1
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
2
|
Bonjorno AF, Pavan AR, Fernandes GFS, Scarim CB, Castagnolo D, Dos Santos JL. BacPROTACs targeting Clp protease: a promising strategy for anti-mycobacterial drug discovery. Front Chem 2024; 12:1358539. [PMID: 38357296 PMCID: PMC10864484 DOI: 10.3389/fchem.2024.1358539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Tuberculosis (TB) has claimed more lives over the course of two millennia than any other infectious disease worldwide. In 2021, the World Health Organization (WHO) estimated that 10.6 million people were diagnosed with TB, resulting in the deaths of 1.4 million HIV-negative individuals. The emergence of multidrug-resistant TB (MDR-TB), defined as resistance to at least rifampicin (RIF) and isoniazid (INH), and extensively drug-resistant TB (XDR-TB), poses the primary challenge to overcome in the coming years. We have recently conducted an extensive analysis of investments and research endeavours in the field, with the overarching objective of achieving the established milestone of TB eradication by the year 2030. Over the past several years, there has been notable progress in advancing a multitude of promising compounds, each possessing distinct mechanisms of action, into clinical phases of development. However, it is worth noting that strains of mycobacteria resistant to current antitubercular drugs have already emerged for some of these compounds The exploration of the innovative Proteolytic Target Chimeras (PROTACs) protein degradation approach has emerged as a viable avenue for the discovery of novel antimicrobials. While the ubiquitin system is exclusive to eukaryotic cells, certain bacteria use a similar degradation system that relies on the recognition of phosphorylated arginine residues (pArg) by the ClpC:ClpP (ClpCP) protease, thereby leading to protein degradation. In this opinion article, we have described and analized the advances in the use of PROTACs that leverage bacterial proteolytic machinery (BacPROTACs) to design new antitubercular agents. Scope Statement. The development of novel pharmaceuticals for tuberculosis treatment is deemed urgently necessary due to the emergence of resistant strains. In this context, the introduction of new technologies capable of alleviating the disease and attaining the objectives outlined by the World Health Organization is imperative. Among the innovative strategies, the degradation of proteins that are crucial for the survival of the bacillus holds promise for generating new medications, particularly those that are effective at treating latent (non-replicating) Mycobacterium tuberculosis. Within this perspective, we present the advancements and obstacles encountered in the exploration of new BacPROTAC compounds, with the intention of encouraging research and illuminating challenges associated with the implementation of BacPROTACs to address to the global tuberculosis crisis.
Collapse
Affiliation(s)
| | - Aline Renata Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Cauê Benito Scarim
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Daniele Castagnolo
- Department of Chemistry, University College London, London, United Kingdom
| | | |
Collapse
|
3
|
Singha B, Murmu S, Nair T, Rawat RS, Sharma AK, Soni V. Metabolic Rewiring of Mycobacterium tuberculosis upon Drug Treatment and Antibiotics Resistance. Metabolites 2024; 14:63. [PMID: 38248866 PMCID: PMC10820029 DOI: 10.3390/metabo14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, further compounded by the issue of antimicrobial resistance (AMR). AMR is a result of several system-level molecular rearrangements enabling bacteria to evolve with better survival capacities: metabolic rewiring is one of them. In this review, we present a detailed analysis of the metabolic rewiring of Mtb in response to anti-TB drugs and elucidate the dynamic mechanisms of bacterial metabolism contributing to drug efficacy and resistance. We have discussed the current state of AMR, its role in the prevalence of the disease, and the limitations of current anti-TB drug regimens. Further, the concept of metabolic rewiring is defined, underscoring its relevance in understanding drug resistance and the biotransformation of drugs by Mtb. The review proceeds to discuss the metabolic adaptations of Mtb to drug treatment, and the pleiotropic effects of anti-TB drugs on Mtb metabolism. Next, the association between metabolic changes and antimycobacterial resistance, including intrinsic and acquired drug resistance, is discussed. The review concludes by summarizing the challenges of anti-TB treatment from a metabolic viewpoint, justifying the need for this discussion in the context of novel drug discovery, repositioning, and repurposing to control AMR in TB.
