1
|
Sabariegos R, Albentosa-González L, Palmero B, Clemente-Casares P, Ramírez E, García-Crespo C, Gallego I, de Ávila AI, Perales C, Domingo E, Mas A. Akt Phosphorylation of Hepatitis C Virus NS5B Regulates Polymerase Activity and Hepatitis C Virus Infection. Front Microbiol 2021; 12:754664. [PMID: 34745059 PMCID: PMC8570118 DOI: 10.3389/fmicb.2021.754664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded RNA virus of positive polarity [ssRNA(+)] that replicates its genome through the activity of one of its proteins, called NS5B. This viral protein is responsible for copying the positive-polarity RNA genome into a negative-polarity RNA strand, which will be the template for new positive-polarity RNA genomes. The NS5B protein is phosphorylated by cellular kinases, including Akt. In this work, we have identified several amino acids of NS5B that are phosphorylated by Akt, with positions S27, T53, T267, and S282 giving the most robust results. Site-directed mutagenesis of these residues to mimic (Glu mutants) or prevent (Ala mutants) their phosphorylation resulted in a reduced NS5B in vitro RNA polymerase activity, except for the T267E mutant, the only non-conserved position of all those that are phosphorylated. In addition, in vitro transcribed RNAs derived from HCV complete infectious clones carrying mutations T53E/A and S282E/A were transfected in Huh-7.5 permissive cells, and supernatant viral titers were measured at 6 and 15 days post-transfection. No virus was rescued from the mutants except for T53A at 15 days post-transfection whose viral titer was statistically lower as compared to the wild type. Therefore, phosphorylation of NS5B by cellular kinases is a mechanism of viral polymerase inactivation. Whether this inactivation is a consequence of interaction with cellular kinases or a way to generate inactive NS5B that may have other functions are questions that need further experimental work.
Collapse
Affiliation(s)
- Rosario Sabariegos
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain.,Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad de Biomedicina UCLM-CSIC, Madrid, Spain
| | - Laura Albentosa-González
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Blanca Palmero
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Pilar Clemente-Casares
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad de Biomedicina UCLM-CSIC, Madrid, Spain.,Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Eugenio Ramírez
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Esteban Domingo
- Unidad de Biomedicina UCLM-CSIC, Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Mas
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad de Biomedicina UCLM-CSIC, Madrid, Spain.,Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
2
|
Matthew AN, Leidner F, Lockbaum GJ, Henes M, Zephyr J, Hou S, Desaboini NR, Timm J, Rusere LN, Ragland DA, Paulsen JL, Prachanronarong K, Soumana DI, Nalivaika EA, Yilmaz NK, Ali A, Schiffer CA. Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond. Chem Rev 2021; 121:3238-3270. [PMID: 33410674 PMCID: PMC8126998 DOI: 10.1021/acs.chemrev.0c00648] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug resistance is prevalent across many diseases, rendering therapies ineffective with severe financial and health consequences. Rather than accepting resistance after the fact, proactive strategies need to be incorporated into the drug design and development process to minimize the impact of drug resistance. These strategies can be derived from our experience with viral disease targets where multiple generations of drugs had to be developed to combat resistance and avoid antiviral failure. Significant efforts including experimental and computational structural biology, medicinal chemistry, and machine learning have focused on understanding the mechanisms and structural basis of resistance against direct-acting antiviral (DAA) drugs. Integrated methods show promise for being predictive of resistance and potency. In this review, we give an overview of this research for human immunodeficiency virus type 1, hepatitis C virus, and influenza virus and the lessons learned from resistance mechanisms of DAAs. These lessons translate into rational strategies to avoid resistance in drug design, which can be generalized and applied beyond viral targets. While resistance may not be completely avoidable, rational drug design can and should incorporate strategies at the outset of drug development to decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Ashley N. Matthew
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Virginia Commonwealth University
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Gordon J. Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nages Rao Desaboini
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jennifer Timm
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Rutgers University
| | - Linah N. Rusere
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Raybow Pharmaceutical
| | - Debra A. Ragland
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- University of North Carolina, Chapel Hill
