1
|
Karlowsky JA, Wise MG, Hackel MA, Six DA, Uehara T, Daigle DM, Pevear DC, Moeck G, Sahm DF. Cefepime-taniborbactam activity against antimicrobial-resistant clinical isolates of Enterobacterales and Pseudomonas aeruginosa: GEARS global surveillance programme 2018-22. J Antimicrob Chemother 2024; 79:3116-3131. [PMID: 39287999 PMCID: PMC11638001 DOI: 10.1093/jac/dkae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVES Taniborbactam is a boronate-based β-lactamase inhibitor in clinical development in combination with cefepime. METHODS Cefepime-taniborbactam and comparator broth microdilution MICs were determined for patient isolates of Enterobacterales (n = 20 725) and Pseudomonas aeruginosa (n = 7919) collected in 59 countries from 2018 to 2022. Taniborbactam was tested at a fixed concentration of 4 mg/L. Isolates with cefepime-taniborbactam MICs ≥ 16 mg/L underwent WGS. β-Lactamase genes were identified in additional meropenem-resistant isolates by PCR/Sanger sequencing. RESULTS Taniborbactam reduced the cefepime MIC90 value for all Enterobacterales from >16 to 0.25 mg/L (>64-fold). At ≤16 mg/L, cefepime-taniborbactam inhibited 99.5% of all Enterobacterales isolates; >95% of isolates with MDR and ceftolozane-tazobactam-resistant phenotypes; ≥ 89% of isolates with meropenem-resistant and difficult-to-treat-resistant (DTR) phenotypes; >80% of isolates with meropenem-vaborbactam-resistant and ceftazidime-avibactam-resistant phenotypes; 100% of KPC-positive, 99% of OXA-48-like-positive, 99% of ESBL-positive, 97% of acquired AmpC-positive, 95% of VIM-positive and 76% of NDM-positive isolates. Against P. aeruginosa, taniborbactam reduced the cefepime MIC90 value from 32 to 8 mg/L (4-fold). At ≤16 mg/L, cefepime-taniborbactam inhibited 96.5% of all P. aeruginosa isolates; 85% of meropenem-resistant phenotype isolates; 80% of isolates with MDR and meropenem-vaborbactam-resistant phenotypes; >70% of isolates with DTR, ceftazidime-avibactam-resistant and ceftolozane-tazobactam-resistant phenotypes; and 82% of VIM-positive isolates. Multiple potential mechanisms of resistance, including carriage of IMP, or alterations in PBP3 (ftsI), porins (decreased permeability) and efflux (up-regulation) were present in most isolates with cefepime-taniborbactam MICs ≥ 16 mg/L. CONCLUSIONS Cefepime-taniborbactam exhibited potent in vitro activity against Enterobacterales and P. aeruginosa, and inhibited most carbapenem-resistant isolates, including those carrying serine carbapenemases or NDM/VIM MBLs.
Collapse
Affiliation(s)
- James A Karlowsky
- IHMA, Schaumburg, IL, USA
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | | | - David A Six
- Venatorx Pharmaceuticals, Inc., Malvern, PA, USA
| | | | | | | | - Greg Moeck
- Venatorx Pharmaceuticals, Inc., Malvern, PA, USA
| | | |
Collapse
|
2
|
Li H, Oliver A, Shields RK, Kamat S, Stone G, Estabrook M. Molecular characterization of clinically isolated Pseudomonas aeruginosa with varying resistance to ceftazidime-avibactam and ceftolozane-tazobactam collected as a part of the ATLAS global surveillance program from 2020 to 2021. Antimicrob Agents Chemother 2024; 68:e0067024. [PMID: 39254297 PMCID: PMC11459925 DOI: 10.1128/aac.00670-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Ceftazidime-avibactam (CZA) and ceftolozane-tazobactam (C/T) are important agents for treating multidrug-resistant P. aeruginosa infections. In this study, we evaluated the molecular characteristics of 300 globally collected clinical P. aeruginosa isolates non-susceptible (NS) to CZA, C/T, or both agents. Isolates were CZA-NS and C/T-NS (n = 