Collapse
Affiliation(s)
- Biplab Singha
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Sumit Murmu
- Regional Centre of Biotechnology, Faridabad 121001, India;
| | - Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA;
| | - Rahul Singh Rawat
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India;
| | - Aditya Kumar Sharma
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
4
|
Amandy FV, Neri GLL, Manzano JAH, Go AD, Macabeo APG. Polypharmacology-Driven Discovery and Design of Highly Selective, Dual and Multitargeting Inhibitors of Mycobacterium tuberculosis - A Review. Curr Drug Targets 2024; 25:620-634. [PMID: 38859782 DOI: 10.2174/0113894501306302240526160804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
The increasing demand for novel antitubercular agents has been the main 'force' of many TB research efforts due to the uncontrolled growing number of drug-resistant strains of M. tuberculosis in the clinical setting. Many strategies have been employed to address the drug-resistant issue, including a trend that is gaining attention, which is the design and discovery of Mtb inhibitors that are either dual- or multitargeting. The multiple-target design concept is not new in medicinal chemistry. With a growing number of newly discovered Mtb proteins, numerous targets are now available for developing new biochemical/cell-based assays and computer-aided drug design (CADD) protocols. To describe the achievements and overarching picture of this field in anti- infective drug discovery, we provide in this review small molecules that exhibit profound inhibitory activity against the tubercle bacilli and are identified to trace two or more Mtb targets. This review also presents emerging design methodologies for developing new anti-TB agents, particularly tailored to structure-based CADD.
Collapse
Affiliation(s)
- Franklin V Amandy
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
- Department of Chemistry, College of Science, Adamson University, San Marcelino St., Ermita, Manila 1000, Philippines
| | - Gabriel L L Neri
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| | - Joe A H Manzano
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| | - Adrian D Go
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
- Department of Chemistry, College of Science, Adamson University, San Marcelino St., Ermita, Manila 1000, Philippines
| | - Allan P G Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| |
Collapse
|
5
|
Sharma K, Ahmed F, Sharma T, Grover A, Agarwal M, Grover S. Potential Repurposed Drug Candidates for Tuberculosis Treatment: Progress and Update of Drugs Identified in Over a Decade. ACS OMEGA 2023; 8:17362-17380. [PMID: 37251185 PMCID: PMC10210030 DOI: 10.1021/acsomega.2c05511] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/23/2022] [Indexed: 05/31/2023]
Abstract
The devastating impact of Tuberculosis (TB) has been a menace to mankind for decades. The World Health Organization (WHO) End TB Strategy aims to reduce TB mortality up to 95% and 90% of overall TB cases worldwide, by 2035. This incessant urge will be achieved with a breakthrough in either a new TB vaccine or novel drugs with higher efficacy. However, the development of novel drugs is a laborious process involving a timeline of almost 20-30 years with huge expenditure; on the other hand, repurposing previously approved drugs is a viable technique for overcoming current bottlenecks in the identification of new anti-TB agents. The present comprehensive review discusses the progress of almost all the repurposed drugs that have been identified to the present day (∼100) and are in the development or clinical testing phase against TB. We have also emphasized the efficacy of repurposed drugs in combination with already available frontline anti-TB medications along with the scope of future investigations. This study would provide the researchers a detailed overview of nearly all identified anti-TB repurposed drugs and may assist them in selecting the lead compounds for further in vivo/clinical research.
