1
|
Zhou J, Qian Y, Lang Y, Zhang Y, Tao X, Moya B, Sayed ARM, Landersdorfer CB, Shin E, Werkman C, Smith NM, Kim TH, Kumaraswamy M, Shin BS, Tsuji BT, Bonomo RA, Lee RE, Bulitta JB. Comprehensive stability analysis of 13 β-lactams and β-lactamase inhibitors in in vitro media, and novel supplement dosing strategy to mitigate thermal drug degradation. Antimicrob Agents Chemother 2024; 68:e0139923. [PMID: 38329330 PMCID: PMC10916406 DOI: 10.1128/aac.01399-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/06/2024] [Indexed: 02/09/2024] Open
Abstract
Non-clinical antibiotic development relies on in vitro susceptibility and infection model studies. Validating the achievement of the targeted drug concentrations is essential to avoid under-estimation of drug effects and over-estimation of resistance emergence. While certain β-lactams (e.g., imipenem) and β-lactamase inhibitors (BLIs; clavulanic acid) are believed to be relatively unstable, limited tangible data on their stability in commonly used in vitro media are known. We aimed to determine the thermal stability of 10 β-lactams and 3 BLIs via LC-MS/MS in cation-adjusted Mueller Hinton broth at 25 and 36°C as well as agar at 4 and 37°C, and in water at -20, 4, and 25°C. Supplement dosing algorithms were developed to achieve broth concentrations close to their target over 24 h. During incubation in broth (pH 7.25)/agar, degradation half-lives were 16.9/21.8 h for imipenem, 20.7/31.6 h for biapenem, 29.0 h for clavulanic acid (studied in broth only), 23.1/71.6 h for cefsulodin, 40.6/57.9 h for doripenem, 46.5/64.6 h for meropenem, 50.8/97.7 h for cefepime, 61.5/99.5 h for piperacillin, and >120 h for all other compounds. Broth stability decreased at higher pH. All drugs were ≥90% stable for 72 h in agar at 4°C. Degradation half-lives in water at 25°C were >200 h for all drugs except imipenem (14.7 h, at 1,000 mg/L) and doripenem (59.5 h). One imipenem supplement dose allowed concentrations to stay within ±31% of their target concentration. This study provides comprehensive stability data on β-lactams and BLIs in relevant in vitro media using LC-MS/MS. Future studies are warranted applying these data to antimicrobial susceptibility testing and assessing the impact of β-lactamase-related degradation.
Collapse
Affiliation(s)
- Jieqiang Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yuli Qian
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yinzhi Lang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yongzhen Zhang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Xun Tao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de investigación, Hospital Universitario Son Espases, Instituto de investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Alaa R. M. Sayed
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Eunjeong Shin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Carolin Werkman
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Nicholas M. Smith
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Tae Hwan Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Gyeongbuk, South Korea
| | - Monika Kumaraswamy
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Infectious Diseases Section, VA San Diego Healthcare System, San Diego, California, USA
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Brian T. Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Departments of Pharmacology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, and the CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
2
|
Scudeller L, Righi E, Chiamenti M, Bragantini D, Menchinelli G, Cattaneo P, Giske CG, Lodise T, Sanguinetti M, Piddock LJV, Franceschi F, Ellis S, Carrara E, Savoldi A, Tacconelli E. Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli. Int J Antimicrob Agents 2021; 57:106344. [PMID: 33857539 DOI: 10.1016/j.ijantimicag.2021.106344] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 01/23/2023]
Abstract
The superiority of combination therapy for carbapenem-resistant Gram-negative bacilli (CR-GNB) infections remains controversial. In vitro models may predict the efficacy of antibiotic regimens against CR-GNB. A systematic review and meta-analysis was performed including pharmacokinetic/pharmacodynamic (PK/PD) and time-kill (TK) studies examining the in vitro efficacy of antibiotic combinations against CR-GNB [PROSPERO registration no. CRD42019128104]. The primary outcome was in vitro synergy based on the effect size (ES): high, ES ≥ 0.75, moderate, 0.35 < ES < 0.75; low, ES ≤ 0.35; and absent, ES = 0). A network meta-analysis assessed the bactericidal effect and re-growth rate (secondary outcomes). An adapted version of the ToxRTool was used for risk-of-bias assessment. Over 180 combination regimens from 136 studies were included. The most frequently analysed classes were polymyxins and carbapenems. Limited data were available for