1
|
Ito K, Kizawa Y, Kimura G, Nishimoto Y, Daly L, Knowles I, Hows M, Ayrton J, Strong P. Relationship between anti-fungal effects and lung exposure of PC945, a novel inhaled antifungal agent, in Aspergillus fumigatus infected mice: Pulmonary PK-PD analysis of anti-fungal PC945. Eur J Pharm Sci 2021; 163:105878. [PMID: 34015430 DOI: 10.1016/j.ejps.2021.105878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/23/2021] [Accepted: 05/08/2021] [Indexed: 11/30/2022]
Abstract
PC945 is a novel antifungal agent, optimised for inhaled treatment. In this study, the relationship between antifungal effects of PC945 and its exposure in the lungs was investigated in Aspergillus fumigatus intranasally infected, temporarily neutropenic mice. Mice were given prophylactic PC945 intranasally once daily (0.56 µg/mouse) on either Day -7 to 0 (8 doses) or Day -1 to 0 (2 doses). Lung tissue, plasma and bronchoalveolar lavage (BAL) fluid were collected 24 or 72 h post A. fumigatus inoculation for biomarker and pharmacokinetic analyses. BAL cell pellets and supernatants were prepared separately by centrifugation. 8 prophylactic doses of PC945 were found to demonstrate significantly stronger antifungal effects (lung fungal burden and galactomannan (GM) in BAL and plasma) than prophylaxis with 2 doses. PC945 concentrations were below the limit of detection in plasma but readily measured in lung extracts. The concentrations were much higher after extended prophylaxis (709 and 312 ng/g of lung) than short prophylaxis (301 and 195 ng/g of lung) at 24 and 72 h post last dose, respectively, suggesting PC945 accumulation in whole lung after repeat dosing although it was likely to be a mixture of dissolved and undissolved PC945, meaning that the data should be interpreted with caution. Interestingly, low concentrations of PC945 were detected in BAL supernatant (6.6 and 1.9 ng/ml) whereas high levels of PC945 were measured in BAL cell pellets (626 and 406 ng/ml) at 24 and 72 h post last dose, respectively, in extended prophylaxis. In addition, the PC945 concentrations in BAL cells showed a statistically significant correlation with measured anti-fungal activities. These observations will be pursued, and it is intended that BAL cell concentrations of PC945 be measured in future clinical studies rather than standard measurement in BAL itself. Thus, PC945's profile makes it an attractive potential prophylactic agent for the prevention of pulmonary fungal infections.
Collapse
Affiliation(s)
- Kazuhiro Ito
- Pulmocide Ltd, Pulmocide Ltd, Office Suite 3.01, 44 Southampton Buildings, London WC2A 1AP, UK.
| | - Yasuo Kizawa
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University, Funabashi 274-8555, Japan
| | - Genki Kimura
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University, Funabashi 274-8555, Japan
| | - Yuki Nishimoto
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University, Funabashi 274-8555, Japan
| | - Leah Daly
- Pulmocide Ltd, Pulmocide Ltd, Office Suite 3.01, 44 Southampton Buildings, London WC2A 1AP, UK
| | - Ian Knowles
- Pharmidex Ltd., Watford Road, Harrow HA1 3UJ, UK
| | | | - John Ayrton
- Pulmocide Ltd, Pulmocide Ltd, Office Suite 3.01, 44 Southampton Buildings, London WC2A 1AP, UK
| | - Pete Strong
- Pulmocide Ltd, Pulmocide Ltd, Office Suite 3.01, 44 Southampton Buildings, London WC2A 1AP, UK
| |
Collapse
|
2
|
Abstract
Posaconazole is typically used for preventing invasive yeast and mold infections such as invasive aspergillosis in high-risk immunocompromised patients. The oral suspension was the first released formulation and many pharmacokinetic and pharmacodynamic studies of this formulation have been published. Erratic absorption profiles associated with this formulation were widely reported. Posaconazole exposure was found to be significantly influenced by food and many gastrointestinal conditions, including pH and motility. As a result, low posaconazole plasma concentrations were obtained in large groups of patients. These issues of erratic absorption urged the development of the subsequently marketed delayed-release tablet, which proved to be associated with higher and more stable exposure profiles. Shortly thereafter, an intravenous formulation was released for patients who are not able to take oral formulations. Both new formulations require a loading dose on day 1 to achieve high posaconazole concentrations more quickly, which was not possible with the oral suspension. So far, there appears to be no evidence of increased toxicity correlated to the higher posaconazole exposure achieved with the regimen for these formulations. The higher systemic availability of posaconazole for the delayed-release tablet and intravenous formulation have resulted in these two formulations being preferable for both prophylaxis and treatment of invasive fungal disease. This review aimed to integrate the current knowledge on posaconazole pharmacokinetics, pharmacodynamics, major toxicity, existing resistance, clinical experience in special populations, and new therapeutic strategies in order to get a clear understanding of the clinical use of this drug.