Collapse
Affiliation(s)
- Khushbu Sharma
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Faraz Ahmed
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Tarina Sharma
- New
Jersey Medical School, Rutgers, The State
University of New Jersey, Newark, New Jersey 07103, United States
| | - Abhinav Grover
- School
of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Meetu Agarwal
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Sonam Grover
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
6
|
Xu X, Zhang L, Yang T, Qiu Z, Bai L, Luo Y. Targeting caseinolytic protease P and its AAA1 chaperone for tuberculosis treatment. Drug Discov Today 2023; 28:103508. [PMID: 36706830 DOI: 10.1016/j.drudis.2023.103508] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Caseinolytic protease P with its AAA1 chaperone, known as Mycobacterium tuberculosis (Mtb)ClpP1P2 proteolytic machinery, maintains protein homeostasis in Mtb cells and is essential for bacterial survival. It is regarded as an important biological target with the potential to address the increasingly serious issue of multidrug-resistant (MDR) TB. Over the past 10 years, many MtbClpP1P2-targeted modulators have been identified and characterized, some of which have shown potent anti-TB activity. In this review, we describe current understanding of the substrates, structure and function of MtbClpP1P2, classify the modulators of this important protein machine into several categories based on their binding subunits or pockets, and discuss their binding details; Such information provides insights for use in candidate drug research and development of TB treatments by targeting MtbClpP1P2 proteolytic machinery.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Laiying Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Lang Bai
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Fanti RC, Vasconcelos SNS, Catta-Preta CMC, Sullivan JR, Riboldi GP, Dos Reis CV, Ramos PZ, Edwards AM, Behr MA, Couñago RM. A Target Engagement Assay to Assess Uptake, Potency, and Retention of Antibiotics in Living Bacteria. ACS Infect Dis 2022; 8:1449-1467. [PMID: 35815896 DOI: 10.1021/acsinfecdis.2c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New antibiotics are urgently needed to counter the emergence of antimicrobial-resistant pathogenic bacteria. A major challenge in antibiotic drug discovery is to turn potent biochemical inhibitors of essential bacterial components into effective antimicrobials. This difficulty is underpinned by a lack of methods to investigate the physicochemical properties needed for candidate antibiotics to permeate the bacterial cell envelope and avoid clearance by the action of bacterial efflux pumps. To address these issues, here we used a target engagement assay to measure the equilibrium and kinetic binding parameters of antibiotics targeting dihydrofolate reductase (DHFR) in live bacteria. We also used this assay to identify novel DHFR ligands having antimicrobial activity. We validated this approach using the Gram-negative bacteria Escherichia coli and the emerging human pathogen Mycobacterium abscessus. We expect the use of target engagement assays in bacteria to expedite the discovery and progression of novel, cell-permeable antibiotics with on-target activity.
Collapse
Affiliation(s)
- Rebeka C Fanti
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil.,Post-Graduate Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas 13083-970, Brazil
| | - Stanley N S Vasconcelos
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Carolina M C Catta-Preta
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Jaryd R Sullivan
- Department of Microbiology & Immunology, McGill University, Montréal H3A 2B4, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal H4A 3J1, Canada.,McGill International TB Centre, Montréal H4A 3S5, Canada
| | - Gustavo P Riboldi
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Caio V Dos Reis
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Priscila Z Ramos
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil
| | - Aled M Edwards
- Structural Genomics Consortium, 101 College Street, Toronto M5G 1L7, Canada
| | - Marcel A Behr
- Department of Microbiology & Immunology, McGill University, Montréal H3A 2B4, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal H4A 3J1, Canada.,McGill International TB Centre, Montréal H4A 3S5, Canada.,Department of Medicine, McGill University Health Centre, Montréal H4A 3J1, Canada
| | - Rafael M Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-886, Brazil.,Post-Graduate Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas 13083-970, Brazil
| |
Collapse
|
8
|
d’Andrea FB, Poulton NC, Froom R, Tam K, Campbell EA, Rock JM. The essential M. tuberculosis Clp protease is functionally asymmetric in vivo. SCIENCE ADVANCES 2022; 8:eabn7943. [PMID: 35507665 PMCID: PMC9067928 DOI: 10.1126/sciadv.abn7943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The Clp protease system is a promising, noncanonical drug target against Mycobacterium tuberculosis (Mtb). Unlike in Escherichia coli, the Mtb Clp protease consists of two distinct proteolytic subunits, ClpP1 and ClpP2, which hydrolyze substrates delivered by the chaperones ClpX and ClpC1. While biochemical approaches uncovered unique aspects of Mtb Clp enzymology, its essentiality complicates in vivo studies. To address this gap, we leveraged new genetic tools to mechanistically interrogate the in vivo essentiality of the Mtb Clp protease. While validating some aspects of the biochemical model, we unexpectedly found that only the proteolytic activity of ClpP1, but not of ClpP2, is essential for substrate degradation and Mtb growth and infection. Our observations not only support a revised model of Mtb Clp biology, where ClpP2 scaffolds chaperone binding while ClpP1 provides the essential proteolytic activity of the complex; they also have important implications for the ongoing development of inhibitors toward this emerging therapeutic target.