57), CZA-susceptible (S) and C/T-NS (n = 145), or CZA-NS and C/T-S (n = 98) selected from the Antimicrobial Testing Leadership and Surveillance (ATLAS) surveillance program from 2020 to 2021. Characterization was by whole-genome sequencing. Analysis was performed to identify β-lactamase genes and mutations that impact efflux regulation, AmpC regulation, and target binding (PBP3). Of the 57 CZA-NS+C/T-NS isolates, 64.9% carried a metallo-β-lactamase (MBL), and a cumulative 84.2% carried any non-intrinsic β-lactamase [i.e., not Pseudomonas-derived cephalosporinase (PDC) or OXA-50-like]. Of the 145 CZA-S+C/T-NS isolates, 26.2% carried an extended-spectrum β-lactamase (ESBL) and no carbapenemase, 17.9% carried a serine-carbapenemase, and 42.1% were negative for non-intrinsic β-lactamases. Of 98 CZA-NS+C/T-S isolates, 34.7% carried mutations previously described as causing an upregulation of the MexAB-OprM efflux pump, while only 9.2% carried a non-intrinsic β-lactamase, and no resistance mechanism was identified in 29.6% of these isolates. MBLs were present in most isolates NS to both agents. More than half of the CZA-S+C/T-NS isolates carried serine β-lactamases. The most frequently identified resistance mechanism identified in CZA-NS+C/T-S isolates was a marker indicating the upregulation of MexAB-OprM. No mechanism was identified that is thought to support resistance to these agents in numerous isolates. This may be due in part to the fact that whole genome sequencing (WGS) cannot directly measure gene expression of chromosomal resistance mechanisms.
Collapse
Affiliation(s)
- H. Li
- IHMA, Schaumburg, Illinois, USA
| | - A. Oliver
- Microbiology Service, Son Espases University Hospital, IdISBa, CIBERINFEC, Palma, Illes Balears, Spain
| | - R. K. Shields
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - G. Stone
- Pfizer, Groton, Connecticut, USA
| | | |
Collapse
|
3
|
Wang Y, Lu K, Zhou Z, Wang Y, Shen J, Huang D, Xu Y, Wang M. Nanoscale zero-valent iron reverses resistance of Pseudomonas aeruginosa to chloramphenicol. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134698. [PMID: 38788587 DOI: 10.1016/j.jhazmat.2024.134698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Zero-valent iron (ZVI) has been extensively studied for its capacity to remove various contaminants in the environments. However, whether ZVI affects bacterial resistance to antibiotics has not been fully explored. Herein, it was unexpected that, compared with microscale ZVI (mZVI), nanoscale ZVI (nZVI) facilitated the susceptibility of Pseudomonas aeruginosa (P. aeruginosa) to chloramphenicol (CAP), with a decrease in the minimal inhibitory concentration (MIC) of about 60 %, demonstrating a nanosize-specific effect. nZVI enhanced CAP accumulation in P. aeruginosa via inhibitory effect on efflux pumps activated by MexT, thus conferring the susceptibility of P. aeruginosa to CAP. Circular dichroism spectroscopy revealed that the structure of MexT was changed during the evolution. More importantly, molecular dynamic simulations uncovered that, once the structure of MexT changed, it would be more likely to interact with nZVI, resulting in more serious changes in its secondary structure, which was consistent with the increasing susceptibility of P. aeruginosa to CAP. Collectively, this study elucidated the size-specific effect and the underlying mechanism of ZVI on the bacterial evolution of susceptibility toward antibiotics, highlighting the potentials of nZVI-based technologies on the prevention of bacterial resistance to antibiotics, one of the most important issue for globally public health.
