1
|
Zaj N, Kopyt W, Kamizela E, Zarychta J, Kowalczyk A, Lejman M, Zawitkowska J. Diagnostic and Therapeutic Challenge Caused by Candida albicans and Aspergillus spp. Infections in a Pediatric Patient as a Complication of Acute Lymphoblastic Leukemia Treatment: A Case Report and Literature Review. Pathogens 2024; 13:772. [PMID: 39338963 PMCID: PMC11435145 DOI: 10.3390/pathogens13090772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Fungal infections constitute a significant challenge and continue to be a predominant cause of treatment failure in pediatric leukemia cases. Despite the implementation of antifungal prophylaxis, these infections contribute to approximately 20% of cases in children undergoing treatment for acute lymphoblastic leukemia (ALL). The aim of this study is to highlight the diagnostic and therapeutic challenges associated with invasive fungal infections (IFIs). We also present a review of the epidemiology, risk factors, treatment, and a clinical presentation of IFI in patients with ALL. This case report details the clinical course of confirmed Candida albicans (C. albicans) and Aspergillus spp. infections during the consolidation phase of ALL treatment in a 5-year-old pediatric patient. This male patient did not experience any complications until Day 28 of protocol II. Then, the patient's condition deteriorated. Blood culture detected the growth of C. albicans. Despite the implementation of targeted therapy, the boy's condition did not show improvement. The appearance of respiratory symptoms necessitated a computed tomography (CT) of the chest, which revealed multiple nodular densities atypical for C. albicans etiology. In spite of ongoing antifungal treatment, the lesions depicted in the CT scans showed no regression. A lung biopsy ultimately identified Aspergillus species as the source of the infection. Overcoming fungal infections poses a considerable challenge; therefore, an accurate diagnosis and the prompt initiation of targeted therapy are crucial in managing these infections in patients with leukemia.
Collapse
Affiliation(s)
- Natalia Zaj
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (N.Z.); (W.K.); (E.K.); (J.Z.); (A.K.)
| | - Weronika Kopyt
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (N.Z.); (W.K.); (E.K.); (J.Z.); (A.K.)
| | - Emilia Kamizela
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (N.Z.); (W.K.); (E.K.); (J.Z.); (A.K.)
| | - Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (N.Z.); (W.K.); (E.K.); (J.Z.); (A.K.)
| | - Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (N.Z.); (W.K.); (E.K.); (J.Z.); (A.K.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Gatti M, Campoli C, Muratore E, Belotti T, Masetti R, Lanari M, Viale P, Pea F. Impact of Inflammatory Burden on Voriconazole Exposure in Oncohematological Pediatric Patients Receiving Antifungal Prophylaxis after Allogeneic HCT. Microorganisms 2024; 12:1388. [PMID: 39065156 PMCID: PMC11278995 DOI: 10.3390/microorganisms12071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: The impact of inflammation on voriconazole exposure in oncohematological pediatric patients represents a debated issue. We aimed to investigate the impact of serum C-reactive protein (CRP), procalcitonin (PCT), and interleukin-6 (IL-6) levels on voriconazole exposure in oncohematological pediatric patients requiring allogeneic hematopoietic stem cell transplantation (HCT). (2) Methods: Pediatric patients undergoing allogeneic HCT and receiving therapeutic drug monitoring (TDM)-guided voriconazole as primary antifungal prophylaxis between January 2021 and December 2023 were included. The ratio between concentration and dose (C/D) of voriconazole was used as a surrogate marker of total clearance. A receiving operating characteristic curve analysis was performed by using CRP, PCT, or IL-6 values as the test variable and voriconazole C/D ratio > 0.188 or >0.375 (corresponding to a trough concentration value [Cmin] of 3 mg/L normalized to the maintenance dose of 16 mg/kg/day in patients of age < 12 years and of 8 mg/kg/day in those ≥12 years, respectively) as the state variable. Area under the curve (AUC) and 95% confidence interval (CI) were calculated. (3) Results: Overall, 39 patients were included. The median (IQR) voriconazole Cmin was 1.7 (0.7-3.0) mg/L. A CRP value > 8.49 mg/dL (AUC = 0.72; 95%CI 0.68-0.76; p < 0.0001), a PCT value > 2.6 ng/mL (AUC = 0.71; 95%CI 0.63-0.77; p < 0.0001), and an IL-6 value > 27.9 pg/mL (AUC = 0.80; 95%CI 0.71-0.88; p < 0.0001) were significantly associated with voriconazole overexposure. Consistent results were found in patients aged <12 and ≥12 years. (4) Conclusions: A single specific threshold of inflammatory biomarkers may be linked to a significantly higher risk of voriconazole exposure in oncohematological pediatric patients after HCT, irrespective of age. Adopting a TDM-guided strategy could be useful for minimizing the risk of voriconazole overexposure.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (R.M.); (M.L.); (P.V.); (F.P.)