ceftazidime/avibactam, ceftolozane/tazobactam and imipenem/relebactam. High or moderate synergism was shown for polymyxin/rifampicin against Acinetobacter baumannii [ES = 0.91, 95% confidence interval (CI) 0.44-1.00], polymyxin/fosfomycin against Klebsiella pneumoniae (ES = 1.00, 95% CI 0.66-1.00) and imipenem/amikacin against Pseudomonas aeruginosa (ES = 1.00, 95% CI 0.21-1.00). Compared with monotherapy, increased bactericidal activity and lower re-growth rates were reported for colistin/fosfomycin and polymyxin/rifampicin in K. pneumoniae and for imipenem/amikacin or imipenem/tobramycin against P. aeruginosa. High quality was documented for 65% and 53% of PK/PD and TK studies, respectively. Well-designed in vitro studies should be encouraged to guide the selection of combination therapies in clinical trials and to improve the armamentarium against carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Luigia Scudeller
- Clinical Epidemiology and Biostatistics, IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano Foundation, Milan, Italy
| | - Elda Righi
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Margherita Chiamenti
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Damiano Bragantini
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Giulia Menchinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paolo Cattaneo
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Christian G Giske
- Clinical Microbiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Thomas Lodise
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura J V Piddock
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - François Franceschi
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - Sally Ellis
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - Elena Carrara
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Alessia Savoldi
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy; Division of Infectious Diseases, Department of Internal Medicine I, German Center for Infection Research, University of Tübingen, Otfried Müller Straße 12, 72074 Tübingen, Germany; German Centre for Infection Research (DZIF), Clinical Research Unit for Healthcare Associated Infections, Tübingen, Germany.
| |
Collapse
|
3
|
Lang Y, Shah NR, Tao X, Reeve SM, Zhou J, Moya B, Sayed ARM, Dharuman S, Oyer JL, Copik AJ, Fleischer BA, Shin E, Werkman C, Basso KB, Lucas DD, Sutaria DS, Mégroz M, Kim TH, Loudon-Hossler V, Wright A, Jimenez-Nieves RH, Wallace MJ, Cadet KC, Jiao Y, Boyce JD, LoVullo ED, Schweizer HP, Bonomo RA, Bharatham N, Tsuji BT, Landersdorfer CB, Norris MH, Shin BS, Louie A, Balasubramanian V, Lee RE, Drusano GL, Bulitta JB. Combating Multidrug-Resistant Bacteria by Integrating a Novel Target Site Penetration and Receptor Binding Assay Platform Into Translational Modeling. Clin Pharmacol Ther 2021; 109:1000-1020. [PMID: 33576025 PMCID: PMC10662281 DOI: 10.1002/cpt.2205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022]
Abstract
Multidrug-resistant bacteria are causing a serious global health crisis. A dramatic decline in antibiotic discovery and development investment by pharmaceutical industry over the last decades has slowed the adoption of new technologies. It is imperative that we create new mechanistic insights based on latest technologies, and use translational strategies to optimize patient therapy. Although drug development has relied on minimal inhibitory concentration testing and established in vitro and mouse infection models, the limited understanding of outer membrane permeability in Gram-negative bacteria presents major challenges. Our team has developed a platform using the latest technologies to characterize target site penetration and receptor binding in intact bacteria that inform translational modeling and guide new discovery. Enhanced assays can quantify the outer membrane permeability of β-lactam antibiotics and β-lactamase inhibitors using multiplex liquid chromatography tandem mass spectrometry. While β-lactam antibiotics are known to bind to multiple different penicillin-binding proteins (PBPs), their binding profiles are almost always studied in lysed bacteria. Novel assays for PBP binding in the periplasm of intact bacteria were developed and proteins identified via proteomics. To characterize bacterial morphology changes in response to PBP binding, high-throughput flow cytometry and time-lapse confocal microscopy with fluorescent probes provide unprecedented mechanistic insights. Moreover, novel assays to quantify cytosolic receptor binding and intracellular drug concentrations inform target site occupancy. These mechanistic data are integrated by quantitative and systems pharmacology modeling to maximize bacterial killing and minimize resistance in in vitro and mouse infection models. This translational approach holds promise to identify antibiotic combination dosing strategies for patients with serious infections.
