1
|
Alvarado-Peña N, Galeana-Cadena D, Gómez-García IA, Mainero XS, Silva-Herzog E. The microbiome and the gut-lung axis in tuberculosis: interplay in the course of disease and treatment. Front Microbiol 2023; 14:1237998. [PMID: 38029121 PMCID: PMC10643882 DOI: 10.3389/fmicb.2023.1237998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB) that remains a significant global health challenge. The extensive use of antibiotics in tuberculosis treatment, disrupts the delicate balance of the microbiota in various organs, including the gastrointestinal and respiratory systems. This gut-lung axis involves dynamic interactions among immune cells, microbiota, and signaling molecules from both organs. The alterations of the microbiome resulting from anti-TB treatment can significantly influence the course of tuberculosis, impacting aspects such as complete healing, reinfection, and relapse. This review aims to provide a comprehensive understanding of the gut-lung axis in the context of tuberculosis, with a specific focus on the impact of anti-TB treatment on the microbiome.
Collapse
Affiliation(s)
- Néstor Alvarado-Peña
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, México City, Mexico
| | - David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, México City, Mexico
| | - Xavier Soberón Mainero
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eugenia Silva-Herzog
- Laboratorio de Vinculación Científica, Facultad de Medicina-Universidad Nacional Autonoma de México-Instituto Nacional de Medicina Genomica, México City, Mexico
| |
Collapse
|
2
|
Rajendiran S, Veloo Y, Thahir SSA, Shaharudin R. Resistance towards Critically Important Antimicrobials among Enterococcus faecalis and E. faecium in Poultry Farm Environments in Selangor, Malaysia. Antibiotics (Basel) 2022; 11:antibiotics11081118. [PMID: 36009987 PMCID: PMC9405032 DOI: 10.3390/antibiotics11081118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Multidrug resistant (MDR) enterococci pose significant public health challenges. However, the extent of resistance in the environment is less explored. This study aimed to determine the antibiotic resistance in a poultry farm environment. Eighty enterococcal isolates recovered from the soil and effluent water of 28 poultry farms in Selangor state were included in the study for further bacterial identification and antibiotic susceptibility testing using a VITEK 2 system. Data were analyzed using Statistical Package for Social Science (SPSS) version 27. The resistance rate and MDR of enterococcal isolates were reported. Out of 80 isolates recovered, 72 (90%) exhibited resistance to at least one antibiotic, with 50 isolates (62.5%) being found to be MDR. All linezolid-resistant enterococci (LRE) exhibit MDR, which constituted 40% of resistance among all the isolates recovered from poultry environment. Since linezolid is listed as critically important antibiotics for clinical use by the World Health Organization (WHO), the higher resistance towards it and other critically important antibiotic for human use is a serious concern. Hence, relevant agencies need to investigate the use of clinically important antimicrobials in poultry farms paying special attention towards linezolid or any other antibiotics that can facilitate the development of LRE.
Collapse
|
3
|
Mello SS, Van Tyne D, Lebreton F, Silva SQ, Nogueira MCL, Gilmore MS, Camargo ILBC. A mutation in the glycosyltransferase gene lafB causes daptomycin hypersusceptibility in Enterococcus faecium. J Antimicrob Chemother 2021; 75:36-45. [PMID: 31586422 DOI: 10.1093/jac/dkz403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To verify dissemination of daptomycin-non-susceptible Enterococcus faecium in a hospital where daptomycin was not in use and to understand the evolutionary pathways connecting daptomycin hypersusceptibility to non-susceptibility. METHODS Clonality of 26 E. faecium was assessed by PFGE and the STs of these isolates were determined. The most daptomycin-susceptible isolate was evolved in vitro by stepwise daptomycin selection, generating isolates for genome comparisons. RESULTS The spread of a high-risk daptomycin-non-susceptible VRE clone was detected, as was the occurrence of an unusual daptomycin-hypersusceptible strain (HBSJRP18). To determine the basis for daptomycin hypersusceptibility, we evolved HBSJRP18 in vitro and identified candidate genetic alterations potentially related to daptomycin susceptibility. Both lafB, encoding glycosyltransferase, which is putatively involved in lipoteichoic acid (LTA) biosynthesis, and dak, encoding a dihydroxyacetone kinase likely involved in fatty acid metabolism, were mutated in multiple independent experiments. Trans-complementation showed that the lafB polymorphism naturally occurring in HBSJRP18 caused its daptomycin hypersusceptibility. Fourier-transform infrared spectroscopy identified differences between the extracted LTA spectra from the hypersusceptible isolate and its revertant, as well as other non-susceptible variants, supporting a role for LafB in E. faecium LTA biosynthesis. Zeta potential difference was detected in one evolved dak mutant derivative. While much more susceptible to daptomycin, HBSJRP18 showed enhanced growth in the presence of piperacillin, suggesting that this, or another cell wall-targeting antibiotic, may have selected for the daptomycin-hypersusceptible phenotype. CONCLUSIONS Our findings provide new information on the basis for daptomycin susceptibility in E. faecium, with implications for limiting the development and spread of daptomycin resistance.
