1
|
Edgar RCS, Malcolm TR, Siddiqui G, Giannangelo C, Counihan NA, Challis M, Duffy S, Chowdhury M, Marfurt J, Dans M, Wirjanata G, Noviyanti R, Daware K, Suraweera CD, Price RN, Wittlin S, Avery VM, Drinkwater N, Charman SA, Creek DJ, de Koning-Ward TF, Scammells PJ, McGowan S. On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity. mBio 2024; 15:e0096624. [PMID: 38717141 PMCID: PMC11237774 DOI: 10.1128/mbio.00966-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 06/13/2024] Open
Abstract
To combat the global burden of malaria, development of new drugs to replace or complement current therapies is urgently required. Here, we show that the compound MMV1557817 is a selective, nanomolar inhibitor of both Plasmodium falciparum and Plasmodium vivax aminopeptidases M1 and M17, leading to inhibition of end-stage hemoglobin digestion in asexual parasites. MMV1557817 can kill sexual-stage P. falciparum, is active against murine malaria, and does not show any shift in activity against a panel of parasites resistant to other antimalarials. MMV1557817-resistant P. falciparum exhibited a slow growth rate that was quickly outcompeted by wild-type parasites and were sensitized to the current clinical drug, artemisinin. Overall, these results confirm MMV1557817 as a lead compound for further drug development and highlights the potential of dual inhibition of M1 and M17 as an effective multi-species drug-targeting strategy.IMPORTANCEEach year, malaria infects approximately 240 million people and causes over 600,000 deaths, mostly in children under 5 years of age. For the past decade, artemisinin-based combination therapies have been recommended by the World Health Organization as the standard malaria treatment worldwide. Their widespread use has led to the development of artemisinin resistance in the form of delayed parasite clearance, alongside the rise of partner drug resistance. There is an urgent need to develop and deploy new antimalarial agents with novel targets and mechanisms of action. Here, we report a new and potent antimalarial compound, known as MMV1557817, and show that it targets multiple stages of the malaria parasite lifecycle, is active in a preliminary mouse malaria model, and has a novel mechanism of action. Excitingly, resistance to MMV15578117 appears to be self-limiting, suggesting that development of the compound may provide a new class of antimalarial.
Collapse
Affiliation(s)
- Rebecca C S Edgar
- School of Medicine, Deakin University, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Tess R Malcolm
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Carlo Giannangelo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Natalie A Counihan
- School of Medicine, Deakin University, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Matthew Challis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Sandra Duffy
- Discovery Biology, Centre for Cellular Phenomics, Griffith University, Nathan, Queensland, Australia
| | - Mrittika Chowdhury
- School of Medicine, Deakin University, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Jutta Marfurt
- Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Madeline Dans
- School of Medicine, Deakin University, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Grennady Wirjanata
- Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Kajal Daware
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Chathura D Suraweera
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Ric N Price
- Global Health and Tropical Medicine Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Vicky M Avery
- School of Environment and Science, Griffith Sciences, Griffith University, Nathan, Queensland, Australia
| | - Nyssa Drinkwater
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Tania F de Koning-Ward
- School of Medicine, Deakin University, Geelong, Australia
- The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Australia
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Sheena McGowan
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Fukuda N, Yoshida N, Balikagala B, Tsuru I, Ikeda M, Hirai M, Anywar DA, Odongo-Aginya EI, Mita T. Detection of drug-resistant malaria in resource-limited settings: efficient and high-throughput surveillance of artemisinin and partner drug resistance. J Antimicrob Chemother 2024; 79:1418-1422. [PMID: 38661223 DOI: 10.1093/jac/dkae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES Artemisinin-resistant Plasmodium falciparum malaria is currently spreading globally, including in Africa. Artemisinin resistance also leads to resistance to partner drugs used in artemisinin-based combination therapies. Sequencing of kelch13, which is associated with artemisinin resistance, culture-based partner drug susceptibility tests, and ELISA-based growth measurement are conventionally used to monitor resistance; however, their application is challenging in resource-limited settings. METHODS An experimental package for field studies with minimum human/material requirements was developed. RESULTS First, qPCR-based SNP assay was applied in artemisinin resistance screening, which can detect mutations within 1 h and facilitate sample selection for subsequent processes. It had 100% sensitivity and specificity compared with DNA sequencing in the detection of the two common artemisinin resistance mutations in Uganda, C469Y and A675V. Moreover, in the partner drug susceptibility test, the cultured samples were dry-preserved on a 96-well filter paper plate and shipped to the central laboratory. Parasite growth was measured by ELISA using redissolved samples. It well reproduced the results of direct ELISA, reducing significant workload in the field (Pearson correlation coefficient: 0.984; 95% CI: 0.975-0.990). CONCLUSIONS Large-scale and sustainable monitoring is required urgently to track rapidly spreading drug-resistant malaria. In malaria-endemic areas, where research resources are often limited, simplicity and feasibility of the procedure is especially important. Our approach combines a qPCR-based rapid test, which is also applicable to point-of-care diagnosis of artemisinin resistance and centralized analysis of ex vivo culture. The approach could improve efficiency of field experiments and accelerate global drug resistance surveillance.
Collapse
Affiliation(s)
- Naoyuki Fukuda
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Naoko Yoshida
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Betty Balikagala
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Ibuki Tsuru
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Mie Ikeda
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Makoto Hirai
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | | | | | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
3
|
Mogaka S, Molu H, Kagasi E, Ogila K, Waihenya R, Onditi F, Ozwara H. Senna occidentalis (L.) Link root extract inhibits Plasmodium growth in vitro and in mice. BMC Complement Med Ther 2023; 23:71. [PMID: 36879244 PMCID: PMC9987147 DOI: 10.1186/s12906-023-03854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/20/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Senna occidentalis (L.) Link has been used worldwide in traditional treatment of many diseases and conditions including snakebite. In Kenya, a decoction from the plant roots taken orally, is used as a cure for malaria. Several studies have demonstrated that extracts from the plant possess antiplasmodial activity, in vitro. However, the safety and curative potency of the plant root against established malaria infection is yet to be scientifically validated, in vivo. On the other hand, there are reports on variation in bioactivity of extracts obtained from this plant species, depending on the plant part used and place of origin among other factors. In this study, we demonstrated the antiplasmodial activity of Senna occidentalis roots extract in vitro, and in mice. METHODS Methanol, ethyl acetate, chloroform, hexane and water extracts of S. occidentalis root were tested for in vitro antiplasmodial activity against Plasmodium falciparum, strain 3D7. Cytotoxicity of the most active solvent extracts was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the curative potency in Plasmodium berghei infected mice evaluated by Rane's test. RESULTS All of the solvent extracts tested in this study inhibited the propagation of P. falciparum, strain 3D7, in vitro, with polar extracts being more active than non-polar ones. Methanolic extracts had the highest activity (IC50 = 1.76) while hexane extract displayed the lowest activity (IC50 = 18.47). At the tested concentrations, methanolic and aqueous extracts exhibited high selectivity index against P. falciparum strain 3D7 (SI > 10) in the cytotoxicity assay. Further, the extracts significantly suppressed the propagation of P. berghei parasites (P < 0.05) in vivo and increased the survival time of the infected mice (P < 0.0001). CONCLUSIONS Senna occidentalis (L.) Link root extract inhibits the propagation of malaria parasites in vitro and in BALB/c mice.
Collapse
Affiliation(s)
- Simeon Mogaka
- Department of Tropical and Infectious Diseases, Institute of Primate Research, P.O Box 24481, Karen, Nairobi, 00502, Kenya.
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya.
| | - Halkano Molu
- Department of Tropical and Infectious Diseases, Institute of Primate Research, P.O Box 24481, Karen, Nairobi, 00502, Kenya
| | - Esther Kagasi
- Department of Tropical and Infectious Diseases, Institute of Primate Research, P.O Box 24481, Karen, Nairobi, 00502, Kenya
| | - Kenneth Ogila
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| | - Rebeccah Waihenya
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| | - Faith Onditi
- Department of Tropical and Infectious Diseases, Institute of Primate Research, P.O Box 24481, Karen, Nairobi, 00502, Kenya
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Hastings Ozwara
- Department of Tropical and Infectious Diseases, Institute of Primate Research, P.O Box 24481, Karen, Nairobi, 00502, Kenya
| |
Collapse
|
4
|
Ahorhorlu SY, Quashie NB, Jensen RW, Kudzi W, Nartey ET, Duah-Quashie NO, Zoiku F, Dzudzor B, Wang CW, Hansson H, Alifrangis M, Adjei GO. Assessment of artemisinin tolerance in Plasmodium falciparum clinical isolates in children with uncomplicated malaria in Ghana. Malar J 2023; 22:58. [PMID: 36803541 PMCID: PMC9938975 DOI: 10.1186/s12936-023-04482-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/04/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Artemisinin-based combination therapy (ACT) is the first-line treatment for uncomplicated malaria in Ghana. Artemisinin (ART) tolerance in Plasmodium falciparum has arisen in Southeast Asia and recently, in parts of East Africa. This is ascribed to the survival of ring-stage parasites post treatment. The present study sought to assess and characterize correlates of potential ART tolerance based on post-treatment parasite clearance, ex vivo and in vitro drug sensitivity, and molecular markers of drug resistance in P. falciparum isolates from children with uncomplicated malaria in Ghana. METHODS Six months to fourteen years old children presenting with acute uncomplicated malaria (n = 115) were enrolled in two hospitals and a Health Centre in Ghana's Greater Accra region and treated with artemether-lumefantrine (AL) according to body weight. Pre- and post-treatment parasitaemia (day 0 and day 3) was confirmed by microscopy. The ex vivo ring-stage survival assay (RSA) was used to detect percent ring survival while the 72 h SYBR Green I assay was used to measure the 50% inhibition concentration (IC50s) of ART and its derivatives and partner drugs. Genetic markers of drug tolerance /resistance were evaluated using selective whole genome sequencing. RESULTS Of the total of 115 participants, 85 were successfully followed up on day 3 post-treatment and 2/85 (2.4%) had parasitaemia. The IC50 values of ART, artesunate (AS), artemether (AM), dihydroartemisinin (DHA), amodiaquine (AQ), and lumefantrine (LUM) were not indicative of drug tolerance. However, 7/90 (7.8%) pre-treatment isolates had > 10% ring survival rates against DHA. Of the four isolates (2 RSA positive and 2 RSA negative) with high genomic coverage, P. falciparum (Pf) kelch 13 K188* and Pfcoronin V424I mutations were only present in the two RSA positive isolates with > 10% ring survival rates. CONCLUSIONS The observed low proportion of participants with day-3 post-treatment parasitaemia is consistent with rapid ART clearance. However, the increased rates of survival observed in the ex vivo RSA against DHA, maybe a pointer of an early start of ART tolerance. Furthermore, the role of two novel mutations in PfK13 and Pfcoronin genes, harboured by the two RSA positive isolates that had high ring survival in the present study, remains to be elucidated.