Collapse
Affiliation(s)
- Yufan Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Kun Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zhiruo Zhou
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yujie Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jiawei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Dan Huang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yongchang Xu
- Zhejiang Provincial Key Laboratory of Aging and Cancer Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Meizhen Wang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
4
|
Madden DE, Baird T, Bell SC, McCarthy KL, Price EP, Sarovich DS. Keeping up with the pathogens: improved antimicrobial resistance detection and prediction from Pseudomonas aeruginosa genomes. Genome Med 2024; 16:78. [PMID: 38849863 PMCID: PMC11157771 DOI: 10.1186/s13073-024-01346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is an intensifying threat that requires urgent mitigation to avoid a post-antibiotic era. Pseudomonas aeruginosa represents one of the greatest AMR concerns due to increasing multi- and pan-drug resistance rates. Shotgun sequencing is gaining traction for in silico AMR profiling due to its unambiguity and transferability; however, accurate and comprehensive AMR prediction from P. aeruginosa genomes remains an unsolved problem. METHODS We first curated the most comprehensive database yet of known P. aeruginosa AMR variants. Next, we performed comparative genomics and microbial genome-wide association study analysis across a Global isolate Dataset (n = 1877) with paired antimicrobial phenotype and genomic data to identify novel AMR variants. Finally, the performance of our P. aeruginosa AMR database, implemented in our AMR detection and prediction tool, ARDaP, was compared with three previously published in silico AMR gene detection or phenotype prediction tools-abritAMR, AMRFinderPlus, ResFinder-across both the Global Dataset and an analysis-naïve Validation Dataset (n = 102). RESULTS Our AMR database comprises 3639 mobile AMR genes and 728 chromosomal variants, including 75 previously unreported chromosomal AMR variants, 10 variants associated with unusual antimicrobial susceptibility, and 281 chromosomal variants that we show are unlikely to confer AMR. Our pipeline achieved a genotype-phenotype balanced accuracy (bACC) of 85% and 81% across 10 clinically relevant antibiotics when tested against the Global and Validation Datasets, respectively, vs. just 56% and 54% with abritAMR, 58% and 54% with AMRFinderPlus, and 60% and 53% with ResFinder. ARDaP's superior performance was predominantly due to the inclusion of chromosomal AMR variants, which are generally not identified with most AMR identification tools. CONCLUSIONS Our ARDaP software and associated AMR variant database provides an accurate tool for predicting AMR phenotypes in P. aeruginosa, far surpassing the performance of current tools. Implementation of ARDaP for routine AMR prediction from P. aeruginosa genomes and metagenomes will improve AMR identification, addressing a critical facet in combatting this treatment-refractory pathogen. However, knowledge gaps remain in our understanding of the P. aeruginosa resistome, particularly the basis of colistin AMR.
Collapse
Affiliation(s)
- Danielle E Madden
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Timothy Baird
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Scott C Bell
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Queensland, Australia
- Children's Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, Queensland, Australia
| | - Kate L McCarthy
- University of Queensland Medical School, Herston, QLD, Australia
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Erin P Price
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Derek S Sarovich
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia.
| |
Collapse
|
5
|
Lechtenberg T, Wynands B, Müller MF, Polen T, Noack S, Wierckx N. Improving 5-(hydroxymethyl)furfural (HMF) tolerance of Pseudomonas taiwanensis VLB120 by automated adaptive laboratory evolution (ALE). Metab Eng Commun 2024; 18:e00235. [PMID: 38832093 PMCID: PMC11144800 DOI: 10.1016/j.mec.2024.e00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
The aldehyde 5-(hydroxymethyl)furfural (HMF) is of great importance for a circular bioeconomy. It is a renewable platform chemical that can be converted into a range of useful compounds to replace petroleum-based products such as the green plastic monomer 2,5-furandicarboxylic acid (FDCA). However, it also exhibits microbial toxicity for example hindering the efficient biotechnological valorization of lignocellulosic hydrolysates. Thus, there is an urgent need for tolerance-improved organisms applicable to whole-cell biocatalysis. Here, we engineer an oxidation-deficient derivative of the naturally robust and emerging biotechnological workhorse P. taiwanensis VLB120 by robotics-assisted adaptive laboratory evolution (ALE). The deletion of HMF-oxidizing enzymes enabled for the first time evolution under constant selection pressure by the aldehyde, yielding strains with consistently improved growth characteristics in presence of the toxicant. Genome sequencing of evolved clones revealed loss-of function mutations in the LysR-type transcriptional regulator-encoding mexT preventing expression of the associated efflux pump mexEF-oprN. This knowledge allowed reverse engineering of strains with enhanced aldehyde tolerance, even in a background of active or overexpressed HMF oxidation machinery, demonstrating a synergistic effect of two distinct tolerance mechanisms.
