1
|
Xing J, Han R, Zhao J, Zhang Y, Zhang M, Zhang Y, Zhang H, Nang SC, Zhai Y, Yuan L, Wang S, Wu H. Revisiting therapeutic options against resistant klebsiella pneumoniae infection: Phage therapy is key. Microbiol Res 2025; 293:128083. [PMID: 39904002 DOI: 10.1016/j.micres.2025.128083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/10/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Multi-drug resistant and carbapenem-resistant hypervirulent Klebsiella pneumoniae strains are spreading globally at an alarming rate, emerging as one of the most serious threats to global public health. The formidable challenges posed by the current arsenal of antimicrobials highlight the urgent need for novel strategies to combat K. pneumoniae infections. This review begins with a comprehensive analysis of the global dissemination of virulence factors and critical resistance profiles in K. pneumoniae, followed by an evaluation of the accessibility of novel therapeutic approaches for treating K. pneumoniae in clinical settings. Among these, phage therapy stands out for its considerable potential in addressing life-threatening K. pneumoniae infections. We critically examine the existing preclinical and clinical evidence supporting phage therapy, identifying key limitations that impede its broader clinical adoption. Additionally, we rigorously explore the role of genetic engineering in expanding the host range of K. pneumoniae phages, and discuss the future trajectory of this technology. In light of the 'Bad Bugs, No Drugs' era, we advocate leveraging artificial intelligence and deep learning to optimize and expand the application of phage therapy, representing a crucial advancement in the fight against the escalating threat of K. pneumoniae infections.
Collapse
Affiliation(s)
- Jiabao Xing
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Rongjia Han
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jinxin Zhao
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yuying Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yichao Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hang Zhang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Sue C Nang
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Yajun Zhai
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li Yuan
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shanmei Wang
- Department of Microbiology Laboratory, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Hua Wu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
2
|
Laborda P, Molin S, Johansen HK, Martínez JL, Hernando-Amado S. Role of bacterial multidrug efflux pumps during infection. World J Microbiol Biotechnol 2024; 40:226. [PMID: 38822187 DOI: 10.1007/s11274-024-04042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Multidrug efflux pumps are protein complexes located in the cell envelope that enable bacteria to expel, not only antibiotics, but also a wide array of molecules relevant for infection. Hence, they are important players in microbial pathogenesis. On the one hand, efflux pumps can extrude exogenous compounds, including host-produced antimicrobial molecules. Through this extrusion, pathogens can resist antimicrobial agents and evade host defenses. On the other hand, efflux pumps also have a role in the extrusion of endogenous compounds, such as bacterial intercommunication signaling molecules, virulence factors or metabolites. Therefore, efflux pumps are involved in the modulation of bacterial behavior and virulence, as well as in the maintenance of the bacterial homeostasis under different stresses found within the host. This review delves into the multifaceted roles that efflux pumps have, shedding light on their impact on bacterial virulence and their contribution to bacterial infection. These observations suggest that strategies targeting bacterial efflux pumps could both reinvigorate the efficacy of existing antibiotics and modulate the bacterial pathogenicity to the host. Thus, a comprehensive understanding of bacterial efflux pumps can be pivotal for the development of new effective strategies for the management of infectious diseases.
Collapse
Affiliation(s)
- Pablo Laborda
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark.
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, 9301, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
3
|
Luna-Pineda VM, Rodríguez-Martínez G, Salazar-García M, Romo-Castillo M. Plant-Origin Components: New Players to Combat Antibiotic Resistance in Klebsiella pneumoniae. Int J Mol Sci 2024; 25:2134. [PMID: 38396811 PMCID: PMC10888558 DOI: 10.3390/ijms25042134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Klebsiella pneumoniae (Kpn) is an opportunistic pathogen that causes intrahospital complications such as pneumonia, liver abscesses, soft tissue infections, urinary infections, bacteraemia, and, in some cases, death. Since this bacterium has a higher frequency than other Gram-negative pathogens, it has become an important pathogen to the health sector. The adaptative genome of Kpn likely facilitates increased survival of the pathogen in diverse situations. Therefore, several studies have been focused on developing new molecules, synergistic formulations, and biomaterials that make it possible to combat and control infections with and dispersion of this pathogen. Note that the uncontrolled antibiotic administration that occurred during the pandemic led to the emergence of new multidrug-resistant strains, and scientists were challenged to overcome them. This review aims to compile the latest information on Kpn that generates intrahospital infections, specifically their pathogenicity-associated factors. Furthermore, it explains the natural-product-based treatments (extracts and essential oils) developed for Kpn infection and dispersion control.
Collapse
Affiliation(s)
- Victor M. Luna-Pineda
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico; (V.M.L.-P.); (G.R.-M.)
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico
| | - Griselda Rodríguez-Martínez
- Laboratorio de Investigación en COVID-19, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico; (V.M.L.-P.); (G.R.-M.)
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico
| | - Marcela Salazar-García
- Departamento de Investigación Biomédica, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico;
| | - Mariana Romo-Castillo
- IxM/CONAHCYT-HIMFG, Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico
| |
Collapse
|
4
|
Nwabor OF, Chukamnerd A, Terbtothakun P, Nwabor LC, Surachat K, Roytrakul S, Voravuthikunchai SP, Chusri S. Synergistic effects of polymyxin and vancomycin combinations on carbapenem- and polymyxin-resistant Klebsiella pneumoniae and their molecular characteristics. Microbiol Spectr 2023; 11:e0119923. [PMID: 37905823 PMCID: PMC10715205 DOI: 10.1128/spectrum.01199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE This study provides insights into the mechanisms of polymyxin resistance in K. pneumoniae clinical isolates and demonstrates potential strategies of polymyxin and vancomycin combinations for combating this resistance. We also identified possible mechanisms that might be associated with the treatment of these combinations against carbapenem- and polymyxin-resistant K. pneumoniae clinical isolates. The findings have significant implications for the development of alternative therapies and the effective management of infections caused by these pathogens.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Arnon Chukamnerd
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Pawarisa Terbtothakun
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Lois Chinwe Nwabor
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Faculty of Medicine, Translational Medicine Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Faculty of Science, Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
5
|
Abdulkareem AH, Alalwani AK, Ahmed MM, Al-Meani SAL, Al-Janaby MS, Al-Qaysi AMK, Edan AI, Lahij HF. Impact of Solidago virgaurea Extract on Biofilm Formation for ESBL- Pseudomonas aeruginosa: An In Vitro Model Study. Pharmaceuticals (Basel) 2023; 16:1383. [PMID: 37895854 PMCID: PMC10609828 DOI: 10.3390/ph16101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/27/2023] [Accepted: 09/09/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing disparity between antimicrobial resistance (AMR) and the development of new antimicrobials continues to pose a significant global health concern. However, plant extracts have shown promise in combating this issue either through their inherent antimicrobial activity or by serving as potential reservoirs of effective antimicrobial compounds. These compounds have the ability to target pathogenic biofilms and inhibit the production of extended-spectrum β -lactamases (ESBLs). However, there is limited research available on the antibacterial properties of goldenrod extract. Thus, the objective of this study was to investigate the impact of S. virgaurea (SV) extract on the viability and ability to form biofilms of ESBL-Pseudomonas aeruginosa (P. aeruginosa). A cross-sectional study was conducted from August 2022 to March 2023. The broth microdilution method was employed to determine the minimum inhibitory concentration (MIC) of the (SV) extract. Subsequently, the minimum bactericidal concentration (MBC) was determined based on the MIC values obtained. The antibiotic susceptibility of bacteria was evaluated using the Kirby disk diffusion assay and an Antimicrobial Susceptibility Testing (AST) card in conjunction with the Vitek-2 compact system. Biofilm formation was evaluated using Congo red and a 96-well Elisa plate, while the presence of extended-spectrum β-lactamases (ESBLs) was estimated by measuring the reduction of nitrocefin at a wavelength of 390 nm. In addition, treatment of biofilm and ESBL activity with SV extract using 96-well Elisa plate and nitrocefin hydrolyzing, respectively. The resistance rates of P. aeruginosa isolates to the tested antibiotics were as follows: Levofloxacin 33%, Ciprofloxacin 40%, Amikacin 49%, Meropenem 50%, Cefepime 70%, Ceftazidime 75%, Cefotaxime 85%, Piperacillin-Tazobactam 90%, Amoxiclav 97%, Ampicillin 99%, Ceftriaxone 100%. The prevalence of MDR-P. aeruginosa, XDR-P. aeruginosa, PDR-P. aeruginosa and non-MDR-PA were 40% (n = 40), 7% (n = 7), 3% (n = 3) and 50% (n = 50), respectively. From the GC-MS results, it was observed that the presence of Octadecane, Clioquinol, Glycerol tricaprylate, hexadecanoic acid, cis-13-octadecenoic acid, oleic acid and Propanamide were the major components in the Solidago extract. In the determination of plant crude extracts, the values ranged between 0.25 and 64 mg/mL against bacteria. The resulting activity of the extract showed a significant statistical relationship at a p-value ≤ 0.01 against ESBL production and biofilm formation in P. aeruginosa. The S. virgaurea extract exhibited effectiveness in inhibiting biofilm formation and combating P. aeruginosa strains that produce extended-spectrum β-lactamases (ESBLs).