Collapse
Affiliation(s)
- Samuel Yao Ahorhorlu
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box 4236, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Neils Ben Quashie
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box 4236, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Rasmus Weisel Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - William Kudzi
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box 4236, Accra, Ghana
| | - Edmund Tetteh Nartey
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box 4236, Accra, Ghana
| | - Nancy Odurowah Duah-Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Felix Zoiku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Bartholomew Dzudzor
- Department of Medical Biochemistry, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Christian William Wang
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Helle Hansson
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - George Obeng Adjei
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana, P.O. Box 4236, Accra, Ghana.
| |
Collapse
|
5
|
Marfurt J, Wirjanata G, Prayoga P, Chalfein F, Leonardo L, Sebayang BF, Apriyanti D, Sihombing MAEM, Trianty L, Suwanarusk R, Brockman A, Piera KA, Luo I, Rumaseb A, MacHunter B, Auburn S, Anstey NM, Kenangalem E, Noviyanti R, Russell B, Poespoprodjo JR, Price RN. Longitudinal ex vivo and molecular trends of chloroquine and piperaquine activity against Plasmodium falciparum and P. vivax before and after introduction of artemisinin-based combination therapy in Papua, Indonesia. Int J Parasitol Drugs Drug Resist 2021; 17:46-56. [PMID: 34193398 PMCID: PMC8358472 DOI: 10.1016/j.ijpddr.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/13/2023]
Abstract
Drug resistant Plasmodium parasites are a major threat to malaria control and elimination. After reports of high levels of multidrug resistant P. falciparum and P. vivax in Indonesia, in 2005, the national first-line treatment policy for uncomplicated malaria was changed in March 2006, to dihydroartemisinin-piperaquine against all species. This study assessed the temporal trends in ex vivo drug susceptibility to chloroquine (CQ) and piperaquine (PIP) for both P. falciparum and P. vivax clinical isolates collected between 2004 and 2018, by using schizont maturation assays, and genotyped a subset of isolates for known and putative molecular markers of CQ and PIP resistance by using Sanger and next generation whole genome sequencing. The median CQ IC50 values varied significantly between years in both Plasmodium species, but there was no significant trend over time. In contrast, there was a significant trend for increasing PIP IC50s in both Plasmodium species from 2010 onwards. Whereas the South American CQ resistant 7G8 pfcrt SVMNT isoform has been fixed since 2005 in the study area, the pfmdr1 86Y allele frequencies decreased and became fixed at the wild-type allele in 2015. In P. vivax isolates, putative markers of CQ resistance (no pvcrt-o AAG (K10) insertion and pvmdr1 Y967F and F1076L) were fixed at the mutant alleles since 2005. None of the putative PIP resistance markers were detected in P. falciparum. The ex vivo drug susceptibility and molecular analysis of CQ and PIP efficacy for P. falciparum and P. vivax after 12 years of intense drug pressure with DHP suggests that whilst the degree of CQ resistance appears to have been sustained, there has been a slight decline in PIP susceptibility, although this does not appear to have reached clinically significant levels. The observed decreasing trend in ex vivo PIP susceptibility highlights the importance of ongoing surveillance.
Collapse
Affiliation(s)
- Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia.
| | - Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Pak Prayoga
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia
| | - Ferryanto Chalfein
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia
| | - Leo Leonardo
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia
| | - Boni F Sebayang
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Dwi Apriyanti
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Maic A E M Sihombing
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Rossarin Suwanarusk
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Alan Brockman
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Kim A Piera
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Irene Luo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Barbara MacHunter
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Enny Kenangalem
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia; District Health Authority, Timika, Papua, Indonesia
| | - Rintis Noviyanti
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia
| | - Bruce Russell
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia
| | - Jeanne R Poespoprodjo
- Papuan Health and Community Development Foundation (PHCDF), Jl. Caritas No. 1, 99961, Timika, Papua, Indonesia; Paediatric Research Office, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT, 0811, Darwin, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
High Proportion of Genome-Wide Homology and Increased Pretreatment pvcrt Levels in Plasmodium vivax Late Recurrences: a Chloroquine Therapeutic Efficacy Study. Antimicrob Agents Chemother 2021; 65:e0009521. [PMID: 34031050 DOI: 10.1128/aac.00095-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloroquine (CQ) is the first-line treatment for Plasmodium vivax malaria in most countries where malaria is endemic. Monitoring P. vivax CQ resistance (CQR) is critical but remains challenged by the difficulty to distinguish real treatment failure from reinfection or liver relapse. The therapeutic efficacy of CQ against uncomplicated P. vivax malaria was evaluated in Gia Lai Province, Vietnam. Sixty-seven patients were enrolled and followed for 42 days using microscopy and quantitative PCR. Adequate clinical and parasitological response (ACPR) was 100% (66/66) on day 28 but 75.4% (49/65) on day 42. Eighteen recurrences (27.7%) were detected, with a median time to recurrence of 42 days (interquartile range [IQR], 35 to 42) and blood CQ concentration of <100 ng/ml. Primary infections leading to recurrence occurred in younger individuals (median age for ACPR = 25 years [IQR, 20 to 28]; recurrences = 18 [16 to 21]; P = 0.002) had a longer parasite clearance time (PCT for ACPR = 47.5 h [IQR, 36.2 to 59.8 h]; recurrences = 54.2 [48.4 to 62.0]; P = 0.035) and higher pvcrt gene expression (median relative expression ratio for ACPR = 0.09 [IQR, 0.05 to 0.22]; recurrences = 0.20 [0.15 to 0.56]; P = 0.002), but showed no differences in ex vivo CQ sensitivity. Parasite genotyping by microsatellites, single nucleotide polymorphism (SNP) barcoding, and whole-genome sequencing (WGS) identified a majority of homologous recurrences, with 80% (8/10) showing >98% identity by descent to paired day 0 samples. This study shows that CQ remained largely efficacious to treat P. vivax in Gia Lai; i.e., recurrences occurred late (>day 28) and in the presence of low blood CQ concentrations. However, the combination of both WGS and gene expression analysis (pvcrt) data with clinical data (PCT) allowed us to identify potential emergence of low-grade CQR, which should be closely monitored. (This study has been registered at ClinicalTrials.gov under identifier NCT02610686.).
Collapse
|
7
|
Nardella F, Mairet-Khedim M, Roesch C, Maher SP, Ke S, Leang R, Leroy D, Witkowski B. Cross-resistance of the chloroquine-derivative AQ-13 with amodiaquine in Cambodian Plasmodium falciparum isolates. J Antimicrob Chemother 2021; 76:2565-2568. [PMID: 34245274 PMCID: PMC8446910 DOI: 10.1093/jac/dkab219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/03/2021] [Indexed: 11/14/2022] Open
Abstract
Background Expanding resistance to multiple antimalarials, including chloroquine, in South-East Asia (SEA) urges the development of new therapies. AQ-13, a chloroquine derivative, is a new drug candidate for treating malaria caused by Plasmodium falciparum. Objectives Possible cross-resistance between the 4-aminoquinolines amodiaquine, piperaquine and AQ-13 has not been assessed. In vitro parasite growth assays were used to characterize the susceptibility of multidrug-resistant and susceptible P. falciparum patient isolates to AQ-13. Methods A [3H]hypoxanthine uptake assay and a 384-well high content imaging assay were used to assess efficacy of AQ-13 and desethyl-amodiaquine against 38 P. falciparum isolates. Results We observed a strong cross-resistance between the chloroquine derivative amodiaquine and AQ-13 in Cambodian P. falciparum isolates (Pearson correlation coefficient of 0.8621, P < 0.0001). Conclusions In light of the poor efficacy of amodiaquine that we described recently in Cambodia, and its cross resistance with AQ-13, there is a significant risk that similar clinical efficacy of AQ-13-based combinations should be anticipated in areas of amodiaquine resistance.
Collapse
Affiliation(s)
- Flore Nardella
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, CNRS ERL9195, INSERM Unit U1201, 25-28 Rue du Dr Roux, Paris, 75015, France
| | - Mélissa Mairet-Khedim
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Camille Roesch
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 D.W. Brooks Dr., Athens, GA 30602, USA
| | - Sopheakvatey Ke
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| | - Rithea Leang
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Didier Leroy
- Medicine for Malaria Venture, Geneva, Switzerland
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Pasteur Institute in Cambodia, Phnom Penh, Cambodia
| |
Collapse
|
8
|
Rovira-Vallbona E, Van Hong N, Kattenberg JH, Huan RM, Hien NTT, Ngoc NTH, Guetens P, Hieu NL, Mai TT, Duong NTT, Duong TT, Phuc BQ, Xa NX, Erhart A, Rosanas-Urgell A. Efficacy of dihydroartemisinin/piperaquine and artesunate monotherapy for the treatment of uncomplicated Plasmodium falciparum malaria in Central Vietnam. J Antimicrob Chemother 2021; 75:2272-2281. [PMID: 32437557 DOI: 10.1093/jac/dkaa172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Artemisinin-based combination therapies (ACTs) have significantly contributed to reduce Plasmodium falciparum malaria burden in Vietnam, but their efficacy is challenged by treatment failure of dihydroartemisinin/piperaquine ACT in Southern provinces. OBJECTIVES To assess the efficacy of dihydroartemisinin/piperaquine for uncomplicated P. falciparum malaria in Gia Lai, Central Vietnam, and determine parasite resistance to artemisinin (ClinicalTrials.gov identifier NCT02604966). METHODS Sixty patients received either dihydroartemisinin/piperaquine (4 mg/kg/day, 3 days; n = 33) or artesunate monotherapy (4 mg/kg/day, 3 days; n = 27) followed by dihydroartemisinin/piperaquine (AS + DHA/PPQ). Clinical phenotypes were determined during a 42 day follow-up and analysed together with ex vivo susceptibility to antimalarials and molecular markers of drug resistance. RESULTS Day 3 positivity rate was significantly higher in the AS + DHA/PPQ arm compared with dihydroartemisinin/piperaquine (70.4% versus 39.4%, P = 0.016). Parasite clearance time was 95.2 h (AS + DHA/PPQ) versus 71.9 h (dihydroartemisinin/piperaquine, P = 0.063) and parasite clearance half-life was 7.4 h (AS + DHA/PPQ) versus 7.0 h (dihydroartemisinin/piperaquine, P = 0.140). Adequate clinical and parasitological response at Day 42 was 100% in both arms. By RT-qPCR, 36% (19/53) patients remained positive until Day 7. No recurrences were detected. kelch13 artemisinin resistance mutations were found in 87% (39/45) of isolates and 50% (20/40) were KEL1/C580Y. The piperaquine resistance marker plasmepsin-2 was duplicated in 10.4% (5/48). Isolates from Day 3-positive patients (n = 18) had higher ex vivo survival rates to artemisinin compounds (P < 0.048) and prevalence of kelch13 mutations (P = 0.005) than Day 3-negative patients (n = 5). The WHO definition of artemisinin resistance was fulfilled in 60% (24/40) of cases. CONCLUSIONS Although dihydroartemisinin/piperaquine remained effective to treat P. falciparum, the high Day 3 positivity rate and prevalence of KEL1 strains calls for continuous monitoring of dihydroartemisinin/piperaquine efficacy in Central Vietnam.