Collapse
Affiliation(s)
- Thorsten Lechtenberg
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Moritz-Fabian Müller
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
6
|
Jiang B, Qiu H, Lu C, Lu M, Li Y, Dai W. Uncovering the GacS-mediated role in evolutionary progression through trajectory reconstruction in Pseudomonas aeruginosa. Nucleic Acids Res 2024; 52:3856-3869. [PMID: 38477346 DOI: 10.1093/nar/gkae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
The genetic diversities of subpopulations drive the evolution of pathogens and affect their ability to infect hosts and cause diseases. However, most studies to date have focused on the identification and characterization of adaptive mutations in single colonies, which do not accurately reflect the phenotypes of an entire population. Here, to identify the composition of variant subpopulations within a pathogen population, we developed a streamlined approach that combines high-throughput sequencing of the entire population cells with genotyping of single colonies. Using this method, we reconstructed a detailed quorum-sensing (QS) evolutionary trajectory in Pseudomonas aeruginosa. Our results revealed a new adaptive mutation in the gacS gene, which codes for a histidine kinase sensor of a two-component system (TCS), during QS evolution. This mutation reduced QS activity, allowing the variant to sweep throughout the whole population, while still being vulnerable to invasion by the emerging QS master regulator LasR-null mutants. By tracking the evolutionary trajectory, we found that mutations in gacS facilitated QS-rewiring in the LasR-null mutant. This rapid QS revertant caused by inactive GacS was found to be associated with the promotion of ribosome biogenesis and accompanied by a trade-off of reduced bacterial virulence on host cells. In conclusion, our findings highlight the crucial role of the global regulator GacS in modulating the progression of QS evolution and the virulence of the pathogen population.
Collapse
Affiliation(s)
- Bo Jiang
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Huifang Qiu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Chenghui Lu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingqi Lu
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yuanhao Li
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Weijun Dai
- Integrative Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Zheng X, Xie J, Chen W, Liu M, Xie L. Boosting anaerobic digestion of long chain fatty acid with microbial electrolysis cell combining metal organic framework as cathode: Biofilm construction and metabolic pathways. BIORESOURCE TECHNOLOGY 2024; 395:130284. [PMID: 38219925 DOI: 10.1016/j.biortech.2023.130284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
The role of metal organic framework (MOF) modified cathode in promoting long chain fatty acid (LCFA) methanation was identified in microbial electrolysis cell coupled anaerobic digestion (MEC-AD) system. The maximum methane production rate of MEC-AD-MOF achieved 49.8 ± 3.4 mL/d, which increased by 41 % compared to MEC-AD-C. The analysis of bio-cathode biofilm revealed that microbial activity, distribution, population, and protein secretion prompted by MOF cathode, which in turn led to an acceleration of electron transfer between the cathode and microbes. Specifically, the relative abundance of acetate-oxidizing bacterium (Mesotoga) in MEC-AD-MOF was 1.5-3.6 times higher than that in MEC-AD-C, with a co-metabolized enrichment of Methanobacterium. Moreover, MOF cathode reinforced LCFA methanation by raising the relative abundance of genes coded key enzymes involved in CO2-reducing pathway, and elevating the tolerance of microbes to LCFA inhibition. These results indicate that MOF can enhance biofilm construction in MEC-AD, thereby improving the treatment performance of lipid wastewater.
Collapse
Affiliation(s)
- Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Weizhen Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Ren J, Wang M, Zhou W, Liu Z. Efflux pumps as potential targets for biofilm inhibition. Front Microbiol 2024; 15:1315238. [PMID: 38596384 PMCID: PMC11002903 DOI: 10.3389/fmicb.2024.1315238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/26/2024] [Indexed: 04/11/2024] Open
Abstract
Biofilms account for a great deal of infectious diseases and contribute significantly to antimicrobial resistance. Efflux pumps confer antimicrobial resistance to microorganisms and involve multiple processes of biofilm formation. Efflux pump inhibitors (EPIs) are attracting considerable attention as a biofilm inhibition strategy. The regulatory functions of efflux pumps in biofilm formation such as mediating adherence, quorum sensing (QS) systems, and the expression of biofilm-associated genes have been increasingly identified. The versatile properties confer efflux pumps both positive and negative effects on biofilm formation. Furthermore, the expression and function of efflux pumps in biofilm formation are species-specific. Therefore, this review aims to detail the double-edged sword role of efflux pumps in biofilm formation to provide potential inhibition targets and give an overview of the effects of EPIs on biofilm formation.