Collapse
Affiliation(s)
- Ali Hazim Abdulkareem
- Department of Biotechnology, College of Science, University of Anbar, Ramadi 31001, Iraq; (A.H.A.); (A.K.A.); (S.A.L.A.-M.); (M.S.A.-J.); (A.-M.K.A.-Q.)
| | - Anmar Kamil Alalwani
- Department of Biotechnology, College of Science, University of Anbar, Ramadi 31001, Iraq; (A.H.A.); (A.K.A.); (S.A.L.A.-M.); (M.S.A.-J.); (A.-M.K.A.-Q.)
| | - Mohammed Mukhles Ahmed
- Department of Biotechnology, College of Science, University of Anbar, Ramadi 31001, Iraq; (A.H.A.); (A.K.A.); (S.A.L.A.-M.); (M.S.A.-J.); (A.-M.K.A.-Q.)
| | - Safaa Abed Latef Al-Meani
- Department of Biotechnology, College of Science, University of Anbar, Ramadi 31001, Iraq; (A.H.A.); (A.K.A.); (S.A.L.A.-M.); (M.S.A.-J.); (A.-M.K.A.-Q.)
| | - Mohammed Salih Al-Janaby
- Department of Biotechnology, College of Science, University of Anbar, Ramadi 31001, Iraq; (A.H.A.); (A.K.A.); (S.A.L.A.-M.); (M.S.A.-J.); (A.-M.K.A.-Q.)
| | - Al-Moghira Khairi Al-Qaysi
- Department of Biotechnology, College of Science, University of Anbar, Ramadi 31001, Iraq; (A.H.A.); (A.K.A.); (S.A.L.A.-M.); (M.S.A.-J.); (A.-M.K.A.-Q.)
| | - Ali Ibrahim Edan
- Medical Laboratory Technology, Al-Huda University College, Ramadi 31001, Iraq;
| | - Hasan Falah Lahij
- Medical Laboratory Technology, Almaarif University College, Ramadi 31001, Iraq;
| |
Collapse
|
6
|
Sonawane HR, Vibhute BT, Aghav BD, Deore JV, Patil SK. Versatile applications of transition metal incorporating quinoline Schiff base metal complexes: An overview. Eur J Med Chem 2023; 258:115549. [PMID: 37321110 DOI: 10.1016/j.ejmech.2023.115549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Since the last decade, research on quinoline Schiff base metal complexes has risen substantially due to their versatile applications across many significant fields. Schiff bases are also known as azomethines, aldimines, and imines. Quinoline Schiff base-derived metal complexes are intriguing to study topics. These complexes are employed in biological, analytical, and catalytic fields. Researchers have found that Schiff bases are more biologically active when coordinated with metal ions. Research in the biological sciences has shown that heterocyclic compounds like quinoline and its derivatives are important. Because of their broad spectrum of activity, quinoline derivatives have been discovered to be effective therapeutic agents for various disorders. Even though various classical synthetic pathways mentioned in the literature are still in use, there is an urgent need for a new, more effective method that is safer for the environment, has a higher yield, generates less hazardous waste, and is easier to use. This highlights the critical need for a safe, eco-friendly approach to quinoline scaffold synthesis. This review focuses exclusively on Schiff base metal complexes derived from quinoline, fabricated and studied in the past ten years, and having anticancer, antibacterial, antifungal, antioxidant, antidiabetic, antiproliferative, DNA-intercalation, and cytotoxic activities.
Collapse
Affiliation(s)
- Harshad R Sonawane
- Department of Chemistry, Changu Kana Thakur A.C.S. College, New panvel(Autonomous), New Panvel, 410206, University of Mumbai, Maharashtra, India; Department of Chemistry, G. M. Vedak College of Science, Tala-Raigad, 402111, Maharashtra, India.
| | - Baliram T Vibhute
- Department of Chemistry Doshi Vakil Arts and G.C.U.B. Science and Commerce College, Goregaon, Raigad, 402103, Maharashtra, India
| | - Balasaheb D Aghav
- Department of Chemistry, Changu Kana Thakur A.C.S. College, New panvel(Autonomous), New Panvel, 410206, University of Mumbai, Maharashtra, India
| | - Jaydeep V Deore
- Department of Chemistry, G. M. Vedak College of Science, Tala-Raigad, 402111, Maharashtra, India
| | - Sanjay K Patil
- Department of Chemistry, Changu Kana Thakur A.C.S. College, New panvel(Autonomous), New Panvel, 410206, University of Mumbai, Maharashtra, India.
| |
Collapse
|
7
|
Sikdar R, Elias MH. Evidence for Complex Interplay between Quorum Sensing and Antibiotic Resistance in Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0126922. [PMID: 36314960 PMCID: PMC9769976 DOI: 10.1128/spectrum.01269-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Quorum sensing (QS) is a cell-density-dependent, intercellular communication system mediated by small diffusible signaling molecules. QS regulates a range of bacterial behaviors, including biofilm formation, virulence, drug resistance mechanisms, and antibiotic tolerance. Enzymes capable of degrading signaling molecules can interfere in QS-a process termed as quorum quenching (QQ). Remarkably, previous work reported some cases where enzymatic interference in QS was synergistic to antibiotics against Pseudomonas aeruginosa. The premise of combination therapy is attractive to fight against multidrug-resistant bacteria, yet comprehensive studies are lacking. Here, we evaluate the effects of QS signal disruption on the antibiotic resistance profile of P. aeruginosa by testing 222 antibiotics and antibacterial compounds from 15 different classes. We found compelling evidence that QS signal disruption does indeed affect antibiotic resistance (40% of all tested compounds; 89/222), albeit not always synergistically (not synergistic for 19% of compounds; 43/222). For some tested antibiotics, such as sulfathiazole and trimethoprim, we were able to relate the changes in resistance caused by QS signal disruption to the modulation of the expression of key genes of the folate biosynthetic pathway. Moreover, using a P. aeruginosa-based Caenorhabditis elegans killing model, we confirmed that enzymatic QQ modulates the effects of antibiotics on P. aeruginosa's pathogenicity in vivo. Altogether, these results show that signal disruption has profound and complex effects on the antibiotic resistance profile of P. aeruginosa. This work suggests that combination therapy including QQ and antibiotics should be discussed not globally but, rather, in case-by-case studies. IMPORTANCE Quorum sensing (QS) is a cell-density-dependent communication system used by a wide range of bacteria to coordinate behaviors. Strategies pertaining to the interference in QS are appealing approaches to control microbial behaviors that depend on QS, including virulence and biofilms. Interference in QS was previously reported to be synergistic with antibiotics, yet no systematic assessment exists. Here, we evaluate the potential of combination treatments using the model opportunistic human pathogen Pseudomonas aeruginosa PA14. In this model, collected data demonstrate that QS largely modulates the antibiotic resistance profile of PA14 (for more than 40% of the tested drugs). However, the outcome of combination treatments is synergistic for only 19% of them. This research demonstrates the complex relationship between QS and antibiotic resistance and suggests that combination therapy including QS inhibitors and antibiotics should be discussed not globally but, rather, in case-by-case studies.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
8
|
Wykowski R, Fuentefria AM, de Andrade SF. Antimicrobial activity of clioquinol and nitroxoline: a scoping review. Arch Microbiol 2022; 204:535. [PMID: 35907036 PMCID: PMC9362210 DOI: 10.1007/s00203-022-03122-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
Clioquinol and nitroxoline, two drugs with numerous pharmacological properties fallen into disuse for many decades. The first was considered dangerous due to contraindications and the second mainly because was taken as ineffective, despite its known antibacterial activity. In the last decades, the advances in pharmaceutical chemistry, molecular biology, toxicology and genetics allowed to better understand the cellular action of these compounds, some toxicological issues and/or activity scopes. Thus, a new opportunity for these drugs to be considered as potential antimicrobial agents has arisen. This review contemplates the trajectory of clioquinol and nitroxoline from their emergence to the present day, emphasizing the new studies that indicate the possibility of reintroduction for specific cases.
Collapse
Affiliation(s)
- Rachel Wykowski
- Programa de Pós-Graduação Em Microbiologia Agrícola E Do Ambiente, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Meneghello Fuentefria
- Programa de Pós-Graduação Em Microbiologia Agrícola E Do Ambiente, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Departamento de Análises, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Saulo Fernandes de Andrade
- Programa de Pós-Graduação Em Microbiologia Agrícola E Do Ambiente, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
10
|
Hao J, Zhang B, Deng J, Wei Y, Xiao X, Liu J. Emergence of a Hypervirulent Tigecycline-Resistant Klebsiella pneumoniae Strain Co-producing blaNDM–1 and blaKPC–2 With an Uncommon Sequence Type ST464 in Southwestern China. Front Microbiol 2022; 13:868705. [PMID: 35572689 PMCID: PMC9100695 DOI: 10.3389/fmicb.2022.868705] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Emergence of blaNDM–1 and blaKPC–2 co-producing Klebsiella pneumoniae strains is currently attracting widespread attention, but little information is available about their tigecycline resistance, virulence, and prevalence in Southwest China. In July 2021, an extensively drug-resistant K. pneumoniae strain AHSWKP25 whose genome contained both blaNDM–1 and blaKPC–2 genes was isolated from the blood of a patient with the malignant hematological disease in Luzhou, China. We investigated the resistance profiles of AHSWKP25 using microbroth dilution, agar dilution, modified carbapenemase inactivation (mCIM), and EDTA-modified carbapenemase inactivation methods (eCIM). The virulence of AHSWKP25 was assessed through string tests, serum killing assays, and a Galleria mellonella larval infection model. Conjugation and plasmid stability experiments were conducted to determine the horizontal transfer capacity of plasmids. And efflux pump phenotype test and real-time quantitative reverse transcription-PCR (RT-PCR) were used to determine its efflux pump activity. Sequencing of AHSWKP25 determined that AHSWKP25 belonged to ST464, which is resistant to antibiotics such as carbapenems, tetracycline, fluoroquinolones, tigecycline, and fosfomycin. The efflux pump phenotype tests and RT-PCR results demonstrated that efflux pumps were overexpressed in the AHSWKP25, which promoted the tigecycline resistance of the bacteria. AHSWKP25 also showed hypervirulence and serum resistance in vitro model. AHSWKP25 carried several different plasmids that contained blaNDM–1, blaKPC–2, and mutated tet(A) genes. Sequence alignment revealed that the plasmids carrying blaNDM–1 and blaKPC–2 underwent recombination and insertion events, respectively. We demonstrated that an X3 plasmid carrying blaNDM–1 was transferred from pSW25NDM1 to E. coli J53. We also identified missense mutations in the ramR, rcsA, lon, and csrD genes of AHSWKP25. Our results highlighted the potential of blaNDM–1 and blaKPC–2 co-producing K. pneumoniae strains to further develop antimicrobial resistance and hypervirulent phenotypes, but measures should be taken to closely monitor and control the spread of superbugs with multidrug-resistant phenotypes and hypervirulence.