| | - Janet L. Paulsen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Schrodinger, Inc
| | - Kristina Prachanronarong
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Icahn School of Medicine at Mount Sinai
| | - Djade I. Soumana
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Cytiva
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
3
|
El-Sokkary MMA, Gotina L, Al-Sanea MM, Pae AN, Elbargisy RM. Molecular Characterization of Hepatitis C Virus for Developed Antiviral Agents Resistance Mutations and New Insights into in-silico Prediction Studies. Infect Drug Resist 2020; 13:4235-4248. [PMID: 33262618 PMCID: PMC7696641 DOI: 10.2147/idr.s267809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/24/2020] [Indexed: 02/05/2023] Open
Abstract
Background Identification and characterization of developed antiviral drug resistance mutations are key to the success of antiviral therapies against hepatitis C virus (HCV), which remains a worldwide highly prevalent pathogenic disease. Although most studies focus on HCV genotypes 1, 2 or 3, the investigation of drug resistance in HCV genotype 4, predominant in North Africa, is especially significant in Egypt. Methods We performed mutational and genotypic analysis of the untranslated region (UTR) and nonstructural protein 5B (NS5B) drug resistance-associated regions of HCV for patients in the surrounding villages of Mansoura city, who were not responding to different antiviral treatments (sofosbuvir (SOF), ribavirin, and interferon). Furthermore, molecular modelling approaches (homology modelling and docking studies) were used to investigate the significance of the identified NS5B mutations for SOF and ribavirin binding in the HCV genotype 4a NS5B active site. Results Genotypic analysis confirmed all samples to have genotype 4 with sub-genotype 4a predominant. Partial sequencing of the UTR and NS5B resistance-associated regions identified D258E, T282S and A307G mutations in all isolates of NS5B. The UTR mutation site at position 243 was associated with interferon resistance, whereas the NS5B T282S mutation was considered as significant for SOF and ribavirin resistance. Docking studies in the HCV genotype 4a homology model predict SOF and ribavirin to accommodate a nucleotide-like binding mode, in which the T282 residue does interfere with the binding as it would in HCV genotypes 1 and 2. Mutation energy calculations predict T282S to moderately destabilize the binding of SOF and ribavirin by 0.57 and 0.47 kcal/mol, respectively. Conclusion The performed study identified and characterized several antiviral drug resistance mutations of HCV genotype 4a and proposed a mechanism by which the T282S mutation may contribute to SOF and ribavirin resistance.
Collapse
Affiliation(s)
- Mohamed M Adel El-Sokkary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Lizaveta Gotina
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Rehab Mohammed Elbargisy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| |
Collapse
|
4
|
Mutations Identified in the Hepatitis C Virus (HCV) Polymerase of Patients with Chronic HCV Treated with Ribavirin Cause Resistance and Affect Viral Replication Fidelity. Antimicrob Agents Chemother 2020; 64:AAC.01417-20. [PMID: 32928732 DOI: 10.1128/aac.01417-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Ribavirin has been used for 25 years to treat patients with chronic hepatitis C virus (HCV) infection; however, its antiviral mechanism of action remains unclear. Here, we studied virus evolution in a subset of samples from a randomized 24-week trial of ribavirin monotherapy versus placebo in chronic HCV patients, as well as the viral resistance mechanisms of the observed ribavirin-associated mutations in cell culture. Thus, we performed next-generation sequencing of the full-length coding sequences of HCV recovered from patients at weeks 0, 12, 20, 32 and 40 and analyzed novel single nucleotide polymorphisms (SNPs), diversity, and mutation-linkage. At week 20, increased genetic diversity was observed in 5 ribavirin-treated compared to 4 placebo-treated HCV patients due to new synonymous SNPs, particularly G-to-A and C-to-U ribavirin-associated transitions. Moreover, emergence of 14 nonsynonymous SNPs in HCV nonstructural 5B (NS5B) occurred in treated patients, but not in placebo controls. Most substitutions located close to the NS5B polymerase nucleotide entry site. Linkage analysis showed that putative resistance mutations were found in the majority of genomes in ribavirin-treated patients. Identified NS5B mutations from genotype 3a patients were further introduced into the genotype 3a cell-culture-adapted DBN strain for studies in Huh7.5 cells. Specific NS5B substitutions, including DBN-D148N+I363V, DBN-A150V+I363V, and DBN-T227S+S183P, conferred resistance to ribavirin in long-term cell culture treatment, possibly by reducing the HCV polymerase error rate. In conclusion, prolonged exposure of HCV to ribavirin in chronic hepatitis C patients induces NS5B resistance mutations leading to increased polymerase fidelity, which could be one mechanism for ribavirin resistance.