Collapse
Affiliation(s)
- Felipe B. d’Andrea
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medicine, New York, NY, USA
| | - Nicholas C. Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Ruby Froom
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Kayan Tam
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | | | - Jeremy M. Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
9
|
Coghi PS, Zhu Y, Xie H, Hosmane NS, Zhang Y. Organoboron Compounds: Effective Antibacterial and Antiparasitic Agents. Molecules 2021; 26:3309. [PMID: 34072937 PMCID: PMC8199504 DOI: 10.3390/molecules26113309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
The unique electron deficiency and coordination property of boron led to a wide range of applications in chemistry, energy research, materials science and the life sciences. The use of boron-containing compounds as pharmaceutical agents has a long history, and recent developments have produced encouraging strides. Boron agents have been used for both radiotherapy and chemotherapy. In radiotherapy, boron neutron capture therapy (BNCT) has been investigated to treat various types of tumors, such as glioblastoma multiforme (GBM) of brain, head and neck tumors, etc. Boron agents playing essential roles in such treatments and other well-established areas have been discussed elsewhere. Organoboron compounds used to treat various diseases besides tumor treatments through BNCT technology have also marked an important milestone. Following the clinical introduction of bortezomib as an anti-cancer agent, benzoxaborole drugs, tavaborole and crisaborole, have been approved for clinical use in the treatments of onychomycosis and atopic dermatitis. Some heterocyclic organoboron compounds represent potentially promising candidates for anti-infective drugs. This review highlights the clinical applications and perspectives of organoboron compounds with the natural boron atoms in disease treatments without neutron irradiation. The main topic focuses on the therapeutic applications of organoboron compounds in the diseases of tuberculosis and antifungal activity, malaria, neglected tropical diseases and cryptosporidiosis and toxoplasmosis.
Collapse
Affiliation(s)
- Paolo Saul Coghi
- School of Pharmacy Macau, University of Science and Technology, Taipa Macau 999078, China;
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa Macau 999078, China
| | - Yinghuai Zhu
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| | - Hongming Xie
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Yingjun Zhang
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co., Ltd., Dongguan 523871, China;
| |
Collapse
|
10
|
Drever K, Lim ZL, Zriba S, Chen JM. Protein Synthesis and Degradation Inhibitors Potently Block Mycobacterium tuberculosis type-7 Secretion System ESX-1 Activity. ACS Infect Dis 2021; 7:273-280. [PMID: 33534536 DOI: 10.1021/acsinfecdis.0c00741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis (M. tb) uses its type-7 secretion system ESX-1 to translocate key virulence effector proteins. Taking a chemical genetics approach, we demonstrate for the first time the importance of mycobacterial proteostasis to ESX-1. We show that individual treatment with inhibitors of protein synthesis (chloramphenicol and kanamycin) and protein degradation (lassomycin and bortezomib), at concentrations that only reduce M. tb growth by 50% and less, specifically block ESX-1 secretion activity in the tubercle bacillus. In contrast, the mycobacterial cell-wall synthesis inhibitor isoniazid, even at a concentration that reduces M. tb growth by 90% has no effect on ESX-1 secretion activity. We also show that chloramphenicol but not isoniazid at subinhibitory concentrations specifically attenuates ESX-1-mediated M. tb virulence in macrophages. Taken together, the results of our study identify a novel vulnerability in the ESX-1 system and offer new avenues of anti-TB drug research to neutralize this critical virulence-mediating protein secretion apparatus.