Collapse
Affiliation(s)
| | | | - Wenjuan Zhou
- Department of Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical University, Yantai, China
| | | |
Collapse
|
9
|
Kostylev M, Smalley NE, Chao MH, Greenberg EP. Relationship of the transcription factor MexT to quorum sensing and virulence in Pseudomonas aeruginosa. J Bacteriol 2023; 205:e0022623. [PMID: 38032211 PMCID: PMC10729655 DOI: 10.1128/jb.00226-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Pseudomonas aeruginosa is an opportunistic bacterial pathogen. Many of its virulence genes are regulated by quorum sensing (QS), a form of cell-to-cell communication. P. aeruginosa QS consists of three interlinked circuits, LasI-R, Rhl-R, and Pseudomonas quinolone signal (PQS). Additionally, its QS system is interconnected with other regulatory networks, which help optimize gene expression under variable conditions. The numbers of genes regulated by QS differ substantially among P. aeruginosa strains. We show that a regulatory factor MexT, which is activated in response to certain antibiotics, downregulates the RhlI-R circuit and in turn measurably lowers virulence in a nematode worm infection model. Our findings help understand how existing and future therapeutic interventions for P. aeruginosa infections may impact this bacterium's gene regulation and physiology.
Collapse
Affiliation(s)
- Maxim Kostylev
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Nicole E. Smalley
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Man Hou Chao
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - E. Peter Greenberg
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
10
|
Simanek KA, Schumacher ML, Mallery CP, Shen S, Li L, Paczkowski JE. Quorum-sensing synthase mutations re-calibrate autoinducer concentrations in clinical isolates of Pseudomonas aeruginosa to enhance pathogenesis. Nat Commun 2023; 14:7986. [PMID: 38042853 PMCID: PMC10693556 DOI: 10.1038/s41467-023-43702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Quorum sensing is a mechanism of bacterial communication that controls virulence gene expression. Pseudomonas aeruginosa regulates virulence via two synthase/transcription factor receptor pairs: LasI/R and RhlI/R. LasR is considered the master transcriptional regulator of quorum sensing, as it upregulates rhlI/R. However, clinical isolates often have inactivating mutations in lasR, while maintaining Rhl-dependent signaling. We sought to understand how quorum sensing progresses in isolates with lasR mutations, specifically via activation of RhlR. We find that clinical isolates with lasR inactivating mutations often harbor concurrent mutations in rhlI. Using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry, we discover that strains lacking lasR overproduce the RhlI-synthesized autoinducer and that RhlI variants re-calibrate autoinducer concentrations to wild-type levels, restoring virulent phenotypes. These findings provide a mechanism for the plasticity of quorum sensing progression in an acute infection niche.
Collapse
Affiliation(s)
- Kayla A Simanek
- Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York, 12201, USA
| | - Megan L Schumacher
- Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York, 12201, USA
| | - Caleb P Mallery
- Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York, 12201, USA
| | - Stella Shen
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, 12208, USA
| | - Lingyun Li
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, 12208, USA
| | - Jon E Paczkowski
- Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York, 12201, USA.
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, 12208, USA.
| |
Collapse
|
11
|
Jamal Z, Gholami M, Ebrahimzadeh MA, Goli HR. The Role of MexCD-OprJ and MexEF-OprN Efflux Systems in the Multiple Antibiotic Resistance of Pseudomonas aeruginosa Isolated from Clinical Samples. Curr Microbiol 2023; 80:221. [PMID: 37210698 DOI: 10.1007/s00284-023-03330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Increasing antimicrobial resistance and the development of multi-drug resistant (MDR) Pseudomonas aeruginosa is dependent on the expression of efflux pumps. This study aimed to investigate the role of overexpression of MexCD-OprJ and MexEF-OprN efflux pumps in reduced susceptibility to antimicrobial agents among P. aeruginosa strains. Totally, 100 clinical isolates of P. aeruginosa were collected from patients and the strains were identified by standard diagnostic tests. The MDR isolates were detected using the disk agar diffusion method. The expression levels of MexCD-OprJ and MexEF-OprN efflux pumps were evaluated by the real-time PCR. Forty-one isolates showed MDR phenotype, while piperacillin-tazobactam and levofloxacin were the most- and least-effective antibiotics, respectively. Also, all 41 MDR isolates showed a more than tenfold increase in the expression of mexD and mexF genes. In this study, a significant relationship was observed between the rate of antibiotic resistance, the emergence of MDR strains, and increasing the expression levels of MexEF-OprN and MexCD-OprJ efflux pumps (P < 0.05). Efflux systems mediated resistance was a noteworthy mechanism causative to multidrug resistance in P. aeruginosa clinical isolates. The study results demonstrated mexE and mexF overexpression as the primary mechanism conferring in the emergence of MDR phenotypes among P. aeruginosa strains. In addition, we also show that piperacillin/tazobactam exhibited a stronger ability in the management of infections caused by MDR P. aeruginosa in this area.