Collapse
|
5
|
Mejer N, Galli A, Ramirez S, Fahnøe U, Benfield T, Bukh J. Ribavirin inhibition of cell-culture infectious hepatitis C genotype 1-3 viruses is strain-dependent. Virology 2019; 540:132-140. [PMID: 31778898 DOI: 10.1016/j.virol.2019.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
Ribavirin remains relevant for successful treatment of chronic hepatitis C virus (HCV) infections in low-income settings, as well as for therapy of difficult-to-treat HCV patients. We studied the effect of ribavirin against cell-culture adapted HCV of genotypes 1, 2 and 3, representing ~80% of global infections. TNcc(1a) was the most sensitive to ribavirin, while J6/JFH1(2a) was the most resistant. EC50s ranged from 21 μM (95%CI: 20-22 μM) to 189 μM (95%CI: 173-207 μM). Substitutions at position 415 of NS5B resulted in little or no change to ribavirin sensitivity (0.7-0.9 fold) but conferred moderate drug resistance during extended treatment of genotype 1 (1.8-fold). NS5A and NS5B sequences could alter ribavirin sensitivity 2-4-fold, although their contribution was not simply additive. Finally, we detected limited accumulation of mutations associated with ribavirin treatment. Our findings show that the antiviral effect of ribavirin on HCV is strain-dependent and is influenced by the specific sequence of multiple HCV nonstructural proteins.
Collapse
Affiliation(s)
- Niels Mejer
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | - Andrea Galli
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | - Thomas Benfield
- Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark.
| |
Collapse
|
6
|
Catalli L, Martens SK, Terrault NA, Reeves JD. Novel NS5B Resistance-Associated Substitution Emerges Under Failing Sofosbuvir/Ledipasvir Therapy. Clin Liver Dis (Hoboken) 2019; 13:74-78. [PMID: 30988941 PMCID: PMC6446458 DOI: 10.1002/cld.768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/27/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- Lisa Catalli
- Division of Gastroenterology/HepatologyUniversity of California, San FranciscoSan FranciscoCA
| | | | - Norah A. Terrault
- Division of Gastroenterology/HepatologyUniversity of California, San FranciscoSan FranciscoCA
| | | |
Collapse
|
7
|
Schwaid AG, Cornella-Taracido I. Causes and Significance of Increased Compound Potency in Cellular or Physiological Contexts. J Med Chem 2017; 61:1767-1773. [DOI: 10.1021/acs.jmedchem.7b00762] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Adam G. Schwaid
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | |
Collapse
|
8
|
Xu S, Doehle B, Rajyaguru S, Han B, Barauskas O, Feng J, Perry J, Dvory-Sobol H, Svarovskaia ES, Miller MD, Mo H. In vitro selection of resistance to sofosbuvir in HCV replicons of genotype-1 to -6. Antivir Ther 2017; 22:587-597. [PMID: 28248189 DOI: 10.3851/imp3149] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Sofosbuvir is a nucleoside analogue inhibitor of the HCV NS5B polymerase approved for treatment of HCV-infected patients in combination with ribavirin or with other antivirals. It has activity against all genotypes of HCV. Resistance to sofosbuvir in genotype-1 and -2 HCV is conferred by the S282T substitution in NS5B. METHODS To begin to define the correlates of resistance to sofosbuvir in other genotypes, we performed selection experiments in cell culture using cell lines containing subgenomic replicons derived from genotypes-1b, -2a, -3a and -4a, or chimeric replicons in a genotype-1b background but encoding genotype-2b, -5a and -6a NS5B polymerase. RESULTS In every case, S282T was selected following passage in the presence of increasing concentrations of sofosbuvir for 10 to 15 weeks. When introduced as a site-directed mutant, S282T conferred reductions in sofosbuvir susceptibility of between 2.4 and 19.4-fold. Other substitutions observed during the selections had relatively less impact on susceptibility, such as N237S in genotype-6a (2.5-fold). Replication capacity was affected by the introduction of S282T in all genotypes to variable extents (3.2% to 22% of wild type). CONCLUSIONS These results confirm that S282T is the primary sofosbuvir resistance-associated substitution and that replication capacity is reduced when it is present in all genotypes of HCV.
Collapse
Affiliation(s)
- Simin Xu
- Gilead Sciences, Foster City, CA, USA
| | | | | | - Bin Han
- Gilead Sciences, Foster City, CA, USA
| | | | - Joy Feng
- Gilead Sciences, Foster City, CA, USA
| | | | | | | | | | | |
Collapse
|