Collapse
Affiliation(s)
| | - Nguyen Van Hong
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Johanna H Kattenberg
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ro Mah Huan
- Centre for Disease Control and Prevention, Gia Lai Province, Vietnam
| | - Nguyen Thi Thu Hien
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | | | - Pieter Guetens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Nguyen Luong Hieu
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Tran Tuyet Mai
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | | | - Tran Thanh Duong
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Bui Quang Phuc
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Nguyen Xuan Xa
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Medical Research Council Unit The Gambia (MRCG) at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
9
|
Montenegro LM, de Las Salas B, Neal AT, Tobon-Castaño A, Fairhurst RM, Lopera-Mesa TM. State of Artemisinin and Partner Drug Susceptibility in Plasmodium falciparum Clinical Isolates from Colombia. Am J Trop Med Hyg 2021; 104:263-270. [PMID: 33289466 DOI: 10.4269/ajtmh.20-0148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Delayed parasite clearance time observed in Southeast Asia provided the first evidence of Plasmodium falciparum resistance to artemisinins. The ex vivo ring-stage survival assay (RSA) mimics parasite exposure to pharmacologically relevant artemisinin concentrations. Mutations in the C-terminal propeller domain of the putative kelch protein Pf3D7_1343700 (K13) are associated with artemisinin resistance. Variations in the pfmdr1 gene are associated with reduced susceptibility to the artemisinin partner drugs mefloquine (MQ) and lumefantrine (LF). To clarify the unknown landscape of artemisinin resistance in Colombia, 71 patients with uncomplicated P. falciparum malaria were enrolled in a non-randomized observational study in three endemic localities in 2014-2015. Each patient's parasite isolate was assessed for ex vivo RSA, K13-propeller mutations, pfmdr1 copy number, and pfmdr1 mutations at codons 86, 184, 1034, 1042, and 1246, associated with reduced susceptibility, and 50% inhibitory concentration (IC50) for other antimalarial drugs. Ex vivo RSAs were successful in 56% (40/71) of samples, and nine isolates showed survival rates > 1%. All isolates had wild-type K13-propeller sequences. All isolates harbored either of two pfmdr1 haplotypes, NFSDD (79.3%) and NFSDY (20.7%), and 7.1% of isolates had > 1 pfmdr1 gene. In vitro IC50 assays showed that variable proportions of isolates had decreased susceptibility to chloroquine (52.4%, > 100 nM), amodiaquine (31.2%, > 30 nM), MQ (34.3%, > 30 nM), and LF (3.2%, > 10 nM). In this study, we report ex vivo RSA and K13 data on P. falciparum isolates from Colombia. The identification of isolates with increased ex vivo RSA rates in the absence of K13-propeller mutations and no positivity at day three requires further investigation.
Collapse
Affiliation(s)
| | - Briegel de Las Salas
- 1Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Aaron T Neal
- 2Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | | | - Rick M Fairhurst
- 2Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | | |
Collapse
|
10
|
Fukuda N, Tachibana SI, Ikeda M, Sakurai-Yatsushiro M, Balikagala B, Katuro OT, Yamauchi M, Emoto S, Hashimoto M, Yatsushiro S, Sekihara M, Mori T, Hirai M, Opio W, Obwoya PS, Auma MA, Anywar DA, Kataoka M, Palacpac NMQ, Odongo-Aginya EI, Kimura E, Ogwang M, Horii T, Mita T. Ex vivo susceptibility of Plasmodium falciparum to antimalarial drugs in Northern Uganda. Parasitol Int 2020; 81:102277. [PMID: 33370608 DOI: 10.1016/j.parint.2020.102277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
In Uganda, artemether-lumefantrine was introduced as an artemisinin-based combination therapy (ACT) for malaria in 2006. We have previously reported a moderate decrease in ex vivo efficacy of lumefantrine in Northern Uganda, where we also detected ex vivo artemisinin-resistant Plasmodium falciparum. Therefore, it is necessary to search for candidate partner alternatives for ACT. Here, we investigated ex vivo susceptibility to four ACT partner drugs as well as quinine and chloroquine, in 321 cases between 2013 and 2018. Drug-resistant mutations in pfcrt and pfmdr1 were also determined. Ex vivo susceptibility to amodiaquine, quinine, and chloroquine was well preserved, whereas resistance to mefloquine was found in 45.8%. There were few cases of multi-drug resistance. Reduced sensitivity to mefloquine and lumefantrine was significantly associated with the pfcrt K76 wild-type allele, in contrast to the association between chloroquine resistance and the K76T allele. Pfmdr1 duplication was not detected in any of the cases. Amodiaquine, a widely used partner drug for ACT in African countries, may be the first promising alternative in case lumefantrine resistance emerges. Therapeutic use of mefloquine may not be recommended in this area. This study also emphasizes the need for sustained monitoring of antimalarial susceptibility in Northern Uganda to develop proper treatment strategies.
Collapse
Affiliation(s)
- Naoyuki Fukuda
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shin-Ichiro Tachibana
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mie Ikeda
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Miki Sakurai-Yatsushiro
- Department of International Affairs and Tropical Medicine, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Betty Balikagala
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Osbert T Katuro
- Mildmay Uganda, Nazibwa Hill, Lweza, P.O. Box 24985, Kampala, Uganda
| | - Masato Yamauchi
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sakurako Emoto
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Muneaki Hashimoto
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu, Kagawa, 761-0301, Japan
| | - Shouki Yatsushiro
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu, Kagawa, 761-0301, Japan
| | - Makoto Sekihara
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Mori
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Makoto Hirai
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Walter Opio
- St. Mary's Hospital Lacor, P.O. Box 180, Gulu, Uganda
| | - Paul S Obwoya
- St. Mary's Hospital Lacor, P.O. Box 180, Gulu, Uganda
| | - Mary A Auma
- St. Mary's Hospital Lacor, P.O. Box 180, Gulu, Uganda
| | - Denis A Anywar
- Faculty of Medicine, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Masatoshi Kataoka
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu, Kagawa, 761-0301, Japan
| | - Nirianne M Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | - Eisaku Kimura
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | - Martin Ogwang
- St. Mary's Hospital Lacor, P.O. Box 180, Gulu, Uganda
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
11
|
Apinjoh TO, Ouattara A, Titanji VPK, Djimde A, Amambua-Ngwa A. Genetic diversity and drug resistance surveillance of Plasmodium falciparum for malaria elimination: is there an ideal tool for resource-limited sub-Saharan Africa? Malar J 2019; 18:217. [PMID: 31242921 PMCID: PMC6595576 DOI: 10.1186/s12936-019-2844-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
The intensification of malaria control interventions has resulted in its global decline, but it remains a significant public health burden especially in sub-Saharan Africa (sSA). Knowledge on the parasite diversity, its transmission dynamics, mechanisms of adaptation to environmental and interventional pressures could help refine or develop new control and elimination strategies. Critical to this is the accurate assessment of the parasite’s genetic diversity and monitoring of genetic markers of anti-malarial resistance across all susceptible populations. Such wide molecular surveillance will require selected tools and approaches from a variety of ever evolving advancements in technology and the changing epidemiology of malaria. The choice of an effective approach for specific endemic settings remains challenging, particularly for countries in sSA with limited access to advanced technologies. This article examines the current strategies and tools for Plasmodium falciparum genetic diversity typing and resistance monitoring and proposes how the different tools could be employed in resource-poor settings. Advanced approaches enabling targeted deep sequencing is valued as a sensitive method for assessing drug resistance and parasite diversity but remains out of the reach of most laboratories in sSA due to the high cost of development and maintenance. It is, however, feasible to equip a limited number of laboratories as Centres of Excellence in Africa (CEA), which will receive and process samples from a network of peripheral laboratories in the continent. Cheaper, sensitive and portable real-time PCR methods can be used in peripheral laboratories to pre-screen and select samples for targeted deep sequence or genome wide analyses at these CEAs.