Collapse
Affiliation(s)
- Zeynab Jamal
- Molecular and Cell Biology Research Centre, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Farah Abad Blv, Khazar Square, Sari, Mazandaran, Iran
| | - Mehrdad Gholami
- Molecular and Cell Biology Research Centre, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Farah Abad Blv, Khazar Square, Sari, Mazandaran, Iran
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Goli
- Molecular and Cell Biology Research Centre, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Farah Abad Blv, Khazar Square, Sari, Mazandaran, Iran.
| |
Collapse
|
12
|
Bové M, Kolpen M, Lichtenberg M, Bjarnsholt T, Coenye T. Adaptation of Pseudomonas aeruginosa biofilms to tobramycin and the quorum sensing inhibitor C-30 during experimental evolution requires multiple genotypic and phenotypic changes. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001278. [PMID: 36748633 PMCID: PMC9993117 DOI: 10.1099/mic.0.001278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the present study we evaluated the fitness, antimicrobial susceptibility, metabolic activity, gene expression, in vitro production of virulence factors and in vivo virulence of experimentally evolved Pseudomonas aeruginosa PAO1. These strains were previously evolved in the presence of tobramycin and the quorum sensing inhibitor furanone C-30 (C-30) and carried mutations in mexT and fusA1. Compared to the wild-type (WT), the evolved strains show a different growth rate and different metabolic activity, suggesting they have an altered fitness. mexT mutants were less susceptible to C-30 than WT strains; they also show reduced susceptibility to chloramphenicol and ciprofloxacin, two substrates of the MexEF-OprN efflux pump. fusA1 mutants had a decreased susceptibility to aminoglycoside antibiotics, and an increased susceptibility to chloramphenicol. The decreased antimicrobial susceptibility and decreased susceptibility to C-30 was accompanied by a changed metabolic activity profile during treatment. The expression of mexE was significantly increased in mexT mutants and induced by C-30, suggesting that MexEF-OprN exports C-30 out of the bacterial cell. The in vitro production of virulence factors as well as virulence in two in vivo models of the strains evolved in the presence of C-30 was unchanged compared to the virulence of the WT. Finally, the evolved strains were less susceptible towards tobramycin (alone and combined with C-30) in an in vivo mouse model. In conclusion, this study shows that mutations acquired during experimental evolution of P. aeruginosa biofilms in the presence of tobramycin and C-30, are accompanied by an altered fitness, metabolism, mexE expression and in vitro and in vivo antimicrobial susceptibility.
Collapse
Affiliation(s)
- Mona Bové
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, 2200 Copenhagen N, Denmark
| | - Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.,Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Liu Q, Yin L, Zhang X, Zhu G, Liu H, Bai F, Cheng Z, Wu W, Jin Y. Reversion of Ceftazidime Resistance in Pseudomonas aeruginosa under Clinical Setting. Microorganisms 2022; 10:microorganisms10122395. [PMID: 36557649 PMCID: PMC9782964 DOI: 10.3390/microorganisms10122395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is an important nosocomial pathogen which frequently becomes resistant to most antibiotics used in chemotherapy, resulting in treatment failure among infected individuals. Although the evolutionary trajectory and molecular mechanisms for becoming β-lactam resistant have been well established for P. aeruginosa, the molecular basis of reversion from β-lactam resistant to susceptible is largely unexplored. In this study, we investigated the molecular mechanisms by which a ceftazidime-resistant clinical strain is converted to a ceftazidime-susceptible isolate under the clinical setting. RNA sequencing and genomic DNA reference mapping were conducted to compare the transcriptional profiles and chromosomal mutations between these two isolates. Our results demonstrate that a gain-of-function mutation in ampD, via deletion of a 53 bp duplicated nucleotide sequence, is the contributory factor for the conversion. Furthermore, we show for the first time that AmpD is involved in intraspecies competitiveness in P. aeruginosa. We also found that AmpD is not responsible for phenotypic changes between R1 and S2, including growth rate, motilities, pyocyanin, rhamnolipid, and biofilm production. This finding provides novel insights into the alteration of β-lactam sensitivity in P. aeruginosa under the clinical setting.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liwen Yin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guangbo Zhu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300100, China
| | - Huimin Liu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin 300100, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
14
|
Zgurskaya HI, Adamiak JW, Leus IV. Making sense of drug-efflux transporters in the physiological environment. Curr Opin Microbiol 2022; 69:102179. [PMID: 35882103 PMCID: PMC9942525 DOI: 10.1016/j.mib.2022.102179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023]
Abstract
Bacterial drug-efflux transporters act synergistically with diffusion barriers of cellular membranes and other resistance mechanisms to protect cells from antibiotics and toxic metabolites. Their critical roles in clinical antibiotic and multidrug resistance are well established. In addition, a large body of evidence has been accumulated in support of their important contributions to bacterial growth and proliferation during infections. However, how these diverse functions of drug transporters are integrated at the level of bacterial cell physiology remains unclear. This opinion briefly summarizes the current understanding of substrate specificities and physiological roles of drug-efflux pumps from Resistance-Nodulation-Division (RND) superfamily of proteins in two ESKAPE pathogens Pseudomonas aeruginosa and Acinetobacter baumannii. Based on the analysis of phenotypic and transcriptomic studies in vitro and in vivo, we propose that RND pumps of Gram-negative bacteria fall into three categories: constitutively expressed, regulated, and silent. These three categories of efflux pumps participate in different physiological programs, which are not involved in the central metabolism and bacterial growth.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73072, USA.
