phosphorylation state of the PTS components, which varies according to the availability of PTS substrates and the metabolic state of the cell. PEP acts as phosphoryl donor for enzyme I (EI), which, together with HPr and one of several EIIA and EIIB pairs, forms a phosphorylation cascade which allows phosphorylation of the cognate carbohydrate bound to the membrane-spanning EIIC. HPr of firmicutes and numerous proteobacteria is also phosphorylated in an ATP-dependent reaction catalyzed by the bifunctional HPr kinase/phosphorylase. PTS-mediated regulatory mechanisms are based either on direct phosphorylation of the target protein or on phosphorylation-dependent interactions. For regulation by PTS-mediated phosphorylation, the target proteins either acquired a PTS domain by fusing it to their N or C termini or integrated a specific, conserved PTS regulation domain (PRD) or, alternatively, developed their own specific sites for PTS-mediated phosphorylation. Protein-protein interactions can occur with either phosphorylated or unphosphorylated PTS components and can either stimulate or inhibit the function of the target proteins. This large variety of signal transduction mechanisms allows the PTS to regulate numerous proteins and to form a vast regulatory network responding to the phosphorylation state of various PTS components.
Collapse
|
27
|
Oxidative stress enhances cephalosporin resistance of Enterococcus faecalis through activation of a two-component signaling system. Antimicrob Agents Chemother 2014; 59:159-69. [PMID: 25331701 DOI: 10.1128/aac.03984-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis is a low-GC Gram-positive bacterium, a normal resident of the gastrointestinal (GI) tract, and an important hospital-acquired pathogen. An important risk factor for hospital-acquired enterococcal infections is prior therapy with broad-spectrum cephalosporins, antibiotics that impair cell wall biosynthesis by inhibiting peptidoglycan cross-linking. Enterococci are intrinsically resistant to cephalosporins; however, environmental factors that modulate cephalosporin resistance have not been described. While searching for the genetic determinants of cephalosporin resistance in E. faecalis, we unexpectedly discovered that oxidative stress, whether from external sources or derived from endogenous metabolism, drives enhanced intrinsic resistance to cephalosporins. A particular source of oxidative stress, H2O2, activates signaling through the CroR-CroS two-component signaling system, a known determinant of cephalosporin resistance in E. faecalis. We find that CroR-CroS is required for adaptation to H2O2 stress and that H2O2 potentiates the activities of cephalosporins against E. faecalis when the CroR-CroS signaling system is nonfunctional. Rather than directly detecting H2O2, our data suggest that the CroR-CroS system responds to cell envelope damage caused by H2O2 exposure in order to promote cell envelope repair and enhanced cephalosporin resistance.
Collapse
|
28
|
Serine/threonine protein phosphatase-mediated control of the peptidoglycan cross-linking L,D-transpeptidase pathway in Enterococcus faecium. mBio 2014; 5:e01446-14. [PMID: 25006233 PMCID: PMC4161250 DOI: 10.1128/mbio.01446-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The last step of peptidoglycan polymerization involves two families of unrelated transpeptidases that are the essential targets of β-lactam antibiotics. d,d-transpeptidases of the penicillin-binding protein (PBP) family are active-site serine enzymes that use pentapeptide precursors and are the main or exclusive cross-linking enzymes in nearly all bacteria. However, peptidoglycan cross-linking is performed mainly by active-site cysteine l,d-transpeptidases that use tetrapeptides in Mycobacterium tuberculosis, Clostridium difficile, and β-lactam-resistant mutants of Enterococcus faecium. We have investigated reprogramming of the E. faecium peptidoglycan assembly pathway by a switch from pentapeptide to tetrapeptide precursors and bypass of PBPs by l,d-transpeptidase Ldtfm. Mutational alterations of two signal transduction systems were necessary and sufficient for activation of the l,d-transpeptidation pathway, which is essentially cryptic in wild-type strains. The first one is a classical two-component regulatory system, DdcRS, that controls the activity of Ldtfm at the substrate level. As previously described, loss of DdcS phosphatase activity leads to production of the d,d-carboxypeptidase DdcY and conversion of the pentapeptide into the tetrapeptide substrate of Ldtfm. Here we show that full bypass of PBPs by Ldtfm also requires increased Ser/Thr protein phosphorylation resulting from impaired activity of phosphoprotein phosphatase StpA. This enzyme negatively controlled the level of protein phosphorylation both by direct dephosphorylation of target proteins and by dephosphorylation of its cognate kinase Stk. In combination with production of DdcY, increased protein phosphorylation by this eukaryotic-enzyme-like Ser/Thr protein kinase was sufficient for activation of the l,d-transpeptidation pathway in the absence of mutational alteration of peptidoglycan synthesis enzymes. The mechanism of acquisition of high-level ampicillin resistance involving bypass of the penicillin-binding proteins (PBPs) by l,d-transpeptidase Ldtfm was incompletely understood, as production of tetrapeptide precursors following transcriptional activation of the ddc locus by the DdcRS two-component regulatory system was necessary but not sufficient for full activation of the l,d-transpeptidation pathway. Here, we identified the release of a negative control of Ser/Thr protein phosphorylation mediated by phosphatase StpA as the additional factor essential for ampicillin resistance. Thus, bypass of PBPs by Ldtfm requires the modification of signal transduction regulatory systems without any gain of function by mutational alteration of peptidoglycan biosynthetic enzymes. In contrast, previously characterized mechanisms of antibiotic resistance involve horizontal gene transfer and mutational alteration of drug targets. Activation of the l,d-transpeptidation pathway reported in this study is an unprecedented mechanism of emergence of a new metabolic pathway since it involved the recruitment of preexisting functions following modifications of regulatory circuits.
Collapse
|
29
|
Genetic basis for vancomycin-enhanced cephalosporin susceptibility in vancomycin-resistant enterococci revealed using counterselection with dominant-negative thymidylate synthase. Antimicrob Agents Chemother 2013; 58:1556-64. [PMID: 24366749 DOI: 10.1128/aac.02001-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic-resistant enterococci are major causes of hospital-acquired infections. All enterococci are intrinsically resistant to most cephalosporins, antibiotics in the beta-lactam family that impair peptidoglycan synthesis by inactivating the transpeptidases responsible for cross-linking. In addition, clinical isolates of enterococci often possess acquired resistance to vancomycin, a glycopeptide antibiotic that impairs peptidoglycan biosynthesis by a mechanism distinct from that of the beta-lactams, namely, by binding to the D-Ala-D-Ala termini found in peptidoglycan precursors to prevent their utilization by biosynthetic transglycosylases. Antimicrobial synergism between vancomycin and beta-lactams against vancomycin-resistant enterococci was originally described decades ago, but the genetic basis for synergy has remained unknown. Because a complete understanding of the mechanism underlying synergy between vancomycin and beta-lactams might suggest new targets or strategies for therapeutic intervention against antibiotic-resistant enterococci, we explored the genetic basis for synergy between vancomycin and cephalosporins in Enterococcus faecalis. To do so, we developed a counterselection strategy based on a dominant-negative mutant of thymidylate synthase and implemented this approach to create a panel of mutants in vancomycin-resistant E. faecalis. Our results confirm that vancomycin promotes synergy by inducing expression of the van resistance genes, as a mutant in which the van genes are expressed in the absence of vancomycin exhibits susceptibility to cephalosporins. Further, we show that peptidoglycan precursors substituted with D-Ala-D-Lac are not required for vancomycin-enhanced cephalosporin sensitivity. Instead, production of the D,D-carboxypeptidase VanYB is both necessary and sufficient to dramatically sensitize E. faecalis to cephalosporins.
Collapse
|