Collapse
Affiliation(s)
- Tobias O Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Amed Ouattara
- School of Medicine, University of Maryland, College Park, Baltimore, USA
| | - Vincent P K Titanji
- Faculty of Science, Engineering and Technology, Cameroon Christian University, Bali, Cameroon
| | - Abdoulaye Djimde
- Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | |
Collapse
|
12
|
Tarnchompoo B, Chitnumsub P, Jaruwat A, Shaw PJ, Vanichtanankul J, Poen S, Rattanajak R, Wongsombat C, Tonsomboon A, Decharuangsilp S, Anukunwithaya T, Arwon U, Kamchonwongpaisan S, Yuthavong Y. Hybrid Inhibitors of Malarial Dihydrofolate Reductase with Dual Binding Modes That Can Forestall Resistance. ACS Med Chem Lett 2018; 9:1235-1240. [PMID: 30613332 PMCID: PMC6295868 DOI: 10.1021/acsmedchemlett.8b00389] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/07/2018] [Indexed: 01/08/2023] Open
Abstract
![]()
The
S108N mutation of dihydrofolate reductase (DHFR) renders Plasmodium
falciparum malaria parasites resistant to pyrimethamine
through steric clash with the rigid side chain of the inhibitor. Inhibitors
with flexible side chains can avoid this clash and retain effectiveness
against the mutant. However, other mutations such as N108S reversion
confer resistance to flexible inhibitors. We designed and synthesized
hybrid inhibitors with two structural types in a single molecule,
which are effective against both wild-type and multiple mutants of P. falciparum through their selective target binding, as
demonstrated by X-ray crystallography. Furthermore, the hybrid inhibitors
can forestall the emergence of new resistant mutants, as shown by
selection of mutants resistant to hybrid compound BT1 from a diverse PfDHFR random mutant library expressed in a surrogate
bacterial system. These results show that it is possible to develop
effective antifolate antimalarials to which the range of parasite
resistance mutations is greatly reduced.
Collapse
Affiliation(s)
- Bongkoch Tarnchompoo
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Philip J. Shaw
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Jarunee Vanichtanankul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Sinothai Poen
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Roonglawan Rattanajak
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Chayaphat Wongsombat
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Aunchalee Tonsomboon
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Sasithorn Decharuangsilp
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Tosapol Anukunwithaya
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Uthai Arwon
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| |
Collapse
|
13
|
Nsanzabana C, Djalle D, Guérin PJ, Ménard D, González IJ. Tools for surveillance of anti-malarial drug resistance: an assessment of the current landscape. Malar J 2018; 17:75. [PMID: 29422048 PMCID: PMC5806256 DOI: 10.1186/s12936-018-2185-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
To limit the spread and impact of anti-malarial drug resistance and react accordingly, surveillance systems able to detect and track in real-time its emergence and spread need to be strengthened or in some places established. Currently, surveillance of anti-malarial drug resistance is done by any of three approaches: (1) in vivo studies to assess the efficacy of drugs in patients; (2) in vitro/ex vivo studies to evaluate parasite susceptibility to the drugs; and/or (3) molecular assays to detect validated gene mutations and/or gene copy number changes that are associated with drug resistance. These methods are complementary, as they evaluate different aspects of resistance; however, standardization of methods, especially for in vitro/ex vivo and molecular techniques, is lacking. The World Health Organization has developed a standard protocol for evaluating the efficacy of anti-malarial drugs, which is used by National Malaria Control Programmes to conduct their therapeutic efficacy studies. Regional networks, such as the East African Network for Monitoring Antimalarial Treatment and the Amazon Network for the Surveillance of Antimalarial Drug Resistance, have been set up to strengthen regional capacities for monitoring anti-malarial drug resistance. The Worldwide Antimalarial Resistance Network has been established to collate and provide global spatial and temporal trends information on the efficacy of anti-malarial drugs and resistance. While exchange of information across endemic countries is essential for monitoring anti-malarial resistance, sustainable funding for the surveillance and networking activities remains challenging. The technology landscape for molecular assays is progressing quite rapidly, and easy-to-use and affordable new techniques are becoming available. They also offer the advantage of high throughput analysis from a simple blood spots obtained from a finger prick. New technologies combined with the strengthening of national reference laboratories in malaria-endemic countries through standardized protocols and training plus the availability of a proficiency testing programme, would contribute to the improvement and sustainability of anti-malarial resistance surveillance networks worldwide.
Collapse
Affiliation(s)
| | - Djibrine Djalle
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Philippe J Guérin
- WorldWide Antimalarial Resistance Network, Oxford, UK.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Didier Ménard
- Unité Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, France
| | - Iveth J González
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| |
Collapse
|
14
|
Sustained Ex Vivo Susceptibility of Plasmodium falciparum to Artemisinin Derivatives but Increasing Tolerance to Artemisinin Combination Therapy Partner Quinolines in The Gambia. Antimicrob Agents Chemother 2017; 61:AAC.00759-17. [PMID: 28971859 PMCID: PMC5700332 DOI: 10.1128/aac.00759-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/22/2017] [Indexed: 02/03/2023] Open
Abstract
Antimalarial interventions have yielded a significant decline in malaria prevalence in The Gambia, where artemether-lumefantrine (AL) has been used as a first-line antimalarial for a decade. Clinical Plasmodium falciparum isolates collected from 2012 to 2015 were analyzed ex vivo for antimalarial susceptibility and genotyped for drug resistance markers (pfcrt K76T, pfmdr1 codons 86, 184, and 1246, and pfk13) and microsatellite variation. Additionally, allele frequencies of single nucleotide polymorphisms (SNPs) from other drug resistance-associated genes were compared from genomic sequence data sets from 2008 (n = 79) and 2014 (n = 168). No artemisinin resistance-associated pfk13 mutation was found, and only 4% of the isolates tested in 2015 showed significant growth after exposure to dihydroartemisinin. Conversely, the 50% inhibitory concentrations (IC50s) of amodiaquine and lumefantrine increased within this period. pfcrt 76T and pfmdr1 184F mutants remained at a prevalence above 80%. pfcrt 76T was positively associated with higher IC50s to chloroquine. pfmdr1 NYD increased in frequency between 2012 and 2015 due to lumefantrine selection. The TNYD (pfcrt 76T and pfmdr1 NYD wild-type haplotype) also increased in frequency following AL implementation in 2008. These results suggest selection for pfcrt and pfmdr1 genotypes that enable tolerance to lumefantrine. Increased tolerance to lumefantrine calls for sustained chemotherapeutic monitoring in The Gambia to minimize complete artemisinin combination therapy (ACT) failure in the future.
Collapse
|
15
|
Abstract
In the last 2 decades, renewed attention to neglected tropical diseases (NTDs) has spurred the development of antiparasitic agents, especially in light of emerging drug resistance. The need for new drugs has required in vitro screening methods using parasite culture. Furthermore, clinical laboratories sought to correlate in vitro susceptibility methods with treatment outcomes, most notably with malaria. Parasites with their various life cycles present greater complexity than bacteria, for which standardized susceptibility methods exist. This review catalogs the state-of-the-art methodologies used to evaluate the effects of drugs on key human parasites from the point of view of drug discovery as well as the need for laboratory methods that correlate with clinical outcomes.
Collapse
|
16
|
Chaorattanakawee S, Lon C, Chann S, Thay KH, Kong N, You Y, Sundrakes S, Thamnurak C, Chattrakarn S, Praditpol C, Yingyuen K, Wojnarski M, Huy R, Spring MD, Walsh DS, Patel JC, Lin J, Juliano JJ, Lanteri CA, Saunders DL. Measuring ex vivo drug susceptibility in Plasmodium vivax isolates from Cambodia. Malar J 2017; 16:392. [PMID: 28964258 PMCID: PMC5622433 DOI: 10.1186/s12936-017-2034-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022] Open
Abstract
Background While intensive Plasmodium falciparum multidrug resistance surveillance continues in Cambodia, relatively little is known about Plasmodium vivax drug resistance in Cambodia or elsewhere. To investigate P. vivax anti-malarial susceptibility in Cambodia, 76 fresh P. vivax isolates collected from Oddar Meanchey (northern Cambodia) in 2013–2015 were assessed for ex vivo drug susceptibility using the microscopy-based schizont maturation test (SMT) and a Plasmodium pan-species lactate dehydrogenase (pLDH) ELISA. P. vivax multidrug resistance gene 1 (pvmdr1) mutations, and copy number were analysed in a subset of isolates. Results Ex vivo testing was interpretable in 80% of isolates using the pLDH-ELISA, but only 25% with the SMT. Plasmodium vivax drug susceptibility by pLDH-ELISA was directly compared with 58 P. falciparum isolates collected from the same locations in 2013–4, tested by histidine-rich protein-2 ELISA. Median pLDH-ELISA IC50 of P. vivax isolates was significantly lower for dihydroartemisinin (3.4 vs 6.3 nM), artesunate (3.2 vs 5.7 nM), and chloroquine (22.1 vs 103.8 nM) than P. falciparum but higher for mefloquine (92 vs 66 nM). There were not significant differences for lumefantrine or doxycycline. Both P. vivax and P. falciparum had comparable median piperaquine IC50 (106.5 vs 123.8 nM), but some P. falciparum isolates were able to grow in much higher concentrations above the normal standard range used, attaining up to 100-fold greater IC50s than P. vivax. A high percentage of P. vivax isolates had pvmdr1 Y976F (78%) and F1076L (83%) mutations but none had pvmdr1 amplification. Conclusion The findings of high P. vivax IC50 to mefloquine and piperaquine, but not chloroquine, suggest significant drug pressure from drugs used to treat multidrug resistant P. falciparum in Cambodia. Plasmodium vivax isolates are frequently exposed to mefloquine and piperaquine due to mixed infections and the long elimination half-life of these drugs. Difficulty distinguishing infection due to relapsing hypnozoites versus blood-stage recrudescence complicates clinical detection of P. vivax resistance, while well-validated molecular markers of chloroquine resistance remain elusive. The pLDH assay may be a useful adjunctive tool for monitoring for emerging drug resistance, though more thorough validation is needed. Given high grade clinical chloroquine resistance observed recently in neighbouring countries, low chloroquine IC50 values seen here should not be interpreted as susceptibility in the absence of clinical data. Incorporating pLDH monitoring with therapeutic efficacy studies for individuals with P. vivax will help to further validate this field-expedient method. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2034-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suwanna Chaorattanakawee
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand. .,Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand.