| | - Justyna W Adamiak
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73072, USA
| | - Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73072, USA
| |
Collapse
|
15
|
Resistance Is Not Futile: The Role of Quorum Sensing Plasticity in Pseudomonas aeruginosa Infections and Its Link to Intrinsic Mechanisms of Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10061247. [PMID: 35744765 PMCID: PMC9228389 DOI: 10.3390/microorganisms10061247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Bacteria use a cell-cell communication process called quorum sensing (QS) to orchestrate collective behaviors. QS relies on the group-wide detection of extracellular signal molecules called autoinducers (AI). Quorum sensing is required for virulence and biofilm formation in the human pathogen Pseudomonas aeruginosa. In P. aeruginosa, LasR and RhlR are homologous LuxR-type soluble transcription factor receptors that bind their cognate AIs and activate the expression of genes encoding functions required for virulence and biofilm formation. While some bacterial signal transduction pathways follow a linear circuit, as phosphoryl groups are passed from one carrier protein to another ultimately resulting in up- or down-regulation of target genes, the QS system in P. aeruginosa is a dense network of receptors and regulators with interconnecting regulatory systems and outputs. Once activated, it is not understood how LasR and RhlR establish their signaling hierarchy, nor is it clear how these pathway connections are regulated, resulting in chronic infection. Here, we reviewed the mechanisms of QS progression as it relates to bacterial pathogenesis and antimicrobial resistance and tolerance.
Collapse
|
16
|
Liu Y, Ahator SD, Wang H, Feng Q, Xu Y, Li C, Zhou X, Zhang LH. Microevolution of the mexT and lasR Reinforces the Bias of Quorum Sensing System in Laboratory Strains of Pseudomonas aeruginosa PAO1. Front Microbiol 2022; 13:821895. [PMID: 35495693 PMCID: PMC9041413 DOI: 10.3389/fmicb.2022.821895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 12/30/2022] Open
Abstract
The Pseudomonas aeruginosa strain PAO1 has routinely been used as a laboratory model for quorum sensing (QS). However, the microevolution of P. aeruginosa laboratory strains resulting in genetic and phenotypic variations have caused inconsistencies in QS research. To investigate the underlying causes of these variations, we analyzed 5 Pseudomonas aeruginosa PAO1 sublines from our laboratory using a combination of phenotypic characterization, high throughput genome sequencing, and bioinformatic analysis. The major phenotypic variations among the sublines spanned across the levels of QS signals and virulence factors such as pyocyanin and elastase. Furthermore, the sublines exhibited distinct variations in motility and biofilm formation. Most of the phenotypic variations were mapped to mutations in the lasR and mexT, which are key components of the QS circuit. By introducing these mutations in the subline PAO1-E, which is devoid of such mutations, we confirmed their influence on QS, virulence, motility, and biofilm formation. The findings further highlight a possible divergent regulatory mechanism between the LasR and MexT in the P. aeruginosa. The results of our study reveal the effects of microevolution on the reproducibility of most research data from QS studies and further highlight mexT as a key component of the QS circuit of P. aeruginosa.