Collapse
|
3
|
Antifungal Drugs Influence Neutrophil Effector Functions. Antimicrob Agents Chemother 2019; 63:AAC.02409-18. [PMID: 30910895 DOI: 10.1128/aac.02409-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/17/2019] [Indexed: 12/14/2022] Open
Abstract
There is a growing body of evidence for immunomodulatory side effects of antifungal agents on different immune cells, e.g., T cells. Therefore, the aim of our study was to clarify these interactions with regard to the effector functions of polymorphonuclear neutrophils (PMN). Human PMN were preincubated with fluconazole (FLC), voriconazole (VRC), posaconazole (POS), isavuconazole (ISA), caspofungin (CAS), micafungin (MFG), conventional amphotericin B (AMB), and liposomal amphotericin B (LAMB). PMN then were analyzed by flow cytometry for activation, degranulation, and phagocytosis and by dichlorofluorescein assay to detect reactive oxygen species (ROS). Additionally, interleukin-8 (IL-8) release was measured by enzyme-linked immunosorbent assay. POS led to enhanced activation, degranulation, and generation of ROS, whereas IL-8 release was reduced. In contrast, ISA-pretreated PMN showed decreased activation signaling, impaired degranulation, and lower generation of ROS. MFG caused enhanced expression of activation markers but impaired degranulation, phagocytosis, generation of ROS, and IL-8 release. CAS showed increased phagocytosis, whereas degranulation and generation of ROS were reduced. AMB led to activation of almost all effector functions besides impaired phagocytosis, whereas LAMB did not alter any effector functions. Independent from class, antifungal agents show variable influence on neutrophil effector functions in vitro Whether this is clinically relevant needs to be clarified.
Collapse
|
4
|
Baistrocchi SR, Lee MJ, Lehoux M, Ralph B, Snarr BD, Robitaille R, Sheppard DC. Posaconazole-Loaded Leukocytes as a Novel Treatment Strategy Targeting Invasive Pulmonary Aspergillosis. J Infect Dis 2017; 215:1734-1741. [PMID: 27799353 DOI: 10.1093/infdis/jiw513] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/07/2016] [Indexed: 01/15/2023] Open
Abstract
Background Impaired delivery of antifungals to hyphae within necrotic lesions is thought to contribute to therapeutic failure in invasive pulmonary aspergillosis (IPA). We hypothesized that transfusion of leukocytes loaded ex vivo with the lipophilic antifungal posaconazole could improve delivery of antifungals to the sites of established infection and improve outcome in experimental IPA. Methods The HL-60 leukemia cell line was differentiated to a neutrophil-like phenotype (differentiated HL-60 [dHL-60] cells) and then exposed to a range of posaconazole concentrations. The functional capacity and antifungal activity of these cells were assessed in vitro and in a mouse model of IPA. Results Posaconazole levels in dHL-60 cells were 265-fold greater than the exposure concentration. Posaconazole-loaded cells were viable and maintained their capacity to undergo active chemotaxis. Contact-dependent transfer of posaconazole from dHL-60 cells to hyphae was observed in vitro, resulting in decreased fungal viability. In a neutropenic mouse model of IPA, treatment with posaconazole-loaded dHL-60 cells resulted in significantly reduced fungal burden in comparison to treatment with dHL-60 cells alone. Conclusions Posaconazole accumulates at high concentrations in dHL-60 cells and increases their antifungal activity in vitro and in vivo. These findings suggest that posaconazole-loading of leukocytes may hold promise for the therapy of IPA.
Collapse
Affiliation(s)
- Shane R Baistrocchi
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| | - Mark J Lee
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| | - Melanie Lehoux
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| | - Benjamin Ralph
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| | - Brendan D Snarr
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| | - Robert Robitaille
- Biochemistry Division, Hôpital Maisonneuve-Rosemont, CIUSSS Est-de-l'Île-de-Montréal, Montréal, Canada
| | - Donald C Sheppard
- Department of Microbiology and Immunology, McGill University.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre
| |
Collapse
|
5
|
Han Q, Bing W, Di Y, Hua L, Shi-he L, Yu-hua Z, Xiu-guo H, Yu-gang W, Qi-ming F, Shih-mo Y, Ting-ting T. Kinsenoside screening with a microfluidic chip attenuates gouty arthritis through inactivating NF-κB signaling in macrophages and protecting endothelial cells. Cell Death Dis 2016; 7:e2350. [PMID: 27584788 PMCID: PMC5059859 DOI: 10.1038/cddis.2016.255] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/04/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022]
Abstract
Gouty arthritis is a rheumatic disease that is characterized by the deposition of monosodium urate (MSU) in synovial joints cause by the increased serum hyperuricemia. This study used a three-dimensional (3D) flowing microfluidic chip to screen the effective candidate against MSU-stimulated human umbilical vein endothelial cell (HUVEC) damage, and found kinsenoside (Kin) to be the leading active component of Anoectochilus roxburghi, one of the Chinese medicinal plant widely used in the treatment of gouty arthritis clinically. Cell viability and apoptosis of HUVECs were evaluated, indicating that direct Kin stimulation and conditioned medium (CM) from Kin-treated macrophages both negatively modulated with MSU crystals. Additionally, Kin was capable of attenuating MSU-induced activation of nuclear factor-κB/mitogen-activated protein kinase (NF-κB/MAPK) signaling, targeting IκB kinase-α (IKKα) and IKKβ kinases of macrophages and influencing the expressions of NF-κB downstream cytokines and subsequent HUVEC bioactivity. Inflammasome NLR pyrin domain-containing 3 (NALP3) and toll-like receptor 2 (TLR2) were also inhibited after Kin treatment. Also, Kin downregulated CD14-mediated MSU crystals uptake in macrophages. In vivo study with MSU-injected ankle joints further revealed the significant suppression of inflammatory infiltration and endothelia impairment coupled with alleviation of ankle swelling and nociceptive response via Kin treatments. Taken together, these data implicated that Kin was the most effective candidate from Anoectochilus roxburghi to treat gouty arthritis clinically.
Collapse
Affiliation(s)
- Qiao Han
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wang Bing
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yin Di
- Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Li Hua
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Li Shi-he
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Zheng Yu-hua
- Wenshan Zhengbao Orthopaedic Hospital of Yunnan Province, Wenshan, People's Republic of China
| | - Han Xiu-guo
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wang Yu-gang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fan Qi-ming
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yang Shih-mo
- Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Tang Ting-ting
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|