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Caterina Campoli
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Edoardo Muratore
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.M.); (T.B.)
| | - Tamara Belotti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.M.); (T.B.)
| | - Riccardo Masetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (R.M.); (M.L.); (P.V.); (F.P.)
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (E.M.); (T.B.)
| | - Marcello Lanari
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (R.M.); (M.L.); (P.V.); (F.P.)
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (R.M.); (M.L.); (P.V.); (F.P.)
- Infectious Diseases Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (R.M.); (M.L.); (P.V.); (F.P.)
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
3
|
Gastine SE, Rauwolf KK, Pieper S, Hempel G, Lehrnbecher T, Tragiannidis A, Groll AH. Voriconazole plasma concentrations and dosing in paediatric patients below 24 months of age. Mycoses 2023; 66:969-976. [PMID: 37553971 DOI: 10.1111/myc.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Voriconazole (VCZ) is an important first-line option for management of invasive fungal diseases and approved in paediatric patients ≥24 months at distinct dosing schedules that consider different developmental stages. Information on dosing and exposures in children <24 months of age is scarce. Here we report our experience in children <24 months who received VCZ due to the lack of alternative treatment options. This retrospective analysis includes 50 distinct treatment episodes in 17 immunocompromised children aged between 3 and <24 months, who received VCZ between 2004 and 2022 as prophylaxis (14 patients; 47 episodes) or as empirical treatment (3 patients; 3 episodes) by mouth (46 episodes) or intravenously (4 episodes) based on contraindications, intolerance or lack of alternative options. Trough concentrations were measured as clinically indicated, and tolerability was assessed based on hepatic function parameters and discontinuations due to adverse events (AEs). VCZ was administered for a median duration of 10 days (range: 1-138). Intravenous doses ranged from 4.9 to 7.0 mg/kg (median: 6.5) twice daily, and oral doses from 3.8 to 29 mg/kg (median: 9.5) twice daily, respectively. The median trough concentration was 0.63 mg/L (range: 0.01-16.2; 38 samples). Only 34.2% of samples were in the recommended target range of 1-6 mg/L; 57.9% had lower and 7.9% higher trough concentrations. Hepatic function parameters analysed at baseline, during treatment and at end of treatment did not show significant changes during VCZ treatment. There was no correlation between dose and exposure or hepatic function parameters. In three episodes, VCZ was discontinued due to an AE (6%; three patients). In conclusion, this retrospective analysis reveals no signal for increased toxicity in paediatric patients <24 months of age. Empirical dosing resulted in mostly subtherapeutic exposures which emphasises the need for more systematic study of the pharmacokinetics of VCZ in this age group.
Collapse
Affiliation(s)
- Silke E Gastine
- Institute of Pharmaceutical and Medical Chemistry - Department of Clinical Pharmacy, Westphalian Wilhelms University Münster, Münster, Germany
| | - Kerstin K Rauwolf
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
| | - Stephanie Pieper
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
| | - Georg Hempel
- Institute of Pharmaceutical and Medical Chemistry - Department of Clinical Pharmacy, Westphalian Wilhelms University Münster, Münster, Germany
| | - Thomas Lehrnbecher
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | - Athanasios Tragiannidis
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
- 2nd Department of Pediatrics, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital Münster, Münster, Germany
| |
Collapse
|
4
|
Xie M, Jiang M, Qiu H, Rong L, Kong L. Optimization of Voriconazole Dosing Regimens Against Aspergillus Species and Candida Species in Pediatric Patients After Hematopoietic Cell Transplantation: A Theoretical Study Based on Pharmacokinetic/Pharmacodynamic Analysis. J Clin Pharmacol 2023; 63:993-1001. [PMID: 37083934 DOI: 10.1002/jcph.2254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
This study aimed to optimize the dosing regimens of voriconazole (VRC) for pediatric patients after hematopoietic cell transplantation with different cytochrome P450 (CYP) 2C19 phenotypes and body weights, based on pharmacokinetic (PK)/pharmacodynamic (PD) analysis. The PK parameters of VRC were derived from previous literature. Combined with key factors affecting VRC, patients were categorized into 9 subgroups based on different CYP2C19 phenotypes (poor metabolizer/intermediate metabolizer, normal metabolizer, and rapid metabolizer/ultrarapid metabolizer) and typical body weights (15, 40, and 65 kg). Monte Carlo simulation was used to investigate dosing regimens for different groups. The area under the 24-hour free drug concentration-time curve to the minimum inhibitory concentration (MIC) > 25 