Collapse
Affiliation(s)
- Kylee Drever
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Ze Long Lim
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan S7N 5E3, Canada
| | - Slim Zriba
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan S7N 5E3, Canada
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan S7N 2Z4, Canada
| | - Jeffrey M. Chen
- Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan S7N 2Z4, Canada
| |
Collapse
|
11
|
Mahfuz AMUB, Stambuk Opazo F, Aguilar LF, Iqbal MN. Carfilzomib as a potential inhibitor of NADH-dependent enoyl-acyl carrier protein reductases of Klebsiella pneumoniae and Mycobacterium tuberculosis as a drug target enzyme: insights from molecular docking and molecular dynamics. J Biomol Struct Dyn 2020; 40:4021-4037. [PMID: 33251968 DOI: 10.1080/07391102.2020.1852966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Multiple antibiotic-resistant strains of Klebsiella pneumoniae can cause life-threatening infections. Bacterial enoyl-acyl carrier protein (ACP) reductases (ENRs) are considered critical targets for developing antibiotics. Our current study aims to identify inhibitors of K. pneumoniae ENRs (FabI and FabV). Due to the unavailability of experimental structures, protein models of FabI and FabV were predicted and validated in this study. Virtual screening of the 1930 FDA-approved drug database was conducted against the active site of the FabI protein with the help of the LEA3D server, and carfilzomib was chosen among the screened drugs for further docking studies. Carfilzomib, a proteasome inhibitor used in the treatment of multiple myeloma, was among the best-suited compounds obtained from the virtual screening and was found to be bactericidal in the in vitro experiment. Carfilzomib was docked against the active sites of the FabI and FabV proteins, and the ENR of Mycobacterium tuberculosis, InhA. Carfilzomib showed a high binding affinity with all three proteins. Molecular dynamics (MD) simulations were conducted following the docking studies. MD simulations revealed that carfilzomib binds strongly to the active sites of the above mentioned ENRs. Our study found that carfilzomib is a potential inhibitor of the ENRs of K. pneumoniae and M. tuberculosis. This is a possible mechanism of its bactericidal property against M. tuberculosis observed in vitro in addition to its predicted actions on zinc-dependent metalloprotease-1 and peptide deformylase, two other drug target enzymes of M. tuberculosis. Our study suggests that this drug could be used as a lead compound to develop antibiotics that can selectively act against ENRs of bacteria, without interfering with the activities of human proteasome. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- A M U B Mahfuz
- Department of Biotechnology & Genetic Engineering, Faculty of Life Science, University of Development Alternative, Dhaka, Bangladesh
| | - Felipe Stambuk Opazo
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Luis F Aguilar
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Muhammad Nasir Iqbal
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad, ICT, Pakistan
| |
Collapse
|
12
|
Shetye GS, Franzblau SG, Cho S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl Res 2020; 220:68-97. [PMID: 32275897 DOI: 10.1016/j.trsl.2020.03.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
The current tuberculosis (TB) predicament poses numerous challenges and therefore every incremental scientific work and all positive socio-political engagements, are steps taken in the right direction to eradicate TB. Progression of the late stage TB-drug pipeline into the clinics is an immediate deliverable of this global effort. At the same time, fueling basic research and pursuing early discovery work must be sustained to maintain a healthy TB-drug pipeline. This review encompasses a broad analysis of chemotherapeutic strategies that target the DNA replication, protein synthesis, cell wall biosynthesis, energy metabolism and proteolysis of Mycobacterium tuberculosis (Mtb). It includes a status check of the current TB-drug pipeline with a focus on the associated biology, emerging targets, and their promising chemical inhibitors. Potential synergies and/or gaps within or across different chemotherapeutic strategies are systematically reviewed as well.
Collapse
Affiliation(s)
- Gauri S Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
13
|
Juhás M, Kučerová L, Horáček O, Janďourek O, Kubíček V, Konečná K, Kučera R, Bárta P, Janoušek J, Paterová P, Kuneš J, Doležal M, Zitko J. N-Pyrazinoyl Substituted Amino Acids as Potential Antimycobacterial Agents-The Synthesis and Biological Evaluation of Enantiomers. Molecules 2020; 25:E1518. [PMID: 32230728 PMCID: PMC7181131 DOI: 10.3390/molecules25071518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb), each year causing millions of deaths. In this article, we present the synthesis and biological evaluations of new potential antimycobacterial compounds containing a fragment of the first-line antitubercular drug pyrazinamide (PZA), coupled with methyl or ethyl esters of selected amino acids. The antimicrobial activity was evaluated on a variety of (myco)bacterial strains, including Mtb H37Ra, M. smegmatis, M. aurum, Staphylococcus aureus, Pseudomonas aeruginosa, and fungal strains, including Candida albicans and Aspergillus flavus. Emphasis was placed on the comparison of enantiomer activities. None of the synthesized compounds showed any significant activity against fungal strains, and their antibacterial activities were also low, the best minimum inhibitory concentration (MIC) value was 31.25 µM. However, several compounds presented high activity against Mtb. Overall, higher activity was seen in derivatives containing ʟ-amino acids. Similarly, the activity seems tied to the more lipophilic compounds. The most active derivative contained phenylglycine moiety (PC-ᴅ/ʟ-Pgl-Me, MIC < 1.95 µg/mL). All active compounds possessed low cytotoxicity and good selectivity towards Mtb. To the best of our knowledge, this is the first study comparing the activities of the ᴅ- and ʟ-amino acid derivatives of pyrazinamide as potential antimycobacterial compounds.