Collapse
Affiliation(s)
- Jingchen Hao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bangqin Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiamin Deng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yueshuai Wei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xue Xiao
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Jinbo Liu,
| |
Collapse
|
11
|
Zhang C, Sun L, Wang D, Li Y, Zhang L, Wang L, Peng J. Advances in antimicrobial resistance testing. Adv Clin Chem 2022; 111:1-68. [DOI: 10.1016/bs.acc.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Clinical Status of Efflux Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10091117. [PMID: 34572699 PMCID: PMC8467137 DOI: 10.3390/antibiotics10091117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 01/25/2023] Open
Abstract
Antibiotic efflux is a mechanism that is well-documented in the phenotype of multidrug resistance in bacteria. Efflux is considered as an early facilitating mechanism in the bacterial adaptation face to the concentration of antibiotics at the infectious site, which is involved in the acquirement of complementary efficient mechanisms, such as enzymatic resistance or target mutation. Various efflux pumps have been described in the Gram-negative bacteria most often encountered in infectious diseases and, in healthcare-associated infections. Some are more often involved than others and expel virtually all families of antibiotics and antibacterials. Numerous studies report the contribution of these pumps in resistant strains previously identified from their phenotypes. The authors characterize the pumps involved, the facilitating antibiotics and those mainly concerned by the efflux. However, today no study describes a process for the real-time quantification of efflux in resistant clinical strains. It is currently necessary to have at hospital level a reliable and easy method to quantify the efflux in routine and contribute to a rational choice of antibiotics. This review provides a recent overview of the prevalence of the main efflux pumps observed in clinical practice and provides an idea of the prevalence of this mechanism in the multidrug resistant Gram-negative bacteria. The development of a routine diagnostic tool is now an emergency need for the proper application of current recommendations regarding a rational use of antibiotics.
Collapse
|
13
|
Yaghoubi S, Zekiy AO, Krutova M, Gholami M, Kouhsari E, Sholeh M, Ghafouri Z, Maleki F. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. Eur J Clin Microbiol Infect Dis 2021; 41:1003-1022. [PMID: 33403565 PMCID: PMC7785128 DOI: 10.1007/s10096-020-04121-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
Tigecycline is unique glycylcycline class of semisynthetic antimicrobial agents developed for the treatment of polymicrobial infections caused by multidrug-resistant Gram-positive and Gram-negative pathogens. Tigecycline evades the main tetracycline resistance genetic mechanisms, such as tetracycline-specific efflux pump acquisition and ribosomal protection, via the addition of a glycyclamide moiety to the 9-position of minocycline. The use of the parenteral form of tigecycline is approved for complicated skin and skin structure infections (excluding diabetes foot infection), complicated intra-abdominal infections, and community-acquired bacterial pneumonia in adults. New evidence also suggests the effectiveness of tigecycline for the treatment of severe Clostridioides difficile infections. Tigecycline showed in vitro susceptibility to Coxiella spp., Rickettsia spp., and multidrug-resistant Neisseria gonnorrhoeae strains which indicate the possible use of tigecycline in the treatment of infections caused by these pathogens. Except for intrinsic, or often reported resistance in some Gram-negatives, tigecycline is effective against a wide range of multidrug-resistant nosocomial pathogens. Herein, we summarize the currently available data on tigecycline pharmacokinetics and pharmacodynamics, its mechanism of action, the epidemiology of tigecycline resistance, and its clinical effectiveness.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Russian Federation, Trubetskaya st., 8-2, 119991, Moscow, Russia
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Mehrdad Gholami
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, P.O. Box 6939177143, Gorgan- Sari Road, Golestan Province, Gorgan, Iran. .,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, P.O. Box 6939177143, Gorgan- Sari Road, Golestan Province, Gorgan, Iran.
| | - Mohammad Sholeh
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ghafouri
- Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farajolah Maleki
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ilam University of Medical sciences, Ilam, Iran.
| |
Collapse
|
14
|
RamA upregulates multidrug resistance efflux pumps AcrAB and OqxAB in Klebsiella pneumoniae. Int J Antimicrob Agents 2020; 57:106251. [PMID: 33259915 DOI: 10.1016/j.ijantimicag.2020.106251] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 11/15/2020] [Accepted: 11/22/2020] [Indexed: 01/12/2023]
Abstract
Overexpression of the acrAB genes regulated by RamA and overexpression of oqxAB regulated by RarA have been reported to mediate multidrug resistance in Gram-negative bacilli. In this study, regulation of acrAB and oqxAB simultaneously by the global regulator RamA was investigated in a multidrug-resistant Klebsiella pneumoniae clinical isolate (KP22) resistant to tigecycline and other antimicrobials. KP22 overexpressed ramA due to a ramR mutation, along with an unexpected overexpression of oqxB. Deletion of ramA led to a 16-fold decrease in the tigecycline minimum inhibitory concentration (MIC) with decreased expression of acrB (4.3-fold) and oqxB (7.1-fold) compared with KP22. Transcomplementation of KP22ΔramA with the wild-type ramA gene restored the tigecycline MIC and upregulation of the acrB (3.9-fold) and oqxB (4.0-fold) genes compared with KP22. When oqxB was knocked out, MICs of ciprofloxacin, olaquindox and nitrofurantoin were considerably decreased, while deletion of acrB led to MIC decreases for cefepime, piperacillin/tazobactam and tigecycline in addition to the above three antimicrobials. The results of electrophoretic mobility shift assay showed that RamA could bind the promoter regions of both the acrAB and oqxAB operons. This study demonstrates for the first time that RamA can directly regulate multidrug resistance efflux pumps AcrAB and OqxAB in K. pneumoniae.
Collapse
|
15
|
Evaluation of gene expression and protein structural modeling involved in persister cell formation in Salmonella Typhimurium. Braz J Microbiol 2020; 52:207-217. [PMID: 33125683 DOI: 10.1007/s42770-020-00388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022] Open
Abstract
Persisters are phenotypic variants of the bacterial population that survive against lethal doses of bactericidal antibiotics.These phenotypes are created in numerous bacterial species, including those of clinical significance, such as Salmonella Typhimurium. Since persister cells are associated with the failure of antibiotic treatment and infection recurrence, it is crucial to identify the mechanisms that influence the formation of these cells. The aim of this study is to investigate the persister cell formation and expression analysis as well as to predict the 3D structure of the genes involved in the production of persister cells. The presence of persisters in S. Typhimurium was determined by time dependent killing of different types of bactericidal antibiotics and expression of genes associated with persister cell formation which was assessed five hours after the addition of antibiotics by the qRT-PCR. Indeed, the 3D structural model of the proteins studied was predicted by performing several computational methods of retrieved primary protein sequences. The results of the study showed that the S. Typhimurium produced high levels of persister cells in the exposure of bactericidal antibiotics. Furthermore, qRT-PCR resulted in the fact that the expression of related genes was different depending on the type of antibiotic. Overall, this study provides information on the creation of persister cells and the role of different genes in the formation of these cells and structure of proteins involved in the production of persister cells in S. Typhimurium.
Collapse
|
16
|
Wang G, Zhao G, Chao X, Xie L, Wang H. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176278. [PMID: 32872324 PMCID: PMC7503635 DOI: 10.3390/ijerph17176278] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Klebsiella pneumoniae is an important gram-negative opportunistic pathogen that causes a variety of infectious diseases, including urinary tract infections, bacteremia, pneumonia, and liver abscesses. With the emergence of multidrug-resistant (MDR) and hypervirulent K. pneumoniae (hvKP) strains, the rapid spread of these clinical strains in geography is particularly worrying. However, the detailed mechanisms of virulence and antibiotic resistance in K. pneumoniae are still not very clear. Therefore, studying and elucidating the pathogenic mechanisms and drug resistance mechanism of K. pneumoniae infection are important parts of current medical research. In this paper, we systematically summarized the virulence, biofilm, and antibiotic tolerance mechanisms of K. pneumoniae, and explored the application of whole genome sequencing and global proteomics, which will provide new clues for clinical treatment of K. pneumoniae.
Collapse
Affiliation(s)
| | | | | | - Longxiang Xie
- Correspondence: (L.X.); (H.W.); Tel.: +86-0371-22892960 (L.X.)
| | - Hongju Wang
- Correspondence: (L.X.); (H.W.); Tel.: +86-0371-22892960 (L.X.)
| |
Collapse
|
17
|
Ferrand A, Vergalli J, Pagès JM, Davin-Regli A. An Intertwined Network of Regulation Controls Membrane Permeability Including Drug Influx and Efflux in Enterobacteriaceae. Microorganisms 2020; 8:E833. [PMID: 32492979 PMCID: PMC7355843 DOI: 10.3390/microorganisms8060833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
The transport of small molecules across membranes is a pivotal step for controlling the drug concentration into the bacterial cell and it efficiently contributes to the antibiotic susceptibility in Enterobacteriaceae. Two types of membrane transports, passive and active, usually represented by porins and efflux pumps, are involved in this process. Importantly, the expression of these transporters and channels are modulated by an armamentarium of tangled regulatory systems. Among them, Helix-turn-Helix (HTH) family regulators (including the AraC/XylS family) and the two-component systems (TCS) play a key role in bacterial adaptation to environmental stresses and can manage a decrease of porin expression associated with an increase of efflux transporters expression. In the present review, we highlight some recent genetic and functional studies that have substantially contributed to our better understanding of the sophisticated mechanisms controlling the transport of small solutes (antibiotics) across the membrane of Enterobacteriaceae. This information is discussed, taking into account the worrying context of clinical antibiotic resistance and fitness of bacterial pathogens. The localization and relevance of mutations identified in the respective regulation cascades in clinical resistant strains are discussed. The possible way to bypass the membrane/transport barriers is described in the perspective of developing new therapeutic targets to combat bacterial resistance.
Collapse
Affiliation(s)
| | | | | | - Anne Davin-Regli
- UMR_MD1, U-1261, Aix-Marseille University, INSERM, SSA, IRBA, MCT, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille CEDEX 05, France; (A.F.); (J.V.); (J.-M.P.)
| |
Collapse
|
18
|
Iriya R, Jing W, Syal K, Mo M, Chen C, Yu H, Haydel SE, Wang S, Tao N. Rapid antibiotic susceptibility testing based on bacterial motion patterns with long short-term memory neural networks. IEEE SENSORS JOURNAL 2020; 20:4940-4950. [PMID: 32440258 PMCID: PMC7241544 DOI: 10.1109/jsen.2020.2967058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antibiotic resistance is an increasing public health threat. To combat it, a fast method to determine the antibiotic susceptibility of infecting pathogens is required. Here we present an optical imaging-based method to track the motion of single bacterial cells and generate a model to classify active and inactive cells based on the motion patterns of the individual cells. The model includes an image-processing algorithm to segment individual bacterial cells and track the motion of the cells over time, and a deep learning algorithm (Long Short-Term Memory network) to learn and determine if a bacterial cell is active or inactive. By applying the model to human urine specimens spiked with an Escherichia coli lab strain, we show that the method can accurately perform antibiotic susceptibility testing as fast as 30 minutes for five commonly used antibiotics.