Collapse
Affiliation(s)
- Yinzhi Lang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Nirav R. Shah
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Present address: Jansen R&D, Johnson & Johnson, Spring House, Pennsylvania, USA
| | - Xun Tao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Present address: Genentech USA,Inc., South San Francisco, California, USA
| | - Stephanie M. Reeve
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jieqiang Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Bartolome Moya
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Alaa R. M. Sayed
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Suresh Dharuman
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jeremiah L. Oyer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Alicja J. Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Brett A. Fleischer
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Eunjeong Shin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Carolin Werkman
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Deanna Deveson Lucas
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Dhruvitkumar S. Sutaria
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Present address: Genentech USA,Inc., South San Francisco, California, USA
| | - Marianne Mégroz
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Tae Hwan Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Gyeongbuk, Korea
| | - Victoria Loudon-Hossler
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Amy Wright
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Rossie H. Jimenez-Nieves
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Miranda J. Wallace
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Keisha C. Cadet
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yuanyuan Jiao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - John D. Boyce
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Eric D. LoVullo
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Herbert P. Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Robert A. Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Nagakumar Bharatham
- BUGWORKS Research India Pvt. Ltd., Centre for Cellular & Molecular Platforms, National Centre for Biological Sciences, Bengaluru, Karnataka, India
| | - Brian T. Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, University at Buffalo, Buffalo, New York, USA
| | - Cornelia B. Landersdorfer
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Michael H. Norris
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography and the Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Venkataraman Balasubramanian
- BUGWORKS Research India Pvt. Ltd., Centre for Cellular & Molecular Platforms, National Centre for Biological Sciences, Bengaluru, Karnataka, India
| | - Richard E. Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - George L. Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
4
|
Using machine learning to optimize antibiotic combinations: dosing strategies for meropenem and polymyxin B against carbapenem-resistant Acinetobacter baumannii. Clin Microbiol Infect 2020; 26:1207-1213. [PMID: 32061797 DOI: 10.1016/j.cmi.2020.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Increased rates of carbapenem-resistant strains of Acinetobacter baumannii have forced clinicians to rely upon last-line agents, such as the polymyxins, or empirical, unoptimized combination therapy. Therefore, the objectives of this study were: (a) to evaluate the in vitro pharmacodynamics of meropenem and polymyxin B (PMB) combinations against A. baumannii; (b) to utilize a mechanism-based mathematical model to quantify bacterial killing; and (c) to develop a genetic algorithm (GA) to define optimal dosing strategies for meropenem and PMB. METHODS A. baumannii (N16870; MICmeropenem = 16 mg/L, MICPMB = 0.5 mg/L) was studied in the hollow-fibre infection model (initial inoculum 108 cfu/mL) over 14 days against meropenem and PMB combinations. A mechanism-based model of the data and population pharmacokinetics of each drug were used to develop a GA to define the optimal regimen parameters. RESULTS Monotherapies resulted in regrowth to ~1010 cfu/mL by 24 h, while combination regimens employing high-intensity PMB exposure achieved complete bacterial eradication (0 cfu/mL) by 336 h. The mechanism-based model demonstrated an SC50 (PMB concentration for 50% of maximum synergy on meropenem killing) of 0.0927 mg/L for PMB-susceptible subpopulations versus 3.40 mg/L for PMB-resistant subpopulations. The GA had a preference for meropenem regimens that improved the %T > MIC via longer infusion times and shorter dosing intervals. The GA predicted that treating 90% of simulated subjects harbouring a 108 cfu/mL starting inoculum to a point of 100 cfu/mL would require a regimen of meropenem 19.6 g/day 2 h prolonged infusion (2 hPI) q5h + PMB 5.17 mg/kg/day 2 hPI q6h (where the 0 h meropenem and PMB doses should be 'loaded' with 80.5% and 42.2% of the daily dose, respectively). CONCLUSION This study provides a methodology leveraging in vitro experimental data, a mathematical pharmacodynamic model, and population pharmacokinetics provide a possible avenue to optimize treatment regimens beyond the use of the 'traditional' indices of antibiotic action.