Collapse
Affiliation(s)
- Martin Juhás
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Lucie Kučerová
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Ondřej Horáček
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Ondřej Janďourek
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Vladimír Kubíček
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Klára Konečná
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Radim Kučera
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Pavel Bárta
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Jiří Janoušek
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Pavla Paterová
- University Hospital Hradec Králové, Department of Clinical Microbiology, Sokolská 581, 500 05 Hradec Králové, Czech Republic;
| | - Jiří Kuneš
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Martin Doležal
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Jan Zitko
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| |
Collapse
|
14
|
An allosteric switch regulates Mycobacterium tuberculosis ClpP1P2 protease function as established by cryo-EM and methyl-TROSY NMR. Proc Natl Acad Sci U S A 2020; 117:5895-5906. [PMID: 32123115 PMCID: PMC7084164 DOI: 10.1073/pnas.1921630117] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The 300-kDa ClpP1P2 protease from Mycobacterium tuberculosis collaborates with the AAA+ (ATPases associated with a variety of cellular activities) unfoldases, ClpC1 and ClpX, to degrade substrate proteins. Unlike in other bacteria, all of the components of the Clp system are essential for growth and virulence of mycobacteria, and their inhibitors show promise as antibiotics. MtClpP1P2 is unique in that it contains a pair of distinct ClpP1 and ClpP2 rings and also requires the presence of activator peptides, such as benzoyl-leucyl-leucine (Bz-LL), for function. Understanding the structural basis for this requirement has been elusive but is critical for the rational design and improvement of antituberculosis (anti-TB) therapeutics that target the Clp system. Here, we present a combined biophysical and biochemical study to explore the structure-dynamics-function relationship in MtClpP1P2. Electron cryomicroscopy (cryo-EM) structures of apo and acyldepsipeptide-bound MtClpP1P2 explain their lack of activity by showing loss of a key β-sheet in a sequence known as the handle region that is critical for the proper formation of the catalytic triad. Methyl transverse relaxation-optimized spectroscopy (TROSY)-based NMR, cryo-EM, and biochemical assays show that, on binding Bz-LL or covalent inhibitors, MtClpP1P2 undergoes a conformational change from an inactive compact state to an active extended structure that can be explained by a modified Monod-Wyman-Changeux model. Our study establishes a critical role for the handle region as an on/off switch for function and shows extensive allosteric interactions involving both intra- and interring communication that regulate MtClpP1P2 activity and that can potentially be exploited by small molecules to target M. tuberculosis.
Collapse
|
15
|
Huszár S, Chibale K, Singh V. The quest for the holy grail: new antitubercular chemical entities, targets and strategies. Drug Discov Today 2020; 25:772-780. [PMID: 32062007 PMCID: PMC7215093 DOI: 10.1016/j.drudis.2020.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/23/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
In 2018 1.2 million people died of tuberculosis. The ideal drug candidate should be active against replicating and nonreplicating Mycobacterium tuberculosis. New drug targets such as EfpA, PptT, ClpP, Pks13, DnaN and QcrB have been identified. Tuberculosis drug discovery is advancing with innovative screens.
Tuberculosis (TB) remains the leading cause of death from an infectious disease worldwide. TB therapy is complicated by the protracted treatment regimens, development of resistance coupled with toxicity and insufficient sterilizing capacity of current drugs. Although considerable progress has been made on establishing a TB drug pipeline, the high attrition rate reinforces the need to continually replenish the pipeline with high-quality leads that act through inhibition of novel targets. In this review, we highlight some of the key advances that have assisted TB drug discovery with novel chemical matter, targets and strategies – to fuel the TB drug pipeline.