Collapse
Affiliation(s)
- Rafael Iriya
- School of Electrical, Computer and Energy engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Wenwen Jing
- The Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ, 85287, USA
| | - Karan Syal
- The Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ, 85287, USA
| | - Manni Mo
- The Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ, 85287, USA
| | - Chao Chen
- The Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ, 85287, USA
| | - Hui Yu
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shelley E Haydel
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Shaopeng Wang
- The Biodesign Center for Biosensors and Bioelectronics, Arizona State University, Tempe, AZ, 85287, USA
| | - Nongjian Tao
- School of Electrical, Computer and Energy engineering, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
19
|
Yoon EJ, Oh Y, Jeong SH. Development of Tigecycline Resistance in Carbapenemase-Producing Klebsiella pneumoniae Sequence Type 147 via AcrAB Overproduction Mediated by Replacement of the ramA Promoter. Ann Lab Med 2020; 40:15-20. [PMID: 31432634 PMCID: PMC6713659 DOI: 10.3343/alm.2020.40.1.15] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/09/2019] [Accepted: 08/01/2019] [Indexed: 11/24/2022] Open
Abstract
Background Carbapenem-resistant K. pneumoniae 2297, isolated from a patient treated with tigecycline for pneumonia, developed tigecycline resistance, in contrast to carbapenem-resistant isolate 1215, which was collected four months prior to the 2297 isolate. Mechanisms underlying tigecycline resistance were elucidated for the clinical isolates. Methods The tigecycline minimum inhibitory concentration (MIC) was determined using the broth microdilution method, with or without phenylalanine-arginine β-naphthylamide (PABN), and whole-genome sequencing was carried out by single-molecule real-time sequencing. The expression levels of the genes acrA,oqxA,ramA,rarA, and rpoB were determined by reverse-transcription quantitative PCR. Results Both isolates presented identical antibiograms, except for tigecycline, which showed an MIC of 0.5 mg/L in 1215 and 2 mg/L in 2297. The addition of PABN to tigecycline-resistant 2297 caused a four-fold decrease in the tigecycline MIC to 0.5 mg/L, although acrA expression (encoding the AcrAB efflux pump) was upregulated by 2.5 fold and ramA expression (encoding the pump activator RamA) was upregulated by 1.4 fold. We identified a 6,096-bp fragment insertion flanking direct TATAT repeats that disrupted the romA gene located upstream of ramA in the chromosome of K. pneumoniae 2297; the insertion led the ramA gene promoter replacement resulting in stronger activation of the gene. Conclusions The K. pneumoniae isolate developed tigecycline resistance during tigecycline treatment. It was related to the overexpression of the AcrAB resistance-nodulation-cell division efflux system due to promoter replacement.
Collapse
Affiliation(s)
- Eun Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Yena Oh
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
20
|
Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Avison MB. Impact of OqxR loss of function on the envelope proteome of Klebsiella pneumoniae and susceptibility to antimicrobials. J Antimicrob Chemother 2019; 73:2990-2996. [PMID: 30053019 DOI: 10.1093/jac/dky293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/25/2018] [Indexed: 11/15/2022] Open
Abstract
Background In Klebsiella pneumoniae, loss-of-function mutations in the transcriptional repressors RamR and OqxR both have an impact on the production of efflux pumps and porins relevant to antimicrobial efflux/entry. Objectives To define, in an otherwise isogenic background, the relative effects of OqxR and RamR loss-of-function mutations on envelope protein production, envelope permeability and antimicrobial susceptibility. We also investigated the clinical relevance of an OqxR loss-of-function mutation, particularly in the context of β-lactam susceptibility. Methods Envelope permeability was estimated using a fluorescent dye accumulation assay. Antimicrobial susceptibility was measured using disc testing. Total envelope protein production was quantified using LC-MS/MS proteomics and quantitative RT-PCR was used to measure transcript levels. Results Loss of RamR or OqxR reduced envelope permeability in K. pneumoniae by 45%-55% relative to the WT. RamR loss activated AcrAB efflux pump production ∼5-fold and this reduced β-lactam susceptibility, conferring ertapenem non-susceptibility even in the absence of a carbapenemase. In contrast, OqxR loss specifically activated OqxAB efflux pump production >10 000-fold. This reduced fluoroquinolone susceptibility but had little impact on β-lactam susceptibility even in the presence of a β-lactamase. Conclusions Whilst OqxR loss and RamR loss are both seen in K. pneumoniae clinical isolates, only RamR loss significantly stimulates AcrAB efflux pump production. This means that only RamR mutants have significantly reduced β-lactamase-mediated β-lactam susceptibility and therefore represent a greater clinical threat.
Collapse
Affiliation(s)
- Wan Ahmad Kamil Wan Nur Ismah
- School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
- Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | - Yuiko Takebayashi
- School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Jacqueline Findlay
- School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Kate J Heesom
- Bristol Proteomics Facility, University of Bristol, Bristol, UK
| | - Matthew B Avison
- School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| |
Collapse
|
21
|
Kang XQ, Shu GF, Jiang SP, Xu XL, Qi J, Jin FY, Liu D, Xiao YH, Lu XY, Du YZ. Effective targeted therapy for drug-resistant infection by ICAM-1 antibody-conjugated TPGS modified β-Ga 2O 3:Cr 3+ nanoparticles. Theranostics 2019; 9:2739-2753. [PMID: 31244919 PMCID: PMC6568169 DOI: 10.7150/thno.33452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/18/2019] [Indexed: 12/02/2022] Open
Abstract
The prevalence of antibiotic resistance and lack of alternative drugs have posed an increasing threat to public health. Here, we prepared β-Ga2O3:Cr3+ nanoparticles modified with ICAM1-antibody-conjugated TPGS (I-TPGS/Ga2O3) as a novel antibiotic carrier for the treatment of drug-resistant infections. Methods: I-TPGS/Ga2O3 were firstly characterized by measuring particle size, morphology, crystal structure, drug loading capacity, and in vitro drug release behaviors. The in vitro antibacterial activities of I-TPGS/Ga2O3/TIG were evaluated using standard and drug-resistant bacteria. The internalization of I-TPGS/Ga2O3 was observed by fluorescence confocal imaging, and the expression levels of the efflux pump genes of TRKP were analyzed by real-time RT-PCR. In vitro cellular uptake and in vivo biodistribution study were performed to investigate the targeting specificity of I-TPGS/Ga2O3 using HUEVC and acute pneumonia mice, respectively. The in vivo anti-infective efficacy and biosafety of I-TPGS/Ga2O3/TIG were finally evaluated using acute pneumonia mice. Results: It was found that TPGS could down-regulate the over-expression of the efflux pump genes, thus decreasing the efflux pump activity of bacteria. I-TPGS/Ga2O3 with small particle size and uniform distribution facilitated their internalization in bacteria, and the TPGS modification resulted in a significant reduction in the efflux of loaded antibiotics. These properties rendered the encapsulated tigecycline to exert a stronger antibacterial activity both in vitro and in vivo. Additionally, targeted delivery of I-TPGS/Ga2O3 mediated by ICAM1 antibodies contributed to a safe and effective therapy. Conclusion: It is of great value to apply I-TPGS/Ga2O3 as a novel and effective antibiotic delivery system for the treatment of drug-resistant infections.
Collapse
|
22
|
Li J, Zhang H, Ning J, Sajid A, Cheng G, Yuan Z, Hao H. The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrob Resist Infect Control 2019; 8:44. [PMID: 30834112 PMCID: PMC6387526 DOI: 10.1186/s13756-019-0489-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/03/2019] [Indexed: 01/03/2023] Open
Abstract
Background OqxAB efflux pump has been found to mediate multidrug resistance (MDR) in various bacteria over the past decades. The updates on the nature and epidemiology of OqxAB efflux pump need to be fully reviewed to broaden our understanding of this MDR determinant. Methods A literature search using the keyword of "oqxAB" was conducted in the online databases of Pubmed and ISI Web of Science with no restriction on the date of publication. The 87 publications were included into this review as references due to their close relevance to the nature and/or epidemiology of OqxAB efflux pump. Results The oqxAB gene generally locates on chromosome and/or plasmids flanked by IS26-like elements in clinical isolates of Enterobacteriaceae and Klebsiella pneumoniae, conferring low to intermediated resistance to quinoxalines, quinolones tigecycline, nitrofurantoin, several detergents and disinfectants (benzalkonium chloride, triclosan and SDS). It could co-spread with other antimicrobial resistance genes (bla CTX-M, rmtB and aac(6')-Ib etc.), virulence genes and heavy metal resistance genes (pco and sil operons). Both RarA (activator) and OqxR (repressor) play important roles on regulation of the expression of OqxAB. Conclusions The dissemination of oqxAB gene may pose a great risk on food safety and public health. Further investigation and understanding of the natural functions, horizontal transfer, and regulation mechanism of the OqxAB efflux pump will aid in future strategies of antimicrobial usage.