Collapse
Affiliation(s)
- Suelen S Mello
- Federal University of São Carlos, São Carlos, Brazil.,São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Daria Van Tyne
- Harvard Medical School, Boston, MA, USA.,Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Francois Lebreton
- Harvard Medical School, Boston, MA, USA.,Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Simone Q Silva
- Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto - FAMERP, São José do Rio Preto, Brazil.,Instituto de Biociências, Letras e Ciências Exatas (IBILCE) - UNESP, São José do Rio Preto, Brazil
| | - Mara C L Nogueira
- Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto - FAMERP, São José do Rio Preto, Brazil
| | - Michael S Gilmore
- Harvard Medical School, Boston, MA, USA.,Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Ilana L B C Camargo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
4
|
Bai B, Hu K, Li H, Yao W, Li D, Chen Z, Cheng H, Zheng J, Pan W, Deng M, Liu X, Lin Z, Deng Q, Yu Z. Effect of tedizolid on clinical Enterococcus isolates: in vitro activity, distribution of virulence factor, resistance genes and multilocus sequence typing. FEMS Microbiol Lett 2019; 365:4780295. [PMID: 29390078 DOI: 10.1093/femsle/fnx284] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/25/2017] [Indexed: 12/22/2022] Open
Abstract
Enterococcal infections have become one of the most challenging nosocomial problems. Tedizolid, the second oxazolidinone, is 4-fold to 8-fold more potent in vivo and in vitro than linezolid against enterococci. However, the characteristics of tedizolid related to enterococci isolates in China remain elusive. The aim of this study was to evaluate in vitro activity of tedizolid against enterococcal isolates from patients with infections at a teaching hospital in China and to investigate the correlations between in vitro tedizolid activity against enterococci and the distribution of multilocus sequence types (MLST), resistance genes and virulence factors. A total of 289 non-duplicate Enterococcus faecalis strains and 68 E. faecium strains were isolated. Tedizolid inhibited 95.24% of all enterococcal isolates with an MIC ≤ 0.5μg/ml. Seventeen E. faecalis strains had an MIC > 0.5 μg/ml, and all E. faecium were inhibited at MIC ≤ 0.5 μg/ml. The proportion of tedizolid non-susceptible E. faecalis strains with optrA genes was higher than that among tedizolid-susceptible strains. Tedizolid exhibited good in vitro activity against all E. faecium strains, including multidrug-resistant E. faecium carrying tet(M), tet(L), tet(U),erm(A), erm(B) and erm(C) genes. In summary, tedizolid has an advantage (higher sensitivity rate) compared to linezolid among enterococci, except for isolates expressing the plasmid-encoded optrA gene.
Collapse
Affiliation(s)
- Bing Bai
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Kaitao Hu
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Hui Li
- Department of Digestive Diseases, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Weiming Yao
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Duoyun Li
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Hang Cheng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weiguang Pan
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Minggui Deng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Xiaojun Liu
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Zhiwei Lin
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China.,Department of Pharmacy Practice and Translational Research, University of Houston, No. 4849 Calhoun Road, Houston, TX 77204, USA
| |
Collapse
|
5
|
Nordmann P, Rodríguez-Villodres A, Poirel L. A selective culture medium for screening linezolid-resistant gram-positive bacteria. Diagn Microbiol Infect Dis 2019; 95:1-4. [PMID: 30981556 DOI: 10.1016/j.diagmicrobio.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/13/2022]
Abstract
The SuperLinezolid medium was developed for screening resistance to linezolid (LZD) in Gram-positive bacteria (Staphylococcus spp., Enterococcus spp.). It was evaluated using LZD-susceptible (n = 20) and LZD-resistant (n = 17) Gram-positive isolates. The sensitivity was found to be 82% at 24 h (3 out of 17 isolates being missed), and reached 100% at 48 h. At 48 h, a single LZD-susceptible isolate grew (specificity 95%). By testing stools spiked with LZD-resistant Gram-positive strains, an excellent performance of the medium was observed, with a lowest detection limit ranging from 101 to 102 CFU/ml. Overall, this medium is accurate for detection of LZD-resistant Gram-positive isolates after 24 h of culture.