Collapse
|
5
|
Meropenem-Tobramycin Combination Regimens Combat Carbapenem-Resistant Pseudomonas aeruginosa in the Hollow-Fiber Infection Model Simulating Augmented Renal Clearance in Critically Ill Patients. Antimicrob Agents Chemother 2019; 64:AAC.01679-19. [PMID: 31636062 DOI: 10.1128/aac.01679-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Augmented renal clearance (ARC) is common in critically ill patients and is associated with subtherapeutic concentrations of renally eliminated antibiotics. We investigated the impact of ARC on bacterial killing and resistance amplification for meropenem and tobramycin regimens in monotherapy and combination. Two carbapenem-resistant Pseudomonas aeruginosa isolates were studied in static-concentration time-kill studies. One isolate was examined comprehensively in a 7-day hollow-fiber infection model (HFIM). Pharmacokinetic profiles representing substantial ARC (creatinine clearance of 250 ml/min) were generated in the HFIM for meropenem (1 g or 2 g administered every 8 h as 30-min infusion and 3 g/day or 6 g/day as continuous infusion [CI]) and tobramycin (7 mg/kg of body weight every 24 h as 30-min infusion) regimens. The time courses of total and less-susceptible bacterial populations and MICs were determined for the monotherapies and all four combination regimens. Mechanism-based mathematical modeling (MBM) was performed. In the HFIM, maximum bacterial killing with any meropenem monotherapy was ∼3 log10 CFU/ml at 7 h, followed by rapid regrowth with increases in resistant populations by 24 h (meropenem MIC of up to 128 mg/liter). Tobramycin monotherapy produced extensive initial killing (∼7 log10 at 4 h) with rapid regrowth by 24 h, including substantial increases in resistant populations (tobramycin MIC of 32 mg/liter). Combination regimens containing meropenem administered intermittently or as a 3-g/day CI suppressed regrowth for ∼1 to 3 days, with rapid regrowth of resistant bacteria. Only a 6-g/day CI of meropenem combined with tobramycin suppressed regrowth and resistance over 7 days. MBM described bacterial killing and regrowth for all regimens well. The mode of meropenem administration was critical for the combination to be maximally effective against carbapenem-resistant P. aeruginosa.
Collapse
|
6
|
Brennan-Krohn T, Kirby JE. When One Drug Is Not Enough: Context, Methodology, and Future Prospects in Antibacterial Synergy Testing. Clin Lab Med 2019; 39:345-358. [PMID: 31383261 PMCID: PMC6686866 DOI: 10.1016/j.cll.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibacterial combinations have long been used to accomplish a variety of therapeutic goals, including prevention of resistance and enhanced antimicrobial activity. In vitro synergy testing methods, including the checkerboard array, the time-kill study, diffusion assays, and pharmacokinetic/pharmacodynamic models, are used commonly in the research setting, but are not routinely performed in the clinical microbiology laboratory because of test complexity and uncertainty about their predictive value for patient outcomes. Optimized synergy testing techniques and better data on the relationship between in vitro results and clinical outcomes are needed to guide the rational use of antimicrobial combinations in the multidrug resistance era.
Collapse
Affiliation(s)
- Thea Brennan-Krohn
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle - CLS0624, Boston, MA 02115, USA; Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - James E Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue - YA309, Boston, MA 02215, USA.
| |
Collapse
|
7
|
Niu J, Straubinger RM, Mager DE. Pharmacodynamic Drug-Drug Interactions. Clin Pharmacol Ther 2019; 105:1395-1406. [PMID: 30912119 PMCID: PMC6529235 DOI: 10.1002/cpt.1434] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/13/2019] [Indexed: 01/01/2023]
Abstract
Pharmacodynamic drug-drug interactions (DDIs) occur when the pharmacological effect of one drug is altered by that of another drug in a combination regimen. DDIs often are classified as synergistic, additive, or antagonistic in nature, albeit these terms are frequently misused. Within a complex pathophysiological system, the mechanism of interaction may occur at the same target or through alternate pathways. Quantitative evaluation of pharmacodynamic DDIs by employing modeling and simulation approaches is needed to identify and optimize safe and effective combination therapy regimens. This review investigates the opportunities and challenges in pharmacodynamic DDI studies and highlights examples of quantitative methods for evaluating pharmacodynamic DDIs, with a particular emphasis on the use of mechanism-based modeling and simulation in DDI studies. Advancements in both experimental and computational techniques will enable the application of better, model-informed assessments of pharmacodynamic DDIs in drug discovery, development, and therapeutics.