Collapse
Affiliation(s)
- Stanislav Huszár
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
16
|
Abstract
Tuberculosis (TB) is a major issue in global health and affects millions of people each year. Multidrug-resistant tuberculosis (MDR-TB) annually causes many deaths worldwide. Development of a way to diagnose and treat patients with MDR-TB can potentially reduce the incidence of the disease. The current study reviews the risk factors, pattern of progression, mechanism of resistance, and interaction between bacteria and the host immune system, which disrupts the immune response. It also targets the components of Mycobacterium tuberculosis (Mtb) and diagnosis and treatment options that could be available for clinical use in the near future. Mutations play an important role in development of MDR-TB and the selection of appropriate mutations can help to understand the type of resistance in patients to anti-TB drugs. In this way, they can be initially treated with proper and effective therapeutic choices, which can accelerate the course of treatment and improve patient health. Targeting the components and enzymes of Mtb is necessary for understanding bacterial survival and finding a way to destroy the pathogen and allow patients to recover faster and prevent the spread of disease, especially resistant strains.
Collapse
Affiliation(s)
- Majid Faridgohar
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
17
|
Swietnicki W, Czarny A, Urbanska N, Drab M. Identification of small molecule compounds active against Staphylococcus aureus and Proteus mirabilis. Biochem Biophys Res Commun 2018; 506:1047-1051. [PMID: 30409430 DOI: 10.1016/j.bbrc.2018.10.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 11/27/2022]
Abstract
Staphylococcus aureus is a human pathogen rapidly becoming a serious health problem due to ease of acquiring antibiotic resistance. To help identify potential new drug candidates effective against the pathogen, a small focused library was screened for inhibition of bacterial growth against several pathogens, including S. aureus. At least one of the compounds, Compound 10, was capable of blocking bacterial growth of S. aureus in a test tube with IC50 = 140 ± 30 μM. Another inhibitor, Compound 7, was bacteriostatic against S. aureus with IC50 ranging from 33 to 150 μM against 3 different strains. However, only Compound 7 was bactericidal against P. mirabilis as examined by electron microscopy. Human cell line toxicity studies suggested that both compounds had small effect on cell growth at 100 μM concentration as examined by MTT assay. Analysis of compounds' structures showed lack of similarity to any known antibiotics and bacteriostatics, potentially offering the inhibitors as an alternative to existing solutions in controlling bacterial infections for selected pathogens.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- Institute of Immunology and Experimental Therapy of the Polish Academy of Science, Department of Immunology of Infectious Diseases, ul. R. Weigla 12, 53-114, Wroclaw, Poland.
| | - Anna Czarny
- Institute of Immunology and Experimental Therapy of the Polish Academy of Science, Department of Immunology of Infectious Diseases, ul. R. Weigla 12, 53-114, Wroclaw, Poland
| | - Natalia Urbanska
- Institute of Immunology and Experimental Therapy of the Polish Academy of Science, Department of Immunology of Infectious Diseases, ul. R. Weigla 12, 53-114, Wroclaw, Poland; University of Wroclaw, Department of Biological Science, Institute of Experimental Biology, ul. Kanonia 6/8, 50-328, Wroclaw, Poland
| | - Marek Drab
- Institute of Immunology and Experimental Therapy of the Polish Academy of Science, Department of Immunology of Infectious Diseases, ul. R. Weigla 12, 53-114, Wroclaw, Poland
| |
Collapse
|
18
|
Liu P, Yang Y, Ju Y, Tang Y, Sang Z, Chen L, Yang T, An Q, Zhang T, Luo Y. Design, synthesis and biological evaluation of novel pyrrole derivatives as potential ClpP1P2 inhibitor against Mycobacterium tuberculosis. Bioorg Chem 2018; 80:422-432. [PMID: 30005200 DOI: 10.1016/j.bioorg.2018.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 02/05/2023]
Abstract
In an effort to discover novel inhibitors of M. tuberculosis Caseinolytic proteases (ClpP1P2), a combination strategy of virtual high-throughput screening and in vitro assay was employed and a new pyrrole compound, 1-(2-chloro-6-fluorobenzyl)-2, 5-dimethyl-4-((phenethylamino)methyl)-1H-pyrrole-3-carboxylate was found to display inhibitory effects against H37Ra with an MIC value of 77 µM. In order for discovery of more potent anti-tubercular agents that inhibit ClpP1P2 peptidase in M. tuberculosis, a series of pyrrole derivatives were designed and synthesized based on this hit compound. The synthesized compounds were evaluated forin vitrostudies against ClpP1P2 peptidase and anti-tubercular activities were also evaluated. The most promising compounds 2-(4-bromophenyl)-N-((1-(2-chloro-6-fluorophenyl)-2, 5-dimethyl-1H- pyrrolyl)methyl)ethan-1-aminehydrochloride 7d, ethyl 4-(((4-bromophenethyl) amino) methyl)-2,5-dimethyl-1-phenyl-1H-pyrrole-3-carboxylate hydrochloride 13i, ethyl 1-(4-chlorophenyl)-4-(((2-fluorophenethyl)amino)methyl)-2-methyl-5-phenyl-1H-pyrrole-3-carboxylate hydrochloride 13n exhibited favorable anti-mycobacterial activity with MIC value at 5 µM against Mtb H37Ra, respectively.