Collapse
Affiliation(s)
- Jun Li
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China.,2Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 Jiangsu China
| | - Heying Zhang
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China
| | - Jianan Ning
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China
| | - Abdul Sajid
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China.,4College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan, KP Pakistan
| | - Guyue Cheng
- 3Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, P.R China, Wuhan, 430070 Hubei China
| | - Zonghui Yuan
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China.,3Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, P.R China, Wuhan, 430070 Hubei China
| | - Haihong Hao
- 1National Reference Laboratory of Veterinary Drug Residues (HZAU) and Key Laboratory of the Detection for Veterinary Drug Residues, Wuhan, 430070 Hubei China.,3Laboratory of Quality & Safety Risk Assessment for Livestock and Poultry Products (Wuhan), Ministry of Agriculture, P.R China, Wuhan, 430070 Hubei China
| |
Collapse
|
23
|
Shu LB, Lu Q, Sun RH, Lin LQ, Sun QL, Hu J, Zhou HW, Chan EWC, Chen S, Zhang R. Prevalence and phenotypic characterization of carbapenem-resistant Klebsiella pneumoniae strains recovered from sputum and fecal samples of ICU patients in Zhejiang Province, China. Infect Drug Resist 2018; 12:11-18. [PMID: 30588043 PMCID: PMC6302810 DOI: 10.2147/idr.s175823] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objective To understand the prevalence and transmission of carbapenem-resistant Klebsiella pneumoniae (CRKP) in ICU patients in Zhejiang Province, China, and determined the genetic and phenotypic characteristics of these CRKP strains. Materials and Methods A total of 202 ICU patients from eight tertiary hospitals were recruited and 55 non-duplicate CRKP strains were collected during July and August in 2017. These strains were subjected to determination of MICs, carriage of carbapenemase genes and tet(A) variants, PFGE, MLST and virulence potential using G. mellonella larvae infection model. Results A total of 55 CRKP strains were recovered from 42 patients, representing a carriage rate of 20.8%. CRKP strains were recovered from both the intestinal and respiratory tract of 13 patients. Importantly, strains isolated from sputum and fecal samples often displayed identical PFGE profiles, suggesting that CRKP may also colonize the respiratory tract. The most dominant ST type of these CRKP strains was ST11, accounting for 78% (43/55) of the test strains. The majority of CRKP strains were resistant to multiple antibiotics, with the exception of tigecycline and ceftazidime/avibactam. Interestingly, 32 strains were found to harbor the tet(A) variant, which is known to confer reduced tigecycline susceptibility. Assessment of the virulence potential of these CRKP strains by string test showed that results were negative for 53 of the 55 test strains. However, further assessment of virulence potential using a G. mellonella larvae infection model showed that CRKP isolated from sputum consistently exhibited a higher virulence level than strains recovered from fecal samples. Conclusion CRKP is highly prevalent in ICU patients in Zhejiang Province with strains isolated from respiratory exhibiting higher virulence potential than those from GI tract. These data provide essential insight into development of new infection control measures to halt the transmission of CRKP in clinical settings.
Collapse
Affiliation(s)
- Ling-Bin Shu
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,
| | - Qun Lu
- Department of Hospital Infection Management, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ren-Hua Sun
- Department of Critical Care Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Le-Qing Lin
- Department of Intensive Care Unit, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qiao-Ling Sun
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,
| | - Jie Hu
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,
| | - Hong-Wei Zhou
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,
| | - Edward Wai-Chi Chan
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shen Zhen Research Institute, Shenzhen, China, .,State Key Lab of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong,
| | - Sheng Chen
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shen Zhen Research Institute, Shenzhen, China, .,State Key Lab of Chirosciences, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong,
| | - Rong Zhang
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,
| |
Collapse
|
24
|
Contribution of OqxAB Efflux Pump in Selection of Fluoroquinolone-Resistant Klebsiella pneumoniae. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2018; 2018:4271638. [PMID: 30344799 PMCID: PMC6174777 DOI: 10.1155/2018/4271638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/07/2018] [Indexed: 11/17/2022]
Abstract
The role of OqxAB efflux pump in Klebsiella pneumoniae was investigated in correlation with ciprofloxacin exposure. K. pneumoniae SE23 and K. pneumoniae SE191 were isolated from urinary tract infections and were analyzed in this study. Each carried oqxAB resistance determinant and exhibited ciprofloxacin MIC of 0.06 and 0.5 mg/L, respectively. Tested strains were initially exposed to their ciprofloxacin MIC values for 24 hours. Later on, the ciprofloxacin exposition has been increased to a daily 1, 2, 4, and to a final 8 mg/L. Total cellular RNA was extracted at 30, 60, 90, and 120 minutes of initial exposure and after every 24 hours. Quantitative reverse-transcriptase PCR was performed from each RNA sample. Mutation in gyrA and parC genes was analyzed in each strain and multilocus sequence typing (MLST) was performed. Ciprofloxacin exposure selected resistant strain from K. pneumoniae SE191; by contrast, K. pneumoniae SE23 was not adjustable to the increasing ciprofloxacin concentrations. During initial exposure, both oqxA and oqxB expression remained low (2-ΔCt = 1-2.03). However, increasing ciprofloxacin promoted oqxB expression as it reached fold increase of 15.8-22.8, while oqxA expression was maintained (2-ΔCt = 2-2.15). An amino acid substitution Ser83Tyr in gyrA was detected in K. pneumoniae SE191, but no additional mutations occurred as consequence to ciprofloxacin exposure. MLST identified K. pneumoniae SE191 as ST274, while K. pneumoniae SE23 belonged to the novel ST2567. Ciprofloxacin concentration-dependent upregulation of oqxAB efflux pump in K. pneumoniae is clonally related and contributes to selection for higher level of fluoroquinolone resistance.
Collapse
|
25
|
Nicolas-Chanoine MH, Mayer N, Guyot K, Dumont E, Pagès JM. Interplay Between Membrane Permeability and Enzymatic Barrier Leads to Antibiotic-Dependent Resistance in Klebsiella Pneumoniae. Front Microbiol 2018; 9:1422. [PMID: 30008709 PMCID: PMC6034560 DOI: 10.3389/fmicb.2018.01422] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
The interplay between membrane permeability alterations and the enzymatic barrier contributes to Klebsiella pneumoniae multidrug resistance. We assessed the specific effect of the efflux levels of the main efflux pumps (AcrAB and OqxAB), alone and associated with the loss of the main porins (OmpK35 and OMPK36), on the activity of various antibiotics by constructing a set of K. pneumoniae isogenic strains, including strains with plasmid-mediated β-lactamases (DHA-1, CTX-M-15, and OXA-48). The two pumps contributed to intrinsic chloramphenicol resistance and AcrAB to that of nalidixic acid and cefoxitin, whereas they had no impact on the activity of the other 11 antibiotics tested. We confirmed the expulsion of these three antibiotics by the two overproduced pumps and that of tigecycline by overproduced AcrAB, and showed that overproduced AcrAB also expelled ertapenem, piperacillin, ceftolozane, and ceftazidime. The sole loss of porins did not significantly affect the activity of the tested antibiotics, except ertapenem. The effect of efflux increases and porin loss on β-lactam activity was the highest in plasmid-mediated β-lactamase-producing strains. Thus, DHA-1-producing strains became non-susceptible (NS) to (i) ertapenem when there was an increase in efflux or porin loss, (ii) imipenem and ceftazidime+avibactam when the two mechanisms were associated, and (iii) temocillin when AcrAB was overproduced. The CTX-M-15-producing strains became NS to (i) ertapenem when there was no porin, (ii) ceftolozane+tazobactam when there was either overproduced OqxAB or porin loss, and (iii) temocillin when AcrAB was overproduced. OXA-48-producing strains known to be NS to temocillin were also NS to ceftolozane and they became NS to imipenem when the two pumps were overproduced or there was porin loss. Overall, this study shows that the balance between influx and efflux differentially modulates the activity of the tested antibiotics, an important point for evaluating the activity of future antibiotics or new combinations.
Collapse
Affiliation(s)
- Marie-Helene Nicolas-Chanoine
- Service de Microbiologie, Hôpital Beaujon, AP-HP, Clichy, France.,Faculté de Médecine D. Diderot, Paris, France.,Institut National de la Santé et de la Recherche Médicale UMR 1137, Université Paris 7, Paris, France
| | - Noémie Mayer
- Service de Microbiologie, Hôpital Beaujon, AP-HP, Clichy, France
| | - Kathleen Guyot
- Service de Microbiologie, Hôpital Beaujon, AP-HP, Clichy, France
| | | | | |
Collapse
|
26
|
Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 2018; 41:252-275. [PMID: 28521338 DOI: 10.1093/femsre/fux013] [Citation(s) in RCA: 700] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/28/2017] [Indexed: 01/15/2023] Open
Abstract
Klebsiella pneumoniae is an important multidrug-resistant (MDR) pathogen affecting humans and a major source for hospital infections associated with high morbidity and mortality due to limited treatment options. We summarize the wide resistome of this pathogen, which encompasses plentiful chromosomal and plasmid-encoded antibiotic resistance genes (ARGs). Under antibiotic selective pressure, K. pneumoniae continuously accumulates ARGs, by de novo mutations, and via acquisition of plasmids and transferable genetic elements, leading to extremely drug resistant (XDR) strains harboring a 'super resistome'. In the last two decades, numerous high-risk (HiR) MDR and XDR K. pneumoniae sequence types have emerged showing superior ability to cause multicontinent outbreaks, and continuous global dissemination. The data highlight the complex evolution of MDR and XDR K. pneumoniae, involving transfer and spread of ARGs, and epidemic plasmids in highly disseminating successful clones. With the worldwide catastrophe of antibiotic resistance and the urgent need to identify the main pathogens that pose a threat on the future of infectious diseases, further studies are warranted to determine the epidemic traits and plasmid acquisition in K. pneumoniae. There is a need for future genomic and translational studies to decipher specific targets in HiR clones to design targeted prevention and treatment.
Collapse
Affiliation(s)
- Shiri Navon-Venezia
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Kira Kondratyeva
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Alessandra Carattoli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome 00161, Italy
| |
Collapse
|
27
|
Sekyere JO, Asante J. Emerging mechanisms of antimicrobial resistance in bacteria and fungi: advances in the era of genomics. Future Microbiol 2018; 13:241-262. [PMID: 29319341 DOI: 10.2217/fmb-2017-0172] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacteria and fungi continue to develop new ways to adapt and survive the lethal or biostatic effects of antimicrobials through myriad mechanisms. Novel antibiotic resistance genes such as lsa(C), erm(44), VCC-1, mcr-1, mcr-2, mcr-3, mcr-4, bla KLUC-3 and bla KLUC-4 were discovered through comparative genomics and further functional studies. As well, mutations in genes that hitherto were unknown to confer resistance to antimicrobials, such as trm, PP2C, rpsJ, HSC82, FKS2 and Rv2887, were shown by genomics and transcomplementation assays to mediate antimicrobial resistance in Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecium, Saccharomyces cerevisae, Candida glabrata and Mycobacterium tuberculosis, respectively. Thus, genomics, transcriptomics and metagenomics, coupled with functional studies are the future of antimicrobial resistance research and novel drug discovery or design.