Collapse
Affiliation(s)
- Patrice Nordmann
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland; INSERM European Unit (IAME, France), University of Fribourg; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland; Institute for Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland.
| | - Angel Rodríguez-Villodres
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland; Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío, Seville, Spain; Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland; INSERM European Unit (IAME, France), University of Fribourg; Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), Fribourg, Switzerland
| |
Collapse
|
6
|
Linezolid Inhibited Synthesis of ATP in Mitochondria: Based on GC-MS Metabolomics and HPLC Method. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3128270. [PMID: 30410924 PMCID: PMC6206563 DOI: 10.1155/2018/3128270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/28/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Linezolid has been widely used in serious infections for its effective inhibiting effect against multidrug-resistant gram-positive pathogens. However, linezolid caused severe adverse reactions, such as thrombocytopenia, anaemia, optic neuropathy, and near-fatal serotonin syndrome. In order to investigate the toxicity of linezolid, twenty-four Sprague-Dawley rats were randomly divided into: control group (n=7), low-group (n=8), and high-group (n=9). The rats of low-group and high-group were given by gavage with linezolid 60 and 120 mg/kg/day for 7 days, respectively. The serum concentration of linezolid was determined by high performance liquid chromatography (HPLC); blood metabolic change was analyzed by gas chromatography-mass spectrometer (GC-MS). Adenosine triphosphate (ATP) concentration in HepG2-C3A after being cultured with linezolid was determined by HPLC. The results showed that there were six metabolites and nine metabolites had statistical differences in low-group and high-group (P<0.05). The trimethyl phosphate was the most significant indicator in those changed metabolites. Except for d-glucose which was slightly increased in low-group, octadecanoic acid, cholest-5-ene, hexadecanoic acid, α-linolenic acid, eicosapentaenoic acid, 9,12-Octadecadienoic acid, and docosahexaenoic acid were all decreased in low-group and high-group. ATP concentration was decreased in HepG2-C3A after cultured with linezolid. In conclusion, the toxicity of linezolid is related to its serum concentration. Linezolid may inhibit the synthesis of ATP and fatty acid.
Collapse
|
7
|
Ahmed MO, Baptiste KE. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb Drug Resist 2017; 24:590-606. [PMID: 29058560 DOI: 10.1089/mdr.2017.0147] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are both of medical and public health importance associated with serious multidrug-resistant infections and persistent colonization. Enterococci are opportunistic environmental inhabitants with a remarkable adaptive capacity to evolve and transmit antimicrobial-resistant determinants. The VRE gene operons show distinct genetic variability and apparently continued evolution leading to a variety of antimicrobial resistance phenotypes and various environmental and livestock reservoirs for the most common van genes. Such complex diversity renders a number of important therapeutic options including "last resort antibiotics" ineffective and poses a particular challenge for clinical management. Enterococci resistance to glycopeptides and multidrug resistance warrants attention and continuous monitoring.
Collapse
Affiliation(s)
- Mohamed O Ahmed
- 1 Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli , Tripoli, Libya
| | - Keith E Baptiste
- 2 Department of Veterinary Medicine, Danish Medicines Agency , Copenhagen South, Denmark
| |
Collapse
|
8
|
Caicedo-Ochoa EY, Urrutia-Gómez JA, Fernández-Niño DS, Guío-Guerra SA, Méndez-Fandiño YR. Tratamiento de la bacteriemia por enterococo resistente a vancomicina con daptomicina versus linezolid: revisión sistemática y metanálisis. IATREIA 2017. [DOI: 10.17533/udea.iatreia.v30n1a01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Tedizolid susceptibility in linezolid- and vancomycin-resistant Enterococcus faecium isolates. Eur J Clin Microbiol Infect Dis 2016; 35:1957-1961. [DOI: 10.1007/s10096-016-2747-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
|
10
|
Guillard T, Pons S, Roux D, Pier GB, Skurnik D. Antibiotic resistance and virulence: Understanding the link and its consequences for prophylaxis and therapy. Bioessays 2016; 38:682-93. [PMID: 27248008 DOI: 10.1002/bies.201500180] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
"Antibiotic resistance is usually associated with a fitness cost" is frequently accepted as common knowledge in the field of infectious diseases. However, with the advances in high-throughput DNA sequencing that allows for a comprehensive analysis of bacterial pathogenesis at the genome scale, including antibiotic resistance genes, it appears that this paradigm might not be as solid as previously thought. Recent studies indicate that antibiotic resistance is able to enhance bacterial fitness in vivo with a concomitant increase in virulence during infections. As a consequence, strategies to minimize antibiotic resistance turn out to be not as simple as initially believed. Indeed, decreased antibiotic use may not be sufficient to let susceptible strains outcompete the resistant ones. Here, we put in perspective these findings and review alternative approaches, such as preventive and therapeutic anti-bacterial immunotherapies that have the potential to by-pass the classic antibiotics.
Collapse
Affiliation(s)
- Thomas Guillard
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Laboratoire de Bactériologie-Virologie-Hygiène hospitalière, Hôpital Robert Debré - CHU de Reims, UFR de Médecine, Université de Reims Champagne-Ardenne, Reims, France
| | - Stéphanie Pons
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,INSERM, IAME, UMR 1137, Paris, France.,Univ Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, Paris, France.,AP-HP, Hôpital Louis Mourier, Service de Réanimation Médico-Chirurgicale, Colombes, France
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Susceptibility trends including emergence of linezolid resistance among coagulase-negative staphylococci and meticillin-resistant Staphylococcus aureus from invasive infections. Int J Antimicrob Agents 2015; 46:622-30. [DOI: 10.1016/j.ijantimicag.2015.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022]
|