Collapse
Affiliation(s)
- Pingxian Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yuan Ju
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yunxiang Tang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zitai Sang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lijuan Chen
- Guangdong Zhongsheng Pharmaceutical Co., Ltd, Dongguan, Guangdong 523325, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Qi An
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
19
|
Lupoli TJ, Vaubourgeix J, Burns-Huang K, Gold B. Targeting the Proteostasis Network for Mycobacterial Drug Discovery. ACS Infect Dis 2018; 4:478-498. [PMID: 29465983 PMCID: PMC5902792 DOI: 10.1021/acsinfecdis.7b00231] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the world's deadliest infectious diseases and urgently requires new antibiotics to treat drug-resistant strains and to decrease the duration of therapy. During infection, Mtb encounters numerous stresses associated with host immunity, including hypoxia, reactive oxygen and nitrogen species, mild acidity, nutrient starvation, and metal sequestration and intoxication. The Mtb proteostasis network, composed of chaperones, proteases, and a eukaryotic-like proteasome, provides protection from stresses and chemistries of host immunity by maintaining the integrity of the mycobacterial proteome. In this Review, we explore the proteostasis network as a noncanonical target for antibacterial drug discovery.
Collapse
Affiliation(s)
- Tania J. Lupoli
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Kristin Burns-Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, 413 East 69th Street, New York, New York 10021, United States
| |
Collapse
|
20
|
Alhuwaider AAH, Dougan DA. AAA+ Machines of Protein Destruction in Mycobacteria. Front Mol Biosci 2017; 4:49. [PMID: 28770209 PMCID: PMC5515868 DOI: 10.3389/fmolb.2017.00049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/27/2017] [Indexed: 01/05/2023] Open
Abstract
The bacterial cytosol is a complex mixture of macromolecules (proteins, DNA, and RNA), which collectively are responsible for an enormous array of cellular tasks. Proteins are central to most, if not all, of these tasks and as such their maintenance (commonly referred to as protein homeostasis or proteostasis) is vital for cell survival during normal and stressful conditions. The two key aspects of protein homeostasis are, (i) the correct folding and assembly of proteins (coupled with their delivery to the correct cellular location) and (ii) the timely removal of unwanted or damaged proteins from the cell, which are performed by molecular chaperones and proteases, respectively. A major class of proteins that contribute to both of these tasks are the AAA+ (ATPases associated with a variety of cellular activities) protein superfamily. Although much is known about the structure of these machines and how they function in the model Gram-negative bacterium Escherichia coli, we are only just beginning to discover the molecular details of these machines and how they function in mycobacteria. Here we review the different AAA+ machines, that contribute to proteostasis in mycobacteria. Primarily we will focus on the recent advances in the structure and function of AAA+ proteases, the substrates they recognize and the cellular pathways they control. Finally, we will discuss the recent developments related to these machines as novel drug targets.
Collapse
Affiliation(s)
- Adnan Ali H Alhuwaider
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| | - David A Dougan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|