Collapse
Affiliation(s)
- John Osei Sekyere
- Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Jonathan Asante
- Faculty of Pharmacy & Pharmaceutical Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| |
Collapse
|
28
|
Chiu SK, Chan MC, Huang LY, Lin YT, Lin JC, Lu PL, Siu LK, Chang FY, Yeh KM. Tigecycline resistance among carbapenem-resistant Klebsiella Pneumoniae: Clinical characteristics and expression levels of efflux pump genes. PLoS One 2017; 12:e0175140. [PMID: 28388651 PMCID: PMC5384758 DOI: 10.1371/journal.pone.0175140] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/21/2017] [Indexed: 01/26/2023] Open
Abstract
Objectives Tigecycline is a treatment option for infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP). Emerging tigecycline resistance in CRKP represents a growing threat. Knowledge of the clinical, microbiological, and molecular characteristics of tigecycline- and carbapenem-resistant Klebsiella pneumoniae (TCRKP) is limited. Methods Patients infected with TCRKP were identified from a Taiwanese national surveillance study. Clinical data were collected from medical records. We performed susceptibility tests, carbapenemase gene detection, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Furthermore, we performed quantitative real-time polymerase chain reaction (qRT-PCR) analyses to assess the expression levels of the efflux pump genes acrB and oqxB. Results We identified 16 patients infected with TCRKP, with urinary tract infection (UTI) being the most common type of infection (63%). The all-cause 30-day mortality rate was 44% in patients with TCRKP infection. Patients with a site of infection other than the urinary tract had a significantly higher mortality rate than patients with UTIs (83% vs. 20%, p = 0.035). PFGE and MLST revealed no dominant clone or sequence type. Using qRT-PCR, overexpression of both the acrB and oqxB genes was identified in seven isolates, and overexpression of the oqxB gene was observed in another seven. There was poor correlation between acrB or oqxB expression and tigecycline MICs (r = -0.038 and -0.166, respectively). Conclusions The mortality rate in patients infected with TCRKP in this study was 44% and this is an important subset of patients. The absence of a linear relationship between efflux pump genes expression and MICs indicates that tigecycline resistance may be mediated by other factors. Continuous monitoring of tigecycline resistance among CRKP isolates and resistance mechanisms are necessary.
Collapse
Affiliation(s)
- Sheng-Kang Chiu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Ming-Chin Chan
- Infection Control Office, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Li-Yueh Huang
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan, ROC
| | - Yi-Tsung Lin
- Section of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, National Yan-Ming University, Taipei, Taiwan, ROC
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Po-Liang Lu
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | - L. Kristopher Siu
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan, ROC
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Kuo-Ming Yeh
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- * E-mail:
| |
Collapse
|
29
|
Wand ME. Bacterial Resistance to Hospital Disinfection. MODELING THE TRANSMISSION AND PREVENTION OF INFECTIOUS DISEASE 2017. [DOI: 10.1007/978-3-319-60616-3_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Rossolini GM, Arena F, Giani T. Mechanisms of Antibacterial Resistance. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
31
|
Mechanisms of Increased Resistance to Chlorhexidine and Cross-Resistance to Colistin following Exposure of Klebsiella pneumoniae Clinical Isolates to Chlorhexidine. Antimicrob Agents Chemother 2016; 61:AAC.01162-16. [PMID: 27799211 DOI: 10.1128/aac.01162-16] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/09/2016] [Indexed: 12/16/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that is often difficult to treat due to its multidrug resistance (MDR). We have previously shown that K. pneumoniae strains are able to "adapt" (become more resistant) to the widely used bisbiguanide antiseptic chlorhexidine. Here, we investigated the mechanisms responsible for and the phenotypic consequences of chlorhexidine adaptation, with particular reference to antibiotic cross-resistance. In five of six strains, adaptation to chlorhexidine also led to resistance to the last-resort antibiotic colistin. Here, we show that chlorhexidine adaptation is associated with mutations in the two-component regulator phoPQ and a putative Tet repressor gene (smvR) adjacent to the major facilitator superfamily (MFS) efflux pump gene, smvA Upregulation of smvA (10- to 27-fold) was confirmed in smvR mutant strains, and this effect and the associated phenotype were suppressed when a wild-type copy of smvR was introduced on plasmid pACYC. Upregulation of phoPQ (5- to 15-fold) and phoPQ-regulated genes, pmrD (6- to 19-fold) and pmrK (18- to 64-fold), was confirmed in phoPQ mutant strains. In contrast, adaptation of K. pneumoniae to colistin did not result in increased chlorhexidine resistance despite the presence of mutations in phoQ and elevated phoPQ, pmrD, and pmrK transcript levels. Insertion of a plasmid containing phoPQ from chlorhexidine-adapted strains into wild-type K. pneumoniae resulted in elevated expression levels of phoPQ, pmrD, and pmrK and increased resistance to colistin, but not chlorhexidine. The potential risk of colistin resistance emerging in K. pneumoniae as a consequence of exposure to chlorhexidine has important clinical implications for infection prevention procedures.
Collapse
|
32
|
Fang L, Chen Q, Shi K, Li X, Shi Q, He F, Zhou J, Yu Y, Hua X. Step-Wise Increase in Tigecycline Resistance in Klebsiella pneumoniae Associated with Mutations in ramR, lon and rpsJ. PLoS One 2016; 11:e0165019. [PMID: 27764207 PMCID: PMC5072711 DOI: 10.1371/journal.pone.0165019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/05/2016] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae is a gram-negative bacterium that causes numerous diseases, including pneumonia and urinary tract infections. An increase in multidrug resistance has complicated the treatment of these bacterial infections, and although tigecycline shows activity against a broad spectrum of bacteria, resistant strains have emerged. In this study, the whole genomes of two clinical and six laboratory-evolved strains were sequenced to identify putative mutations related to tigecycline resistance. Of seven tigecycline-resistant strains, seven (100%) had ramR mutations, five (71.4%) had lon mutations, one (14.2%) had a ramA mutation, and one (14.2%) had an rpsJ mutation. A higher fitness cost was observed in the laboratory-evolved strains but not in the clinical strains. A transcriptome analysis demonstrated high expression of the ramR operon and acrA in all tigecycline-resistant strains. Genes involved in nitrogen metabolism were induced in the laboratory-evolved strains compared with the wild-type and clinical strains, and this difference in nitrogen metabolism reflected the variation between the laboratory-evolved and the clinical strains. Complementation experiments showed that both the wild-type ramR and the lon genes could partially restore the tigecycline sensitivity of K. pneumoniae. We believe that this manuscript describes the first construct of a lon mutant in K. pneumoniae, which allowed confirmation of its association with tigecycline resistance. Our findings illustrate the importance of the ramR operon and the lon and rpsJ genes in K. pneumoniae resistance to tigecycline.
Collapse
Affiliation(s)
- Li Fang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Qiong Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Keren Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xi Li
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Fang He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiancang Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- * E-mail: (XH); (YY)
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
- * E-mail: (XH); (YY)
| |
Collapse
|
33
|
Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence. Front Microbiol 2016; 7:1483. [PMID: 27708632 PMCID: PMC5030252 DOI: 10.3389/fmicb.2016.01483] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/06/2016] [Indexed: 01/24/2023] Open
Abstract
Multidrug efflux pumps can be involved in bacterial resistance to antibiotics at different levels. Some efflux pumps are constitutively expressed at low levels and contribute to intrinsic resistance. In addition, their overexpression may allow higher levels of resistance. This overexpression can be transient, in the presence of an effector (phenotypic resistance), or constitutive when mutants in the regulatory elements of the expression of efflux pumps are selected (acquired resistance). Efflux pumps are present in all cells, from human to bacteria and are highly conserved, which indicates that they are ancient elements in the evolution of different organisms. Consequently, it has been suggested that, besides antibiotic resistance, bacterial multidrug efflux pumps would likely contribute to other relevant processes of the microbial physiology. In the current article, we discuss some specific examples of the role that efflux pumps may have in the bacterial virulence of animals’ and plants’ pathogens, including the processes of intercellular communication. Based in these evidences, we propose that efflux pumps are at the crossroad between resistance and virulence of bacterial pathogens. Consequently, the comprehensive study of multidrug efflux pumps requires addressing these functions, which are of relevance for the bacterial–host interactions during infection.
Collapse
Affiliation(s)
- Manuel Alcalde-Rico
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Paula Blanco
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
34
|
Plasmid-mediated quinolone resistance: Two decades on. Drug Resist Updat 2016; 29:13-29. [PMID: 27912841 DOI: 10.1016/j.drup.2016.09.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/03/2016] [Accepted: 08/29/2016] [Indexed: 11/21/2022]
Abstract
After two decades of the discovery of plasmid-mediated quinolone resistance (PMQR), three different mechanisms have been associated to this phenomenon: target protection (Qnr proteins, including several families with multiple alleles), active efflux pumps (mainly QepA and OqxAB pumps) and drug modification [AAC(6')-Ib-cr acetyltransferase]. PMQR genes are usually associated with mobile or transposable elements on plasmids, and, in the case of qnr genes, are often incorporated into sul1-type integrons. PMQR has been found in clinical and environmental isolates around the world and appears to be spreading. Although the three PMQR mechanisms alone cause only low-level resistance to quinolones, they can complement other mechanisms of chromosomal resistance to reach clinical resistance level and facilitate the selection of higher-level resistance, raising a threat to the treatment of infections by microorganisms that host these mechanisms.
Collapse
|
35
|
Current perspectives on tigecycline resistance in Enterobacteriaceae: susceptibility testing issues and mechanisms of resistance. Int J Antimicrob Agents 2016; 48:11-18. [DOI: 10.1016/j.ijantimicag.2016.04.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 11/23/2022]
|
36
|
Reales-Calderon JA, Blanco P, Alcalde-Rico M, Corona F, Lira F, Hernando-Amado S, Bernardini A, Sánchez MB, Martínez JL. Use of phenotype microarrays to study the effect of acquisition of resistance to antimicrobials in bacterial physiology. Res Microbiol 2016; 167:723-730. [PMID: 27106258 DOI: 10.1016/j.resmic.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/03/2016] [Accepted: 04/07/2016] [Indexed: 01/17/2023]
Abstract
It is widely accepted that the acquisition of resistance to antimicrobials confers a fitness cost. Different works have shown that the effect of acquiring resistance in bacterial physiology may be more specific than previously thought. Study of these specific changes may help to predict the outcome of resistant organisms in different ecosystems. In addition to changing bacterial physiology, acquisition of resistance either increases or reduces susceptibility to other antimicrobials. In the current article, we review recent information on the effect of acquiring resistance upon bacterial physiology, with a specific focus on studies using phenotype microarray technology.