| | - Chanthap Lon
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Soklyda Chann
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Kheang Heng Thay
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Nareth Kong
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Yom You
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Siratchana Sundrakes
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Chatchadaporn Thamnurak
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Sorayut Chattrakarn
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Chantida Praditpol
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Kritsanai Yingyuen
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Mariusz Wojnarski
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Rekol Huy
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Michele D Spring
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Douglas S Walsh
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Jaymin C Patel
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica Lin
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jonathan J Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Charlotte A Lanteri
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - David L Saunders
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand.,US Army Medical Materiel Development Activity, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
17
|
Plasmodium falciparum and Plasmodium vivax Demonstrate Contrasting Chloroquine Resistance Reversal Phenotypes. Antimicrob Agents Chemother 2017; 61:AAC.00355-17. [PMID: 28533239 PMCID: PMC5527611 DOI: 10.1128/aac.00355-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/08/2017] [Indexed: 01/12/2023] Open
Abstract
High-grade chloroquine (CQ) resistance has emerged in both Plasmodium falciparum and P. vivax The aim of the present study was to investigate the phenotypic differences of CQ resistance in both of these species and the ability of known CQ resistance reversal agents (CQRRAs) to alter CQ susceptibility. Between April 2015 and April 2016, the potential of verapamil (VP), mibefradil (MF), L703,606 (L7), and primaquine (PQ) to reverse CQ resistance was assessed in 46 P. falciparum and 34 P. vivax clinical isolates in Papua, Indonesia, where CQ resistance is present in both species, using a modified schizont maturation assay. In P. falciparum, CQ 50% inhibitory concentrations (IC50s) were reduced when CQ was combined with VP (1.4-fold), MF (1.2-fold), L7 (4.2-fold), or PQ (1.8-fold). The degree of CQ resistance reversal in P. falciparum was highly correlated with CQ susceptibility for all CQRRAs (R2 = 0.951, 0.852, 0.962, and 0.901 for VP, MF, L7, and PQ, respectively), in line with observations in P. falciparum laboratory strains. In contrast, no reduction in the CQ IC50s was observed with any of the CQRRAs in P. vivax, even in those isolates with high chloroquine IC50s. The differential effect of CQRRAs in P. falciparum and P. vivax suggests significant differences in CQ kinetics and, potentially, the likely mechanism of CQ resistance between these two species.
Collapse
|
18
|
Abstract
Increasing antimalarial drug resistance once again threatens effective antimalarial drug treatment, malaria control, and elimination. Artemisinin combination therapies (ACTs) are first-line treatment for uncomplicated falciparum malaria in all endemic countries, yet partial resistance to artemisinins has emerged in the Greater Mekong Subregion. Concomitant emergence of partner drug resistance is now causing high ACT treatment failure rates in several areas. Genetic markers for artemisinin resistance and several of the partner drugs have been established, greatly facilitating surveillance. Single point mutations in the gene coding for the Kelch propeller domain of the K13 protein strongly correlate with artemisinin resistance. Novel regimens and strategies using existing antimalarial drugs will be needed until novel compounds can be deployed. Elimination of artemisinin resistance will imply elimination of all falciparum malaria from the same areas. In vivax malaria, chloroquine resistance is an increasing problem.
Collapse
Affiliation(s)
- Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh 12201, Cambodia
| | - Arjen Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| |
Collapse
|
19
|
Abstract
For decades antimonials were the drugs of choice for the treatment of visceral
leishmaniasis (VL), but the recent emergence of resistance has made them redundant as
first-line therapy in the endemic VL region in the Indian subcontinent. The application of
other drugs has been limited due to adverse effects, perceived high cost, need for
parenteral administration and increasing rate of treatment failures. Liposomal
amphotericin B (AmB) and miltefosine (MIL) have been positioned as the effective
first-line treatments; however, the number of monotherapy MIL-failures has increased after
a decade of use. Since no validated molecular resistance markers are yet available,
monitoring and surveillance of changes in drug sensitivity and resistance still depends on
standard phenotypic in vitro promastigote or amastigote susceptibility
assays. Clinical isolates displaying defined MIL- or AmB-resistance are still fairly
scarce and fundamental and applied research on resistance mechanisms and dynamics remains
largely dependent on laboratory-generated drug resistant strains. This review addresses
the various challenges associated with drug susceptibility and -resistance monitoring in
VL, with particular emphasis on the choice of strains, susceptibility model selection and
standardization of procedures with specific read-out parameters and well-defined threshold
criteria. The latter are essential to support surveillance systems and safeguard the
limited number of currently available antileishmanial drugs.
Collapse
|
20
|
Chaorattanakawee S, Lon C, Jongsakul K, Gawee J, Sok S, Sundrakes S, Kong N, Thamnurak C, Chann S, Chattrakarn S, Praditpol C, Buathong N, Uthaimongkol N, Smith P, Sirisopana N, Huy R, Prom S, Fukuda MM, Bethell D, Walsh DS, Lanteri C, Saunders D. Ex vivo piperaquine resistance developed rapidly in Plasmodium falciparum isolates in northern Cambodia compared to Thailand. Malar J 2016; 15:519. [PMID: 27769299 PMCID: PMC5075182 DOI: 10.1186/s12936-016-1569-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022] Open
Abstract
Background The recent dramatic decline in dihydroartemisinin-piperaquine (DHA-PPQ) efficacy in northwestern Cambodia has raised concerns about the rapid spread of piperaquine resistance just as DHA-PPQ is being introduced as first-line therapy in neighbouring countries. Methods Ex vivo parasite susceptibilities were tracked to determine the rate of progression of DHA, PPQ and mefloquine (MQ) resistance from sentinel sites on the Thai–Cambodian and Thai–Myanmar borders from 2010 to 2015. Immediate ex vivo (IEV) histidine-rich protein 2 (HRP-2) assays were used on fresh patient Plasmodium falciparum isolates to determine drug susceptibility profiles. Results IEV HRP-2 assays detected the precipitous emergence of PPQ resistance in Cambodia beginning in 2013 when 40 % of isolates had an IC90 greater than the upper limit of prior years, and this rate doubled to 80 % by 2015. In contrast, Thai–Myanmar isolates from 2013 to 14 remained PPQ-sensitive, while northeastern Thai isolates appeared to have an intermediate resistance profile. The opposite trend was observed for MQ where Cambodian isolates appeared to have a modest increase in overall sensitivity during the same period, with IC50 declining to median levels comparable to those found in Thailand. A significant association between increased PPQ IC50 and IC90 among Cambodian isolates with DHA-PPQ treatment failure was observed. Nearly all Cambodian and Thai isolates were deemed artemisinin resistant with a >1 % survival rate for DHA in the ring-stage assay (RSA), though there was no correlation among isolates to indicate cross-resistance between PPQ and artemisinins. Conclusions Clinical DHA-PPQ failures appear to be associated with declines in the long-acting partner drug PPQ, though sensitivity appears to remain largely intact for now in western Thailand. Rapid progression of PPQ resistance associated with DHA-PPQ treatment failures in northern Cambodia limits drugs of choice in this region, and urgently requires alternative therapy. The temporary re-introduction of artesunate AS-MQ is the current response to PPQ resistance in this area, due to inverse MQ and PPQ resistance patterns. This will require careful monitoring for re-emergence of MQ resistance, and possible simultaneous resistance to all three drugs (AS, MQ and PPQ). Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1569-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suwanna Chaorattanakawee
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand.,Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Chanthap Lon
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand. .,USAMC-AFRIMS, Phnom Penh, Cambodia.
| | - Krisada Jongsakul
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Somethy Sok
- Royal Cambodian Armed Forces, Phnom Penh, Cambodia
| | - Siratchana Sundrakes
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Nareth Kong
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Chatchadaporn Thamnurak
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Sorayut Chattrakarn
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Chantida Praditpol
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Nillawan Buathong
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Nichapat Uthaimongkol
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Philip Smith
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | - Rekol Huy
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | | | - Mark M Fukuda
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Delia Bethell
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Douglas S Walsh
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | - Charlotte Lanteri
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand.,Department of Pathology and Area Laboratory Services, Microbiology Section, Brooke Army Medical Center, San Antonio, TX, USA
| | - David Saunders
- US Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| |
Collapse
|
21
|
Rehman K, Sauerzopf U, Veletzky L, Lötsch F, Groger M, Ramharter M. Effect of mild medical hypothermia on in vitro growth of Plasmodium falciparum and the activity of anti-malarial drugs. Malar J 2016; 15:162. [PMID: 26979163 PMCID: PMC4791858 DOI: 10.1186/s12936-016-1215-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Cerebral malaria remains a medical emergency with high mortality. Hypo-perfusion due to obstructed blood vessels in the brain is thought to play a key role in the pathophysiology of cerebral malaria leading to neurological impairment, long-term neuro-cognitive sequelae and, potentially, death. Due to the rapid reversibility of vascular obstruction caused by sequestered Plasmodium falciparum, it is hypothesized that mild medical hypothermia—a standard intervention for other medical emergencies—may improve clinical outcome. This preclinical in vitro study was performed to assess the impact of mild hypothermia on parasite growth and the intrinsic activity of anti-malarials drugs. Methods Three laboratory-adapted clones and two clinical isolates were used for growth assays and standardized drug sensitivity assessments using the standard HRP2 assay. All assays were performed in parallel under normothermic (37 °C), mild hypothermic (32 °C), and hyperthermic (41 °C) conditions. Results Parasite growth was higher under standard temperature condition than under hypo- or hyperthermia (growth ratio 0.85; IQR 0.25–1.06 and 0.09; IQR 0.05–0.32, respectively). Chloroquine and mefloquine had comparable in vitro activity under mild hypothermic conditions (ratios for IC50 at 37 °C/32 °C: 0.88; 95 % CI 0.25–1.50 and 0.86; 95 % CI 0.36–1.36, respectively) whereas dihydroartemisinin was more active under mild hypothermic conditions (ratio for IC50 at 37 °C/32 °C: 0.27; 95 % CI 0.19–0.27). Hyperthermia led by itself to almost complete growth inhibition and precluded further testing of the activity of anti-malarial drugs. Conclusion This preclinical evaluation demonstrates that mild medical hypothermia inhibits in vitro growth of P. falciparum and enhances the pharmacodynamic activity of artemisinin derivatives. Based on these preclinical pharmacodynamic data, the further clinical development of mild medical hypothermia as adjunctive treatment to parenteral artesunate for cerebral malaria is warranted.