Collapse
Affiliation(s)
- Jin Niu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Robert M. Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Donald E. Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
8
|
Generating Robust and Informative Nonclinical In Vitro and In Vivo Bacterial Infection Model Efficacy Data To Support Translation to Humans. Antimicrob Agents Chemother 2019; 63:AAC.02307-18. [PMID: 30833428 PMCID: PMC6496039 DOI: 10.1128/aac.02307-18] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In June 2017, the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, organized a workshop entitled “Pharmacokinetics-Pharmacodynamics (PK/PD) for Development of Therapeutics against Bacterial Pathogens.” The aims were to discuss details of various PK/PD models and identify sound practices for deriving and utilizing PK/PD relationships to design optimal dosage regimens for patients. Workshop participants encompassed individuals from academia, industry, and government, including the United States Food and Drug Administration. In June 2017, the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, organized a workshop entitled “Pharmacokinetics-Pharmacodynamics (PK/PD) for Development of Therapeutics against Bacterial Pathogens.” The aims were to discuss details of various PK/PD models and identify sound practices for deriving and utilizing PK/PD relationships to design optimal dosage regimens for patients. Workshop participants encompassed individuals from academia, industry, and government, including the United States Food and Drug Administration. This and the accompanying review on clinical PK/PD summarize the workshop discussions and recommendations. Nonclinical PK/PD models play a critical role in designing human dosage regimens and are essential tools for drug development. These include in vitro and in vivo efficacy models that provide valuable and complementary information for dose selection and translation from the laboratory to human. It is crucial that studies be designed, conducted, and interpreted appropriately. For antibacterial PK/PD, extensive published data and expertise are available. These have been leveraged to develop recommendations, identify common pitfalls, and describe the applications, strengths, and limitations of various nonclinical infection models and translational approaches. Despite these robust tools and published guidance, characterizing nonclinical PK/PD relationships may not be straightforward, especially for a new drug or new class. Antimicrobial PK/PD is an evolving discipline that needs to adapt to future research and development needs. Open communication between academia, pharmaceutical industry, government, and regulatory bodies is essential to share perspectives and collectively solve future challenges.
Collapse
|
9
|
Meropenem Combined with Ciprofloxacin Combats Hypermutable Pseudomonas aeruginosa from Respiratory Infections of Cystic Fibrosis Patients. Antimicrob Agents Chemother 2018; 62:AAC.01150-18. [PMID: 30104278 DOI: 10.1128/aac.01150-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022] Open
Abstract
Hypermutable Pseudomonas aeruginosa organisms are prevalent in chronic respiratory infections and have been associated with reduced lung function in cystic fibrosis (CF); these isolates can become resistant to all antibiotics in monotherapy. This study aimed to evaluate the time course of bacterial killing and resistance of meropenem and ciprofloxacin in combination against hypermutable and nonhypermutable P. aeruginosa Static concentration time-kill experiments over 72 h assessed meropenem and ciprofloxacin in mono- and combination therapies against PAO1 (nonhypermutable), PAOΔmutS (hypermutable), and hypermutable isolates CW8, CW35, and CW44 obtained from CF patients with chronic respiratory infections. Meropenem (1 or 2 g every 8 h [q8h] as 3-h infusions and 3 g/day as a continuous infusion) and ciprofloxacin (400 mg q8h as 1-h infusions) in monotherapies and combinations were further evaluated in an 8-day hollow-fiber infection model study (HFIM) against CW44. Concentration-time profiles in lung epithelial lining fluid reflecting the pharmacokinetics in CF patients were simulated and counts of total and resistant bacteria determined. All data were analyzed by mechanism-based modeling (MBM). In the HFIM, all monotherapies resulted in rapid regrowth with resistance at 48 h. The maximum daily doses of 6 g meropenem (T>MIC of 80% to 88%) and 1.2 g ciprofloxacin (area under the concentration-time curve over 24 h in the steady state divided by the MIC [AUC/MIC], 176), both given intermittently, in monotherapy failed to suppress regrowth and resulted in substantial emergence of resistance (≥7.6 log10 CFU/ml resistant populations). The combination of these regimens achieved synergistic killing and suppressed resistance. MBM with subpopulation and mechanistic synergy yielded unbiased and precise curve fits. Thus, the combination of 6 g/day meropenem plus ciprofloxacin holds promise for future clinical evaluation against infections by susceptible hypermutable P. aeruginosa.
Collapse
|
10
|
|