Collapse
Affiliation(s)
- Jose A Reales-Calderon
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Paula Blanco
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Manuel Alcalde-Rico
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Fernando Corona
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Felipe Lira
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - Alejandra Bernardini
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - María B Sánchez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| | - José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
37
|
Abstract
Tetracyclines possess many properties considered ideal for antibiotic drugs, including activity against Gram-positive and -negative pathogens, proven clinical safety, acceptable tolerability, and the availability of intravenous (IV) and oral formulations for most members of the class. As with all antibiotic classes, the antimicrobial activities of tetracyclines are subject to both class-specific and intrinsic antibiotic-resistance mechanisms. Since the discovery of the first tetracyclines more than 60 years ago, ongoing optimization of the core scaffold has produced tetracyclines in clinical use and development that are capable of thwarting many of these resistance mechanisms. New chemistry approaches have enabled the creation of synthetic derivatives with improved in vitro potency and in vivo efficacy, ensuring that the full potential of the class can be explored for use against current and emerging multidrug-resistant (MDR) pathogens, including carbapenem-resistant Enterobacteriaceae, MDR Acinetobacter species, and Pseudomonas aeruginosa.
Collapse
|
38
|
Jiménez-Castellanos JC, Wan Ahmad Kamil WNI, Cheung CHP, Tobin MS, Brown J, Isaac SG, Heesom KJ, Schneiders T, Avison MB. Comparative effects of overproducing the AraC-type transcriptional regulators MarA, SoxS, RarA and RamA on antimicrobial drug susceptibility in Klebsiella pneumoniae. J Antimicrob Chemother 2016; 71:1820-5. [PMID: 27029850 DOI: 10.1093/jac/dkw088] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES In Klebsiella pneumoniae, overproduction of RamA and RarA leads to increased MICs of various antibiotics; MarA and SoxS are predicted to perform a similar function. We have compared the relative effects of overproducing these four AraC-type regulators on envelope permeability (a combination of outer membrane permeability and efflux), efflux pump and porin production, and antibiotic susceptibility in K. pneumoniae. METHODS Regulators were overproduced using a pBAD expression vector. Antibiotic susceptibility was measured using disc testing. Envelope permeability was estimated using a fluorescent dye accumulation assay. Porin and efflux pump production was quantified using proteomics and validated using real-time quantitative RT-PCR. RESULTS Envelope permeability and antibiotic disc inhibition zone diameters both reduced during overproduction of RamA and to a lesser extent RarA or SoxS, but did not change following overproduction of MarA. These effects were associated with overproduction of the efflux pumps AcrAB (for RamA and SoxS) and OqxAB (for RamA and RarA) and the outer membrane protein TolC (for all regulators). Effects on porin production were strain specific. CONCLUSIONS RamA is the most potent regulator of antibiotic permeability in K. pneumoniae, followed by RarA then SoxS, with MarA having very little effect. This observed relative potency correlates well with the frequency at which these regulators are reportedly overproduced in clinical isolates.
Collapse
Affiliation(s)
| | - Wan Nur Ismah Wan Ahmad Kamil
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia
| | | | - Maryann S Tobin
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - James Brown
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Sophie G Isaac
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Kate J Heesom
- Bristol University Proteomics Facility, University of Bristol, Bristol, UK
| | - Thamarai Schneiders
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
| | - Matthew B Avison
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
39
|
Saw HTH, Webber MA, Mushtaq S, Woodford N, Piddock LJV. Inactivation or inhibition of AcrAB-TolC increases resistance of carbapenemase-producing Enterobacteriaceae to carbapenems. J Antimicrob Chemother 2016; 71:1510-9. [PMID: 26945714 DOI: 10.1093/jac/dkw028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/27/2016] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES The objective of this study was to study the contribution of the multidrug resistance AcrAB-TolC efflux system to carbapenem resistance in carbapenemase-producing Enterobacteriaceae and the impact of the efflux inhibitor PABN on this resistance. METHODS Klebsiella pneumoniae, Escherichia coli, Salmonella enterica serovar Typhimurium and their corresponding AcrAB-TolC mutants, each carrying carbapenemase-carrying plasmids (pKpQIL-UK with blaKPC and pNDM-HK with blaNDM), were tested for their susceptibility to six β-lactam antibiotics according to the BSAC agar dilution method. MICs were also determined in the presence of efflux inhibitors. The susceptibility of ertapenem in the presence of 25 and 100 mg/L PABN was also determined for 86 non-replicate clinical isolates of carbapenemase-producing Enterobacteriaceae with OXA-48-like (n = 18), IMP (n = 12), VIM (n = 16), NDM (n = 20) or KPC (n = 20) enzymes. Outer membrane protein profiles were determined with SDS-PAGE. RESULTS The carbapenemase-producing AcrAB mutants of K. pneumoniae and E. coli and the TolC mutant of Salmonella Typhimurium had elevated resistance to carbapenem antibiotics. In Salmonella Typhimurium, the increase in carbapenem MIC correlated with the loss of OmpF. Sixty-two (72%) of the clinical isolates tested were also more resistant to ertapenem in the presence of PABN. SDS-PAGE showed that the presence of PABN affected outer membrane porin production, which was associated with the increased MIC values of ertapenem. CONCLUSIONS The decreased susceptibility to carbapenems of carbapenemase-producing Enterobacteriaceae in the absence of AcrAB or TolC and/or in the presence of an efflux inhibitor (e.g. PABN) is likely due to the changes in porin expression (e.g. OmpF). Efflux inhibitors may not potentiate carbapenem activity, but rather could increase levels of resistance in carbapenemase-producing organisms.
Collapse
Affiliation(s)
- Howard T H Saw
- Antimicrobials Research Group, Institute of Microbiology & Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mark A Webber
- Antimicrobials Research Group, Institute of Microbiology & Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Shazad Mushtaq
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Public Health England, London NW9 5EQ, UK
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Public Health England, London NW9 5EQ, UK
| | - Laura J V Piddock
- Antimicrobials Research Group, Institute of Microbiology & Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
40
|
Abstract
Three mechanisms for plasmid-mediated quinolone resistance (PMQR) have been discovered since 1998. Plasmid genes qnrA, qnrB, qnrC, qnrD, qnrS, and qnrVC code for proteins of the pentapeptide repeat family that protects DNA gyrase and topoisomerase IV from quinolone inhibition. The qnr genes appear to have been acquired from chromosomal genes in aquatic bacteria, are usually associated with mobilizing or transposable elements on plasmids, and are often incorporated into sul1-type integrons. The second plasmid-mediated mechanism involves acetylation of quinolones with an appropriate amino nitrogen target by a variant of the common aminoglycoside acetyltransferase AAC(6')-Ib. The third mechanism is enhanced efflux produced by plasmid genes for pumps QepAB and OqxAB. PMQR has been found in clinical and environmental isolates around the world and appears to be spreading. The plasmid-mediated mechanisms provide only low-level resistance that by itself does not exceed the clinical breakpoint for susceptibility but nonetheless facilitates selection of higher-level resistance and makes infection by pathogens containing PMQR harder to treat.
Collapse
|
41
|
Abstract
Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged with clinical use and became common in some bacterial pathogens. Mechanisms of resistance include two categories of mutation and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include quinolones as well as other antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, one mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone resistance armamentarium is large.
Collapse
Affiliation(s)
- David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - George A Jacoby
- Lahey Hospital and Medical Center, Burlington, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
42
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 979] [Impact Index Per Article: 97.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
43
|
Polymorphic variation in susceptibility and metabolism of triclosan-resistant mutants of Escherichia coli and Klebsiella pneumoniae clinical strains obtained after exposure to biocides and antibiotics. Antimicrob Agents Chemother 2015; 59:3413-23. [PMID: 25824225 DOI: 10.1128/aac.00187-15] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/21/2015] [Indexed: 01/08/2023] Open
Abstract
Exposure to biocides may result in cross-resistance to other antimicrobials. Changes in biocide and antibiotic susceptibilities, metabolism, and fitness costs were studied here in biocide-selected Escherichia coli and Klebsiella pneumoniae mutants. E. coli and K. pneumoniae mutants with various degrees of triclosan susceptibility were obtained after exposure to triclosan (TRI), benzalkonium chloride (BKC), chlorhexidine (CHX) or sodium hypochlorite (SHC), and ampicillin or ciprofloxacin. Alterations in antimicrobial susceptibility and metabolism in mutants were tested using Phenotype MicroArrays. The expression of AcrAB pump and global regulators (SoxR, MarA, and RamA) was measured by quantitative reverse transcription-PCR (qRT-PCR), and the central part of the fabI gene was sequenced. The fitness costs of resistance were assessed by a comparison of relative growth rates. Triclosan-resistant (TRI(r)) and triclosan-hypersusceptible (TRI(hs)) mutants of E. coli and K. pneumoniae were obtained after selection with biocides and/or antibiotics. E. coli TRI(r) mutants, including those with mutations in the fabI gene or in the expression of acrB, acrF, and marA, exhibited changes in susceptibility to TRI, CHX, and antibiotics. TRI(r) mutants for which the TRI MIC was high presented improved metabolism of carboxylic acids, amino acids, and carbohydrates. In TRI(r) mutants, resistance to one antimicrobial provoked hypersusceptibility to another one(s). TRI(r) mutants had fitness costs, particularly marA-overexpressing (E. coli) or ramA-overexpressing (K. pneumoniae) mutants. TRI, BKC, and CIP exposure frequently yielded TRI(r) mutants exhibiting alterations in AraC-like global regulators (MarA, SoxR, and RamA), AcrAB-TolC, and/or FabI, and influencing antimicrobial susceptibility, fitness, and metabolism. These various phenotypes suggest a trade-off of different selective processes shaping the evolution toward antibiotic/biocide resistance and influencing other adaptive traits.