Collapse
Affiliation(s)
- Khalid Rehman
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Ulrich Sauerzopf
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Luzia Veletzky
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Felix Lötsch
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Mirjam Groger
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Centre de Recherches Médicales de Lambaréné, Hôpital Albert Schweitzer, Lambaréné, Gabon
| | - Michael Ramharter
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria. .,Centre de Recherches Médicales de Lambaréné, Hôpital Albert Schweitzer, Lambaréné, Gabon. .,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Wirjanata G, Handayuni I, Zaloumis SG, Chalfein F, Prayoga P, Kenangalem E, Poespoprodjo JR, Noviyanti R, Simpson JA, Price RN, Marfurt J. Analysis of ex vivo drug response data of Plasmodium clinical isolates: the pros and cons of different computer programs and online platforms. Malar J 2016; 15:137. [PMID: 26935745 PMCID: PMC4776429 DOI: 10.1186/s12936-016-1173-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/17/2016] [Indexed: 11/30/2022] Open
Abstract
Background In vitro drug susceptibility testing of malaria parasites remains an important component of surveillance for anti-malarial drug resistance. The half-maximal inhibition of growth (IC50) is the most commonly reported parameter expressing drug susceptibility, derived by a variety of statistical approaches, each with its own advantages and disadvantages. Methods In this study, licensed computer programs WinNonlin and GraphPad Prism 6.0, and the open access programs HN-NonLin, Antimalarial ICEstimator (ICE), and In Vitro Analysis and Reporting Tool (IVART) were tested for their ease of use and ability to estimate reliable IC50 values from raw drug response data from 31 Plasmodium falciparum and 29 P. vivax clinical isolates tested with five anti-malarial agents: chloroquine, amodiaquine, piperaquine, mefloquine, and artesunate. Results The IC50 and slope estimates were similar across all statistical packages for all drugs tested in both species. There was good correlation of results derived from alternative statistical programs and non-linear mixed-effects modelling (NONMEM) which models all isolate data simultaneously. The user-friendliness varied between packages. While HN-NonLin and IVART allow users to enter the data in 96-well format, IVART and GraphPad Prism 6.0 are capable to analyse multiple isolates and drugs in parallel. WinNonlin, GraphPad Prism 6.0, IVART, and ICE provide alerts for non-fitting data and incorrect data entry, facilitating data interpretation. Data analysis using WinNonlin or ICE took the longest computationally, whilst the offline ability of GraphPad Prism 6.0 to analyse multiple isolates and drugs simultaneously made it the fastest among the programs tested. Conclusion IC50 estimates obtained from the programs tested were comparable. In view of processing time and ease of analysis, GraphPad Prism 6.0 or IVART are best suited for routine and large-scale drug susceptibility testing. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1173-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT, 0811, Australia.
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT, 0811, Australia.
| | - Sophie G Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia.
| | - Ferryanto Chalfein
- Papuan Health and Community Development Foundation (PHCDF), Timika, Papua, Indonesia.
| | - Pak Prayoga
- Papuan Health and Community Development Foundation (PHCDF), Timika, Papua, Indonesia.
| | - Enny Kenangalem
- Papuan Health and Community Development Foundation (PHCDF), Timika, Papua, Indonesia. .,District Health Authority, Timika, Papua, Indonesia.
| | - Jeanne Rini Poespoprodjo
- Papuan Health and Community Development Foundation (PHCDF), Timika, Papua, Indonesia. .,District Health Authority, Timika, Papua, Indonesia. .,Department of Paediatrics, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia.
| | - Rintis Noviyanti
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, 10430, Jakarta, Indonesia.
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia.
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT, 0811, Australia. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, Darwin, NT, 0811, Australia.
| |
Collapse
|
23
|
Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. THE LANCET. INFECTIOUS DISEASES 2016; 16:357-65. [PMID: 26774243 DOI: 10.1016/s1473-3099(15)00487-9] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/17/2015] [Accepted: 11/19/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND Artemisinin resistance in Plasmodium falciparum threatens to reduce the efficacy of artemisinin combination therapies (ACTs), thus compromising global efforts to eliminate malaria. Recent treatment failures with dihydroartemisinin-piperaquine, the current first-line ACT in Cambodia, suggest that piperaquine resistance may be emerging in this country. We explored the relation between artemisinin resistance and dihydroartemisinin-piperaquine failures, and sought to confirm the presence of piperaquine-resistant P falciparum infections in Cambodia. METHODS In this prospective cohort study, we enrolled patients aged 2-65 years with uncomplicated P falciparum malaria in three Cambodian provinces: Pursat, Preah Vihear, and Ratanakiri. Participants were given standard 3-day courses of dihydroartemisinin-piperaquine. Peripheral blood parasite densities were measured until parasites cleared and then weekly to 63 days. The primary outcome was recrudescent P falciparum parasitaemia within 63 days. We measured piperaquine plasma concentrations at baseline, 7 days, and day of recrudescence. We assessed phenotypic and genotypic markers of drug resistance in parasite isolates. The study is registered with ClinicalTrials.gov, number NCT01736319. FINDINGS Between Sept 4, 2012, and Dec 31, 2013, we enrolled 241 participants. In Pursat, where artemisinin resistance is entrenched, 37 (46%) of 81 patients had parasite recrudescence. In Preah Vihear, where artemisinin resistance is emerging, ten (16%) of 63 patients had recrudescence and in Ratanakiri, where artemisinin resistance is rare, one (2%) of 60 patients did. Patients with recrudescent P falciparum infections were more likely to have detectable piperaquine plasma concentrations at baseline compared with non-recrudescent patients, but did not differ significantly in age, initial parasite density, or piperaquine plasma concentrations at 7 days. Recrudescent parasites had a higher prevalence of kelch13 mutations, higher piperaquine 50% inhibitory concentration (IC50) values, and lower mefloquine IC50 values; none had multiple pfmdr1 copies, a genetic marker of mefloquine resistance. INTERPRETATION Dihydroartemisinin-piperaquine failures are caused by both artemisinin and piperaquine resistance, and commonly occur in places where dihydroartemisinin-piperaquine has been used in the private sector. In Cambodia, artesunate plus mefloquine may be a viable option to treat dihydroartemisinin-piperaquine failures, and a more effective first-line ACT in areas where dihydroartemisinin-piperaquine failures are common. The use of single low-dose primaquine to eliminate circulating gametocytes is needed in areas where artemisinin and ACT resistance is prevalent. FUNDING National Institute of Allergy and Infectious Diseases.
Collapse
|
24
|
Duru V, Khim N, Leang R, Kim S, Domergue A, Kloeung N, Ke S, Chy S, Eam R, Khean C, Loch K, Ken M, Lek D, Beghain J, Ariey F, Guerin PJ, Huy R, Mercereau-Puijalon O, Witkowski B, Menard D. Plasmodium falciparum dihydroartemisinin-piperaquine failures in Cambodia are associated with mutant K13 parasites presenting high survival rates in novel piperaquine in vitro assays: retrospective and prospective investigations. BMC Med 2015; 13:305. [PMID: 26695060 PMCID: PMC4688949 DOI: 10.1186/s12916-015-0539-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The declining efficacy of dihydroartemisinin-piperaquine against Plasmodium falciparum in Cambodia, along with increasing numbers of recrudescent cases, suggests resistance to both artemisinin and piperaquine. Available in vitro piperaquine susceptibility assays do not correlate with treatment outcome. A novel assay using a pharmacologically relevant piperaquine dose/time exposure was designed and its relevance explored in retrospective and prospective studies. METHODS The piperaquine survival assay (PSA) exposed parasites to 200 nM piperaquine for 48 hours and monitored survival 24 hours later. The retrospective study tested 32 culture-adapted, C580Y-K13 mutant parasites collected at enrolment from patients treated with a 3-day course of dihydroartemisinin-piperaquine and having presented or not with a recrudescence at day 42 (registered ACTRN12615000793516). The prospective study assessed ex vivo PSA survival rate alongside K13 polymorphism of isolates collected from patients enrolled in an open-label study with dihydroartemisinin-piperaquine for uncomplicated P. falciparum malaria in Cambodia (registered ACTRN12615000696594). RESULTS All parasites from recrudescent cases had in vitro or ex vivo PSA survival rates ≥10%, a relevant cut-off value for piperaquine-resistance. Ex vivo PSA survival rates were higher for recrudescent than non-recrudescent cases (39.2% vs. 0.17%, P <1 × 10(-7)). Artemisinin-resistant K13 mutants with ex vivo PSA survival rates ≥10% were associated with 32-fold higher risk of recrudescence (95% CI, 4.5-224; P = 0.0005). CONCLUSION PSA adequately captures the piperaquine resistance/recrudescence phenotype, a mainstay to identify molecular marker(s) and evaluate efficacy of alternative drugs. Combined ex vivo PSA and K13 genotyping provides a convenient monitor for both artemisinin and piperaquine resistance where dihydroartemisinin-piperaquine is used.
Collapse
Affiliation(s)
- Valentine Duru
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, BP 983, Phnom Penh, Cambodia.
| | - Nimol Khim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, BP 983, Phnom Penh, Cambodia.
| | - Rithea Leang
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, BP 983, Phnom Penh, Cambodia.
| | - Anais Domergue
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, BP 983, Phnom Penh, Cambodia.
| | - Nimol Kloeung
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, BP 983, Phnom Penh, Cambodia.
| | - Sopheakvatey Ke
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, BP 983, Phnom Penh, Cambodia.
| | - Sophy Chy
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, BP 983, Phnom Penh, Cambodia.
| | - Rotha Eam
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, BP 983, Phnom Penh, Cambodia.
| | - Chanra Khean
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, BP 983, Phnom Penh, Cambodia.
| | - Kaknika Loch
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, BP 983, Phnom Penh, Cambodia.
| | - Malen Ken
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, BP 983, Phnom Penh, Cambodia.