was used as the target value for effective treatment. The probability of target achievement and the cumulative fraction of response were determined on the basis of the assumed MICs and MICs distribution frequency of Aspergillus species and Candida species. When the MIC was ≤1 mg/L, 4 mg/kg every 12 hours was sufficient for optimal effects in groups 1-3 and groups 5 and 6; however, 6 mg/kg every 12 hours was required for group 4, and 8 mg/kg every 12 hours was required for groups 7-9. In empirical treatment, lower (2-6 mg/kg every 12 hours) and higher (6-12 mg/kg every 12 hours) dosing regimens were recommended for Candida spp. and Aspergillus spp., respectively. Our findings will assist in selecting appropriate dosing regimens of VRC for pediatric patients after hematopoietic cell transplantation with different CYP2C19 phenotypes and body weights. Clinically, it is better to continuously adjust the dosing on the basis of the therapeutic drug monitoring.
Collapse
Affiliation(s)
- Mengyuan Xie
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Manxue Jiang
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Hongyu Qiu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Li Rong
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Lingti Kong
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- School of Pharmacy, Bengbu Medical College, Bengbu, China
| |
Collapse
|
5
|
Gatti M, Pea F. The expert clinical pharmacological advice program for tailoring on real-time antimicrobial therapies with emerging TDM candidates in special populations: how the ugly duckling turned into a swan. Expert Rev Clin Pharmacol 2023; 16:1035-1051. [PMID: 37874608 DOI: 10.1080/17512433.2023.2274984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION The growing spread of infections caused by multidrug-resistant pathogens makes the need of tailoring antimicrobial therapies by means of a 'patient-centered' approach fundamental. In this scenario, therapeutic drug monitoring (TDM) of emerging antimicrobial candidates may be a valuable approach, but expert interpretation of TDM results should be granted for making them more clinically useful. The MD Clinical Pharmacologist may take over this task since this specialist may couple PK/PD expertise on drugs with a medical background and may provide expert interpretation of TDM results of antimicrobials for tailoring therapy on real-time in each single patient based on specific both drug/pathogen issues and patient issues. AREAS COVERED This article aims to highlight the main key-points and organizational aspects for implementing a successful TDM-based expert clinical pharmacological advice (ECPA) program for tailoring antimicrobial therapies on real-time in different hospitalized patient special populations. EXPERT OPINION TDM-based ECPA programs lead by the MD Clinical Pharmacologist may represent a way forward for maximizing clinical efficacy and for minimizing the risk of resistance developments and/or toxicity of antimicrobials. Stakeholders should be aware of the fact that this innovative approach may be cost-effective.
Collapse
Affiliation(s)
- Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
6
|
Hsu AJ, Lee CK, McAteer J, Zhang SX, Tamma PD. Boosting of Voriconazole Levels With Omeprazole, A CYP450 2C19 Inhibitor. Pediatr Infect Dis J 2023; 42:485-488. [PMID: 36916862 PMCID: PMC10198811 DOI: 10.1097/inf.0000000000003898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Children metabolize voriconazole faster than adults and require higher weight-based doses and more frequent administration to achieve therapeutic troughs. We report a case of a 4-year-old girl with disseminated fusariosis with persistently undetectable voriconazole troughs. Omeprazole was added as a CYP2C19-inhibitor to increase voriconazole concentrations. This case highlights the role of omeprazole for voriconazole boosting in a child.
Collapse
Affiliation(s)
- Alice J. Hsu
- The Johns Hopkins Hospital, Department of Pharmacy, Baltimore, MD
| | - Carlton K.K. Lee
- The Johns Hopkins Hospital, Department of Pharmacy, Baltimore, MD
| | - John McAteer
- The Johns Hopkins University School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Diseases, Baltimore, MD
| | - Sean X. Zhang
- The Johns Hopkins University School of Medicine, Department of Pathology, Division of Medical Microbiology, The Johns Hopkins Hospital, Baltimore, MD
| | - Pranita D. Tamma
- The Johns Hopkins University School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Diseases, Baltimore, MD
| |
Collapse
|
7
|
Otto WR, Arendrup MC, Fisher BT. A Practical Guide to Antifungal Susceptibility Testing. J Pediatric Infect Dis Soc 2023; 12:214-221. [PMID: 36882026 PMCID: PMC10305799 DOI: 10.1093/jpids/piad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
We review antifungal susceptibility testing and the development of clinical breakpoints, and detail an approach to using antifungal susceptibility results when breakpoints have not been defined. This information may prove helpful when selecting therapy for invasive fungal infections in children.