Collapse
|
44
|
He F, Fu Y, Chen Q, Ruan Z, Hua X, Zhou H, Yu Y. Tigecycline susceptibility and the role of efflux pumps in tigecycline resistance in KPC-producing Klebsiella pneumoniae. PLoS One 2015; 10:e0119064. [PMID: 25734903 PMCID: PMC4348519 DOI: 10.1371/journal.pone.0119064] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/17/2015] [Indexed: 01/08/2023] Open
Abstract
KPC-producing Klebsiella pneumoniae isolates have emerged as important pathogens of nosocomial infections, and tigecycline is one of the antibiotics recommended for severe infections caused by KPC-producing K. pneumoniae. To identify the susceptibility profile of KPC-producing K. pneumoniae to tigecycline and investigate the role of efflux pumps in tigecycline resistance, a total of 215 KPC-producing K. pneumoniae isolates were collected. The minimum inhibitory concentration (MIC) of tigecycline was determined by standard broth microdilution tests. Isolates showing resistance to tigecycline underwent susceptibility test with efflux pump inhibitors. Expression levels of efflux pump genes (acrB and oqxB) and their regulators (ramA, marA, soxS and rarA) were examined by real-time PCR, and the correlation between tigecycline MICs and gene expression levels were analysed. Our results show that the tigecycline resistance rate in these isolates was 11.2%. Exposure of the tigecycline-resistant isolates to the efflux pump inhibitor NMP resulted in an obvious decrease in MICs and restored susceptibility to tigecycline in 91.7% of the isolates. A statistically significant association between acrB expression and tigecycline MICs was observed, and overexpression of ramA was found in three tigecycline-resistant isolates, further analysis confirmed ramR mutations existed in these isolates. Transformation of one mutant with wild-type ramR restored susceptibility to tigecycline and repressed overexpression of ramA and acrB. These data indicate that efflux pump AcrAB, which can be up-regulated by ramR mutations and subsequent ramA activation, contributed to tigecycline resistance in K. pneumoniae clinical isolates.
Collapse
Affiliation(s)
- Fang He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Ying Fu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Qiong Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Zhi Ruan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Hua Zhou
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
- * E-mail:
| |
Collapse
|
45
|
De Majumdar S, Yu J, Fookes M, McAteer SP, Llobet E, Finn S, Spence S, Monaghan A, Kissenpfennig A, Ingram RJ, Bengoechea J, Gally DL, Fanning S, Elborn JS, Schneiders T. Elucidation of the RamA regulon in Klebsiella pneumoniae reveals a role in LPS regulation. PLoS Pathog 2015; 11:e1004627. [PMID: 25633080 PMCID: PMC4310594 DOI: 10.1371/journal.ppat.1004627] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/14/2014] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae is a significant human pathogen, in part due to high rates of multidrug resistance. RamA is an intrinsic regulator in K. pneumoniae established to be important for the bacterial response to antimicrobial challenge; however, little is known about its possible wider regulatory role in this organism during infection. In this work, we demonstrate that RamA is a global transcriptional regulator that significantly perturbs the transcriptional landscape of K. pneumoniae, resulting in altered microbe-drug or microbe-host response. This is largely due to the direct regulation of 68 genes associated with a myriad of cellular functions. Importantly, RamA directly binds and activates the lpxC, lpxL-2 and lpxO genes associated with lipid A biosynthesis, thus resulting in modifications within the lipid A moiety of the lipopolysaccharide. RamA-mediated alterations decrease susceptibility to colistin E, polymyxin B and human cationic antimicrobial peptide LL-37. Increased RamA levels reduce K. pneumoniae adhesion and uptake into macrophages, which is supported by in vivo infection studies, that demonstrate increased systemic dissemination of ramA overexpressing K. pneumoniae. These data establish that RamA-mediated regulation directly perturbs microbial surface properties, including lipid A biosynthesis, which facilitate evasion from the innate host response. This highlights RamA as a global regulator that confers pathoadaptive phenotypes with implications for our understanding of the pathogenesis of Enterobacter, Salmonella and Citrobacter spp. that express orthologous RamA proteins. Bacteria can rapidly evolve under antibiotic pressure to develop resistance, which occurs when target genes mutate, or when resistance-encoding genes are transferred. Alternatively, microbes can simply alter the levels of intrinsic proteins that allow the organism to “buy” time to resist antibiotic pressure. Klebsiella pneumoniae is a pathogen that causes significant blood stream or respiratory infections, but more importantly is a bacterium that is increasingly being reported as multidrug resistant. Our data demonstrate that RamA can trigger changes on the bacterial surface that allow Klebsiella to survive both antibiotic challenge, degradation by host immune peptides and resist phagocytosis. We demonstrate that the molecular basis of increased survival of ramA overexpressing K. pneumoniae, against host-derived factors is associated with RamA-driven alterations of the lipid A moiety of Klebsiella LPS. This modification is likely to be linked to Klebsiella’s ability to resist the host response so that it remains undetected by the immune system. The relevance of our work extends beyond RamA in Klebsiella as other pathogens such as Enterobacter spp and Salmonella spp. also produce this protein. Thus our overarching conclusion is that the intrinsic regulator, RamA perturbs host-microbe and microbe-drug interactions.
Collapse
Affiliation(s)
- Shyamasree De Majumdar
- Centre for Infection and Immunity, Belfast, United Kingdom
- Division of Pathway and Infection Medicine, Edinburgh, United Kingdom
| | - Jing Yu
- Centre for Infection and Immunity, Belfast, United Kingdom
| | - Maria Fookes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sean P. McAteer
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Enrique Llobet
- Laboratory Microbial Pathogenesis, Fundació d’Investigació Sanitària de les Illes Balears (FISIB) Recinto Hospital Joan March, Bunyola, Spain
| | - Sarah Finn
- UCD Centre for Molecular Innovation and Drug Discovery, School of Public Health, Physiotherapy & Population Science, University College Dublin, Dublin, Ireland
| | - Shaun Spence
- Centre for Infection and Immunity, Belfast, United Kingdom
| | - Avril Monaghan
- Centre for Infection and Immunity, Belfast, United Kingdom
| | | | | | - José Bengoechea
- Centre for Infection and Immunity, Belfast, United Kingdom
- Laboratory Microbial Pathogenesis, Fundació d’Investigació Sanitària de les Illes Balears (FISIB) Recinto Hospital Joan March, Bunyola, Spain
| | - David L. Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Séamus Fanning
- UCD Centre for Molecular Innovation and Drug Discovery, School of Public Health, Physiotherapy & Population Science, University College Dublin, Dublin, Ireland
| | | | - Thamarai Schneiders
- Centre for Infection and Immunity, Belfast, United Kingdom
- Division of Pathway and Infection Medicine, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Mou KT, Muppirala UK, Severin AJ, Clark TA, Boitano M, Plummer PJ. A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data. Front Microbiol 2015; 5:782. [PMID: 25642218 PMCID: PMC4294202 DOI: 10.3389/fmicb.2014.00782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/20/2014] [Indexed: 12/13/2022] Open
Abstract
Campylobacter jejuni is a leading cause of human gastrointestinal disease and small ruminant abortions in the United States. The recent emergence of a highly virulent, tetracycline-resistant C. jejuni subsp. jejuni sheep abortion clone (clone SA) in the United States, and that strain's association with human disease, has resulted in a heightened awareness of the zoonotic potential of this organism. Pacific Biosciences' Single Molecule, Real-Time sequencing technology was used to explore the variation in the genome-wide methylation patterns of the abortifacient clone SA (IA3902) and phenotypically distinct gastrointestinal-specific C. jejuni strains (NCTC 11168 and 81-176). Several notable differences were discovered that distinguished the methylome of IA3902 from that of 11168 and 81-176: identification of motifs novel to IA3902, genome-specific hypo- and hypermethylated regions, strain level variability in genes methylated, and differences in the types of methylation motifs present in each strain. These observations suggest a possible role of methylation in the contrasting disease presentations of these three C. jejuni strains. In addition, the methylation profiles between IA3902 and a luxS mutant were explored to determine if variations in methylation patterns could be identified that might explain the role of LuxS-dependent methyl recycling in IA3902 abortifacient potential.
Collapse
Affiliation(s)
- Kathy T Mou
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University Ames, IA, USA
| | - Usha K Muppirala
- Genome Informatics Facility, Office of Biotechnology, Iowa State University Ames, IA, USA
| | - Andrew J Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University Ames, IA, USA
| | | | | | - Paul J Plummer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University Ames, IA, USA
| |
Collapse
|
47
|
IS5 element integration, a novel mechanism for rapid in vivo emergence of tigecycline nonsusceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 2014; 58:6151-6. [PMID: 25092708 DOI: 10.1128/aac.03053-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tigecycline nonsusceptibility is concerning because tigecycline is increasingly relied upon to treat carbapenem- or colistin-resistant organisms. In Enterobacteriaceae, tigecycline nonsusceptibility is mediated by the AcrAB-TolC efflux pump, among others, and pump activity is often a downstream effect of mutations in their transcriptional regulators, cognate repressor genes, or noncoding regions, as demonstrated in Enterobacteriaceae and Acinetobacter isolates. Here, we report the emergence of tigecycline nonsusceptibility in a longitudinal series of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Klebsiella pneumoniae isolates collected during tigecycline therapy and the elucidation of its resistance mechanisms. Clinical isolates were recovered prior to and during tigecycline therapy of a 2.5-month-old Honduran neonate. Antimicrobial susceptibility tests to tigecycline determined that the MIC increased from 1 to 4 μg/ml prior to the completion of tigecycline therapy. Unlike other studies, we did not find increased expression of ramA, ramR, oqxA, acrB, marA, or rarA genes by reverse transcription-quantitative PCR (qRT-PCR). Whole-genome sequencing revealed an IS5 insertion element in nonsusceptible isolates 85 bp upstream of a putative efflux pump operon, here named kpgABC, previously unknown to be involved in resistance. Introduction of the kpgABC genes in a non-kpgABC background increased the MIC of tigecycline 4-fold and is independent of a functional AcrAB-TolC pump. This is the first report to propose a function for kpgABC and identify an insertion element whose presence correlated with the in vivo development of tigecycline nonsusceptibility in K. pneumoniae.
Collapse
|