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.
| | - Johann Beghain
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.
| | - Frédéric Ariey
- Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.
| | - Philippe J Guerin
- WorldWide Antimalarial Resistance Network, Oxford, UK. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK.
| | - Rekol Huy
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.
| | | | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, BP 983, Phnom Penh, Cambodia.
| | - Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, BP 983, Phnom Penh, Cambodia.
| |
Collapse
|
25
|
Phyo AP, Jittamala P, Nosten FH, Pukrittayakamee S, Imwong M, White NJ, Duparc S, Macintyre F, Baker M, Möhrle JJ. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: an open-label phase 2 trial. THE LANCET. INFECTIOUS DISEASES 2015; 16:61-69. [PMID: 26448141 PMCID: PMC4700386 DOI: 10.1016/s1473-3099(15)00320-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 11/28/2022]
Abstract
Background Artefenomel (OZ439) is a novel synthetic trioxolane with improved pharmacokinetic properties compared with other antimalarial drugs with the artemisinin pharmacophore. Artefenomel has been generally well tolerated in volunteers at doses up to 1600 mg and is being developed as a partner drug in an antimalarial combination treatment. We investigated the efficacy, tolerability, and pharmacokinetics of artefenomel at different doses in patients with Plasmodium falciparum or Plasmodium vivax malaria. Methods This phase 2a exploratory, open-label trial was done at the Hospital for Tropical Diseases, Bangkok, and the Shoklo Malaria Research Unit in Thailand. Adult patients with acute, uncomplicated P falciparum or P vivax malaria received artefenomel in a single oral dose (200 mg, 400 mg, 800 mg, or 1200 mg). The first cohort received 800 mg. Testing of a new dose of artefenomel in a patient cohort was decided on after safety and efficacy assessment of the preceding cohort. The primary endpoint was the natural log parasite reduction per 24 h. Definitive oral treatment was given at 36 h. This trial is registered with ClinicalTrials.gov, number NCT01213966. Findings Between Oct 24, 2010, and May 25, 2012, 82 patients were enrolled (20 in each of the 200 mg, 400 mg, and 800 mg cohorts, and 21 in the 1200 mg cohort). One patient withdrew consent (before the administration of artefenomel) but there were no further dropouts. The parasite reduction rates per 24 h ranged from 0·90 to 1·88 for P falciparum, and 2·09 to 2·53 for P vivax. All doses were equally effective in both P falciparum and P vivax malaria, with median parasite clearance half-lives of 4·1 h (range 1·3–6·7) to 5·6 h (2·0–8·5) for P falciparum and 2·3 h (1·2–3·9) to 3·2 h (0·9–15·0) for P vivax. Maximum plasma concentrations, dose-proportional to 800 mg, occurred at 4 h (median). The estimated elimination half-life was 46–62 h. No serious drug-related adverse effects were reported; other adverse effects were generally mild and reversible, with the highest number in the 1200 mg cohort (17 [81%] patients with at least one adverse event). The most frequently reported adverse effect was an asymptomatic increase in plasma creatine phosphokinase concentration (200 mg, n=5; 400 mg, n=3; 800 mg, n=1; 1200 mg, n=3). Interpretation Artefenomel is a new synthetic antimalarial peroxide with a good safety profile that clears parasitaemia rapidly in both P falciparum and P vivax malaria. Its long half-life suggests a possible use in a single-dose treatment in combination with other drugs. Funding Bill & Melinda Gates Foundation, Wellcome Trust, and UK Department for International Development.
Collapse
Affiliation(s)
- Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Podjanee Jittamala
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Mahidol-Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Mark Baker
- Medicines for Malaria Venture, Geneva, Switzerland
| | | |
Collapse
|
26
|
Woodrow CJ, Wangsing C, Sriprawat K, Christensen PR, Nosten F, Rénia L, Russell B, Malleret B. Comparison between Flow Cytometry, Microscopy, and Lactate Dehydrogenase-Based Enzyme-Linked Immunosorbent Assay for Plasmodium falciparum Drug Susceptibility Testing under Field Conditions. J Clin Microbiol 2015; 53:3296-303. [PMID: 26269616 PMCID: PMC4572553 DOI: 10.1128/jcm.01226-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/28/2015] [Indexed: 01/10/2023] Open
Abstract
Flow cytometry is an objective method for conducting in vitro antimalarial sensitivity assays with increasing potential for application in field sites. We examined in vitro susceptibility to seven anti-malarial drugs for 40 fresh P. falciparum field isolates via a flow cytometry method (FCM), a colorimetric LDH-based ELISA : DELI), and standard microscopic slide analysis of growth. For FCM, 184/280 (66%) assays met analytical acceptance criteria, compared to 166/280 (59%) for DELI. There was good agreement between FCM and microscopy, while DELI tended to produce higher half-maximal inhibition constants (IC50s) than FCM, with an overall bias of 2.2-fold (Bland-Altman comparison). Values for artesunate and dihydroartemisinin were most affected. Paradoxical increases in signal at very high concentrations of mefloquine and related compounds were more marked with the DELI assay, suggesting that off-target effects on LDH production may be responsible. Loss of FCM signal due to reinvasion or slow growth was observed in a small number of samples. These results extend previous work on use of flow cytometry to determine antimalarial susceptibility in terms of the number of samples, range of drugs, and comparison with other methods.
Collapse
Affiliation(s)
- Charles J Woodrow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chirapat Wangsing
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak, Thailand
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak, Thailand
| | - Peter R Christensen
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak, Thailand
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak, Thailand
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Bruce Russell
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Benoît Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| |
Collapse
|
27
|
In Vitro and Molecular Surveillance for Antimalarial Drug Resistance in Plasmodium falciparum Parasites in Western Kenya Reveals Sustained Artemisinin Sensitivity and Increased Chloroquine Sensitivity. Antimicrob Agents Chemother 2015; 59:7540-7. [PMID: 26392510 DOI: 10.1128/aac.01894-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/16/2015] [Indexed: 01/06/2023] Open
Abstract
Malaria control is hindered by the evolution and spread of resistance to antimalarials, necessitating multiple changes to drug policies over time. A comprehensive antimalarial drug resistance surveillance program is vital for detecting the potential emergence of resistance to antimalarials, including current artemisinin-based combination therapies. An antimalarial drug resistance surveillance study involving 203 Plasmodium falciparum malaria-positive children was conducted in western Kenya between 2010 and 2013. Specimens from enrolled children were analyzed in vitro for sensitivity to chloroquine (CQ), amodiaquine (AQ), mefloquine (MQ), lumefantrine, and artemisinin derivatives (artesunate and dihydroartemisinin) and for drug resistance allele polymorphisms in P. falciparum crt (Pfcrt), Pfmdr-1, and the K13 propeller domain (K13). We observed a significant increase in the proportion of samples with the Pfcrt wild-type (CVMNK) genotype, from 61.2% in 2010 to 93.0% in 2013 (P < 0.0001), and higher proportions of parasites with elevated sensitivity to CQ in vitro. The majority of isolates harbored the wild-type N allele in Pfmdr-1 codon 86 (93.5%), with only 7 (3.50%) samples with the N86Y mutant allele (the mutant nucleotide is underlined). Likewise, most isolates harbored the wild-type Pfmdr-1 D1246 allele (79.8%), with only 12 (6.38%) specimens with the D1246Y mutant allele and 26 (13.8%) with mixed alleles. All the samples had a single copy of the Pfmdr-1 gene (mean of 0.907 ± 0.141 copies). None of the sequenced parasites had mutations in K13. Our results suggest that artemisinin is likely to remain highly efficacious and that CQ sensitivity appears to be on the rise in western Kenya.
Collapse
|
28
|
Gonçalves LA, Cravo P, Ferreira MU. Emerging Plasmodium vivax resistance to chloroquine in South America: an overview. Mem Inst Oswaldo Cruz 2015. [PMID: 25184999 PMCID: PMC4156446 DOI: 10.1590/0074-0276130579] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The global emergence of Plasmodium vivax strains resistant to
chloroquine (CQ) since the late 1980s is complicating the current international
efforts for malaria control and elimination. Furthermore, CQ-resistant vivax malaria
has already reached an alarming prevalence in Indonesia, East Timor and Papua New
Guinea. More recently, in vivo studies have documented CQ-resistant P.
vivax infections in Guyana, Peru and Brazil. Here, we summarise the
available data on CQ resistance across P. vivax-endemic areas of
Latin America by combining published in vivo and in vitro studies. We also review the
current knowledge regarding the molecular mechanisms of CQ resistance in P.
vivax and the prospects for developing and standardising reliable
molecular markers of drug resistance. Finally, we discuss how the Worldwide
Antimalarial Resistance Network, an international collaborative effort involving
malaria experts from all continents, might contribute to the current regional efforts
to map CQ-resistant vivax malaria in South America.
Collapse
Affiliation(s)
| | - Pedro Cravo
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Marcelo Urbano Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
29
|
Traore K, Lavoignat A, Bonnot G, Sow F, Bess GC, Chavant M, Gay F, Doumbo O, Picot S. Drying anti-malarial drugs in vitro tests to outsource SYBR green assays. Malar J 2015; 14:90. [PMID: 25880553 PMCID: PMC4339011 DOI: 10.1186/s12936-015-0600-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Measurement of anti-malarial drug efficacy and resistance relies mainly on in vivo clinical trials, in vitro/ex vivo assays and molecular markers detection. The existing in vitro/ex vivo assays, in particular those that are using non-radioactive devices, need to be standardized and adapted to field conditions. SYBR Green assay offers a rapid and cheap alternative to other in vitro assays, but it requires tools not commonly available in field laboratories. Here is described a modified SYBR green I protocol to perform the parasite growth test with blood samples in endemic areas, followed later by the SYBR green fluorescence assay performed at a specialized laboratory level. METHODS In vitro susceptibility of Plasmodium falciparum clones HB3, 3D7, W2 and 7G8 to chloroquine (CQ), dihydroartemisinin (DHA), pyronaridine (PYD) and piperaquine (PPQ) was tested. Fresh isolates of P. falciparum from imported malaria cases were collected for ex vivo assays. The parasite suspension was added in 96-well plates predosed with anti-malarial drugs and incubated for 72 hours at 37°C, 5% CO2. SYBR green I protocol was modified to dry the plates after freeze-thawed process to mimic storage and shipping conditions. The plates were rehydrated with 200 μl of complete RPMI medium for fluorescence assay. RESULTS There were no significant differences in IC₅₀ values of CQ, DHA, PYD and PPQ, determined by the modified protocol, compared to standard protocol. Longer storage did not affect the IC₅₀ values. CONCLUSION The SYBR green I modified protocol produced reliable results and could be a suitable method for in vitro/ex vivo assays in field.
Collapse
Affiliation(s)
- Karim Traore
- Malaria Research and Training Center, DEAP/FMPOS, UMI3189, Université des Sciences, des Techniques et des Technologies de Bamako, BP 1805, Bamako, Mali.