Collapse
Affiliation(s)
- William R Otto
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital and Medical Center, Cincinnati, Ohio, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Brian T Fisher
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Du W, Xu R, He Z, Yang H, Gu Y, Liu Y. Transcriptomics-based investigation of molecular mechanisms underlying synergistic antimicrobial effects of AgNPs and Domiphen on the human fungal pathogen Aspergillus fumigatus. Front Microbiol 2023; 14:1089267. [PMID: 36819018 PMCID: PMC9928863 DOI: 10.3389/fmicb.2023.1089267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Critically ill patients have higher risk of serious fungal infections, such as invasive aspergillosis (IA) which is mainly caused by the human fungal pathogen Aspergillus fumigatus. Triazole drugs are the primary therapeutic agents for the first-line treatment of IA, which could easily cause drug resistance problems. Here, we assess the potential of AgNPs synthesized with Artemisia argyi leaf extract and domiphen as new antifungal agents to produce synergistic antimicrobial effects on Aspergillus fumigatus, and dissect possible molecular mechanisms of action. Plate inoculation assays combined with drug susceptibility test and cytotoxicity test showed that the combination of AgNPs and domiphen has synergistic antimicrobial effects on A. fumigatus with low cytotoxicity. Gene Ontology (GO) enrichment analysis showed that AgNPs and domiphen inhibit the growth of A. fumigatus by suppressing nitrate assimilation, and purine nucleobase metabolic process and amino acid transmembrane transport, respectively. When the two drugs are combined, AgNPs has epistatic effects on domiphen. Moreover, the combination of AgNPs and domiphen primarily influence secondary metabolites biosynthesis, steroid biosynthesis and nucleotide sugar metabolism of A. fumigatus via Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, protein-protein interactions (PPI) analysis combined with validation experiments showed that the combination of AgNPs and domiphen could enhance the expression of copper transporter and inhibit nitrogen source metabolism. In addition, the synergistic antimicrobial effects could be enhanced or eliminated depending on exogenous addition of copper and nitrogen source, respectively. Taken together, the results of this study provide a theoretical basis and a new strategy for the treatment of IA.
Collapse
Affiliation(s)
- Wenlong Du
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Wenlong Du, ✉
| | - Ruolin Xu
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiqiang He
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huan Yang
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yufan Gu
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi Liu
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Yi Liu, ✉
| |
Collapse
|
9
|
Isavuconazole Pharmacokinetics and Pharmacodynamics in Children. Pharmaceutics 2022; 15:pharmaceutics15010075. [PMID: 36678704 PMCID: PMC9865364 DOI: 10.3390/pharmaceutics15010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Isavuconazole is a broad-spectrum azole anti-fungal not yet approved in children. We conducted a retrospective, single-center review of isavuconazole use and routine therapeutic drug monitoring in pediatric patients, extracting demographic, dosing, concentration, mortality and hepatoxicity data. We constructed a nonparametric population model using Pmetrics. Of 26 patients, 19 (73%) were male. The mean (SD) age and weight were 12.7 (5.5) years and 50.9 (26.8) kg. Eighty percent received between 9.7 and 10.6 mg/kg per dose. Ten (38%) subjects had proven fungal disease and eight (31%) had probable disease, mostly with Candida and Aspergillus spp. The predicted steady-state isavuconazole concentrations in our patients were similar to previous reports in children and adults, and simulations with the proposed dosing of 10 mg/kg/dose every 8 h for 2 days followed by once daily maintenance matched effective adult exposures. Attributable mortality (5 of 11 deaths) was associated with steady-state daily AUC < 60 mg∗h/L and higher AST/ALT with trough concentrations > 5 mg/L. Neither dose nor trough alone correlated well with AUC, but AUC can be estimated with one sample 10 h after the first maintenance dose or a trough concentration, if combined with a Bayesian approach or a peak and trough without a Bayesian approach.
Collapse
|