- Malaria Research Unit, SMITH, ICBMS, UMR 5246 CNRS-INSA-CPE-University Claude Bernard Lyon1, 8 Avenue Rockefeller, 69373, Lyon, Cedex 08, France.
| | - Adeline Lavoignat
- Malaria Research Unit, SMITH, ICBMS, UMR 5246 CNRS-INSA-CPE-University Claude Bernard Lyon1, 8 Avenue Rockefeller, 69373, Lyon, Cedex 08, France.
| | - Guillaume Bonnot
- Malaria Research Unit, SMITH, ICBMS, UMR 5246 CNRS-INSA-CPE-University Claude Bernard Lyon1, 8 Avenue Rockefeller, 69373, Lyon, Cedex 08, France.
| | - Fatimata Sow
- Malaria Research Unit, SMITH, ICBMS, UMR 5246 CNRS-INSA-CPE-University Claude Bernard Lyon1, 8 Avenue Rockefeller, 69373, Lyon, Cedex 08, France.
| | - Giuliana C Bess
- Institut de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Lyon, France.
| | - Marjorie Chavant
- Institut de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Lyon, France.
| | - Frederick Gay
- AP-HP, Service de Parasitologie-Mycologie, Université Pierre et Marie Curie Paris 6, Paris, France.
| | - Ogobara Doumbo
- Malaria Research and Training Center, DEAP/FMPOS, UMI3189, Université des Sciences, des Techniques et des Technologies de Bamako, BP 1805, Bamako, Mali.
| | - Stephane Picot
- Malaria Research Unit, SMITH, ICBMS, UMR 5246 CNRS-INSA-CPE-University Claude Bernard Lyon1, 8 Avenue Rockefeller, 69373, Lyon, Cedex 08, France.
- Institut de Parasitologie et Mycologie Médicale, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
30
|
Delayed parasite clearance after treatment with dihydroartemisinin-piperaquine in Plasmodium falciparum malaria patients in central Vietnam. Antimicrob Agents Chemother 2014; 58:7049-55. [PMID: 25224002 DOI: 10.1128/aac.02746-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reduced susceptibility of Plasmodium falciparum toward artemisinin derivatives has been reported from the Thai-Cambodian and Thai-Myanmar borders. Following increasing reports from central Vietnam of delayed parasite clearance after treatment with dihydroartemisinin-piperaquine (DHA-PPQ), the current first-line treatment, we carried out a study on the efficacy of this treatment. Between September 2012 and February 2013, we conducted a 42-day in vivo and in vitro efficacy study in Quang Nam Province. Treatment was directly observed, and blood samples were collected twice daily until parasite clearance. In addition, genotyping, quantitative PCR (qPCR), and in vitro sensitivity testing of isolates was performed. The primary endpoints were parasite clearance rate and time. The secondary endpoints included PCR-corrected and uncorrected cure rates, qPCR clearance profiles, in vitro sensitivity results (for chloroquine, dihydroartemisinin, and piperaquine), and genotyping for mutations in the Kelch 13 propeller domain. Out of 672 screened patients, 95 were recruited and 89 available for primary endpoint analyses. The median parasite clearance time (PCT) was 61.7 h (interquartile range [IQR], 47.6 to 83.2 h), and the median parasite clearance rate had a slope half-life of 6.2 h (IQR, 4.4 to 7.5 h). The PCR-corrected efficacy rates were estimated at 100% at day 28 and 97.7% (95% confidence interval, 91.2% to 99.4%) at day 42. At day 3, the P. falciparum prevalence by qPCR was 2.5 times higher than that by microscopy. The 50% inhibitory concentrations (IC50s) of isolates with delayed clearance times (≥ 72 h) were significantly higher than those with normal clearance times for all three drugs. Delayed parasite clearance (PCT, ≥ 72 h) was significantly higher among day 0 samples carrying the 543 mutant allele (47.8%) than those carrying the wild-type allele (1.8%; P = 0.048). In central Vietnam, the efficacy of DHA-PPQ is still satisfactory, but the parasite clearance time and rate are indicative of emerging artemisinin resistance. (This study has been registered at ClinicalTrials.gov under registration no. NCT01775592.).
Collapse
|
31
|
Vial H, Taramelli D, Boulton IC, Ward SA, Doerig C, Chibale K. CRIMALDDI: platform technologies and novel anti-malarial drug targets. Malar J 2013; 12:396. [PMID: 24498961 PMCID: PMC3827883 DOI: 10.1186/1475-2875-12-396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/22/2013] [Indexed: 12/24/2022] Open
Abstract
The Coordination, Rationalization, and Integration of antiMALarial drug Discovery & Development Initiatives (CRIMALDDI) Consortium, funded by the EU Framework Seven Programme, has attempted, through a series of interactive and facilitated workshops, to develop priorities for research to expedite the discovery of new anti-malarials. This paper outlines the recommendations for the development of enabling technologies and the identification of novel targets.Screening systems must be robust, validated, reproducible, and represent human malaria. They also need to be cost-effective. While such systems exist to screen for activity against blood stage Plasmodium falciparum, they are lacking for other Plasmodium spp. and other stages of the parasite's life cycle. Priority needs to be given to developing high-throughput screens that can identify activity against the liver and sexual stages. This in turn requires other enabling technologies to be developed to allow the study of these stages and to allow for the culture of liver cells and the parasite at all stages of its life cycle.As these enabling technologies become available, they will allow novel drug targets to be studied. Currently anti-malarials are mostly targeting the asexual blood stage of the parasite's life cycle. There are many other attractive targets that need to be investigated. The liver stages and the sexual stages will become more important as malaria control moves towards malaria elimination. Sexual development is a process offering multiple targets, even though the mechanisms of differentiation are still not fully understood. However, designing a drug whose effect is not curative but would be used in asymptomatic patients is difficult given current safety thresholds. Compounds active against the liver schizont would have a prophylactic effect and Plasmodium vivax elimination requires effectors against the dormant liver hypnozoites. It may be that drugs to be used in elimination campaigns will also need to have utility in the control phase. Compounds with activity against blood stages need to be screened for activity against other stages.Natural products should also be a valuable source of new compounds. They often occupy non-Lipinski chemical space and so may reveal valuable new chemotypes.
Collapse
Affiliation(s)
| | | | | | - Steve A Ward
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | | | | |
Collapse
|
32
|
Gharbi M, Flegg JA, Pradines B, Berenger A, Ndiaye M, Djimdé AA, Roper C, Hubert V, Kendjo E, Venkatesan M, Brasseur P, Gaye O, Offianan AT, Penali L, Le Bras J, Guérin PJ, Study MOTFNRCFIM. Surveillance of travellers: an additional tool for tracking antimalarial drug resistance in endemic countries. PLoS One 2013; 8:e77775. [PMID: 24204960 PMCID: PMC3813754 DOI: 10.1371/journal.pone.0077775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/04/2013] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION There are growing concerns about the emergence of resistance to artemisinin-based combination therapies (ACTs). Since the widespread adoption of ACTs, there has been a decrease in the systematic surveillance of antimalarial drug resistance in many malaria-endemic countries. The aim of this work was to test whether data on travellers returning from Africa with malaria could serve as an additional surveillance system of local information sources for the emergence of drug resistance in endemic-countries. METHODOLOGY Data were collected from travellers with symptomatic Plasmodium falciparum malaria returning from Senegal (n = 1,993), Mali (n = 2,372), Cote d'Ivoire (n = 4,778) or Cameroon (n = 3,272) and recorded in the French Malaria Reference Centre during the period 1996-2011. Temporal trends of the proportion of parasite isolates that carried the mutant genotype, pfcrt 76T, a marker of resistance to chloroquine (CQ) and pfdhfr 108N, a marker of resistance to pyrimethamine, were compared for travellers and within-country surveys that were identified through a literature review in PubMed. The in vitro response to CQ was also compared between these two groups for parasites from Senegal. RESULTS The trends in the proportion of parasites that carried pfcrt 76T, and pfdhfr 108N, were compared for parasites from travellers and patients within-country using the slopes of the curves over time; no significant differences in the trends were found for any of the 4 countries. These results were supported by in vitro analysis of parasites from the field in Senegal and travellers returning to France, where the trends were also not significantly different. CONCLUSION The results have not shown different trends in resistance between parasites derived from travellers or from parasites within-country. This work highlights the value of an international database of drug responses in travellers as an additional tool to assess the emergence of drug resistance in endemic areas where information is limited.
Collapse
Affiliation(s)
- Myriam Gharbi
- Unité Mixte de Recherche 216, Institut de Recherche et de Développement, Paris, France
- PRES Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Ecole des Hautes Etudes en Santé Publique, Sorbonne Paris Cité, Rennes, France
| | - Jennifer A. Flegg
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Centre for Tropical Medicine & Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Bruno Pradines
- Département d’Infectiologie de Terrain, Institut de Recherche Biomédicale des Armées, Marseille, France
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix Marseille Université, Marseille, France
- Centre National de Référence du Paludisme, Marseille, France
| | - Ako Berenger
- Malariology Department, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Magatte Ndiaye
- Service de parasitologie, Faculté de Médecine et Pharmacie Université Cheikh Anta Diop, Dakar, Sénégal
| | - Abdoulaye A. Djimdé
- Malaria Research and Training Center & Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Cally Roper
- Pathogen Molecular Biology Department of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Véronique Hubert
- Centre National de Référence du Paludisme & Service de Parasitologie Mycologie, CHU Bichat-Claude Bernard APHP, Paris, France
| | - Eric Kendjo
- Centre National de Référence du Paludisme and Service de Parasitologie Mycologie, CHU Pitié-Salpétrière APHP, Paris, France
| | - Meera Venkatesan
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Philippe Brasseur
- UMR 198, Institut de Recherche pour le Développement, Dakar, Sénégal
| | - Oumar Gaye
- Service de parasitologie, Faculté de Médecine et Pharmacie Université Cheikh Anta Diop, Dakar, Sénégal
| | - André T. Offianan
- Malariology Department, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Louis Penali
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
| | - Jacques Le Bras
- Unité Mixte de Recherche 216, Institut de Recherche et de Développement, Paris, France
- PRES Sorbonne Paris Cité, Faculté de Pharmacie, Paris, France
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Centre National de Référence du Paludisme & Service de Parasitologie Mycologie, CHU Bichat-Claude Bernard APHP, Paris, France
| | - Philippe J. Guérin
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Ecole des Hautes Etudes en Santé Publique, Sorbonne Paris Cité, Rennes, France
- Centre for Tropical Medicine & Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- UMR S 707: Epidemiology Information Systems Modeling, INSERM and Université Pierre et Marie-Curie-Paris6, Paris, France
| | | |
Collapse
|