Collapse
Affiliation(s)
- Yang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Stephen Dela Ahator
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Research group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Huishan Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Qishun Feng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yinuo Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chuhao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Maiden MM, Waters CM. Triclosan depletes the membrane potential in Pseudomonas aeruginosa biofilms inhibiting aminoglycoside induced adaptive resistance. PLoS Pathog 2020; 16:e1008529. [PMID: 33125434 PMCID: PMC7657502 DOI: 10.1371/journal.ppat.1008529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/11/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Biofilm-based infections are difficult to treat due to their inherent resistance to antibiotic treatment. Discovering new approaches to enhance antibiotic efficacy in biofilms would be highly significant in treating many chronic infections. Exposure to aminoglycosides induces adaptive resistance in Pseudomonas aeruginosa biofilms. Adaptive resistance is primarily the result of active antibiotic export by RND-type efflux pumps, which use the proton motive force as an energy source. We show that the protonophore uncoupler triclosan depletes the membrane potential of biofilm growing P. aeruginosa, leading to decreased activity of RND-type efflux pumps. This disruption results in increased intracellular accumulation of tobramycin and enhanced antimicrobial activity in vitro. In addition, we show that triclosan enhances tobramycin effectiveness in vivo using a mouse wound model. Combining triclosan with tobramycin is a new anti-biofilm strategy that targets bacterial energetics, increasing the susceptibility of P. aeruginosa biofilms to aminoglycosides.
Collapse
Affiliation(s)
- Michael M. Maiden
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- The BEACON Center for The Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| | - Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- The BEACON Center for The Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
18
|
Efficacy of Antibiotic Combinations against Multidrug-Resistant Pseudomonas aeruginosa in Automated Time-Lapse Microscopy and Static Time-Kill Experiments. Antimicrob Agents Chemother 2020; 64:AAC.02111-19. [PMID: 32179531 PMCID: PMC7269485 DOI: 10.1128/aac.02111-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/08/2020] [Indexed: 11/22/2022] Open
Abstract
Antibiotic combination therapy is used for severe infections caused by multidrug-resistant (MDR) Gram-negative bacteria, yet data regarding which combinations are most effective are lacking. This study aimed to evaluate the in vitro efficacy of polymyxin B in combination with 13 other antibiotics against four clinical strains of MDR Pseudomonas aeruginosa. We evaluated the interactions of polymyxin B in combination with amikacin, aztreonam, cefepime, chloramphenicol, ciprofloxacin, fosfomycin, linezolid, meropenem, minocycline, rifampin, temocillin, thiamphenicol, or trimethoprim by automated time-lapse microscopy using predefined cutoff values indicating inhibition of growth (≤106 CFU/ml) at 24 h. Antibiotic combination therapy is used for severe infections caused by multidrug-resistant (MDR) Gram-negative bacteria, yet data regarding which combinations are most effective are lacking. This study aimed to evaluate the in vitro efficacy of polymyxin B in combination with 13 other antibiotics against four clinical strains of MDR Pseudomonas aeruginosa. We evaluated the interactions of polymyxin B in combination with amikacin, aztreonam, cefepime, chloramphenicol, ciprofloxacin, fosfomycin, linezolid, meropenem, minocycline, rifampin, temocillin, thiamphenicol, or trimethoprim by automated time-lapse microscopy using predefined cutoff values indicating inhibition of growth (≤106 CFU/ml) at 24 h. Promising combinations were subsequently evaluated in static time-kill experiments. All strains were intermediate or resistant to polymyxin B, antipseudomonal β-lactams, ciprofloxacin, and amikacin. Genes encoding β-lactamases (e.g., blaPAO and blaOXA-50) and mutations associated with permeability and efflux were detected in all strains. In the time-lapse microscopy experiments, positive interactions were found with 39 of 52 antibiotic combination/bacterial strain setups. Enhanced activity was found against all four strains with polymyxin B used in combination with aztreonam, cefepime, fosfomycin, minocycline, thiamphenicol, and trimethoprim. Time-kill experiments showed additive or synergistic activity with 27 of the 39 tested polymyxin B combinations, most frequently with aztreonam, cefepime, and meropenem. Positive interactions were frequently found with the tested combinations, against strains that harbored several resistance mechanisms to the single drugs, and with antibiotics that are normally not active against P. aeruginosa. Further study is needed to explore the clinical utility of these combinations.
Collapse
|
19
|
Khaledi A, Weimann A, Schniederjans M, Asgari E, Kuo T, Oliver A, Cabot G, Kola A, Gastmeier P, Hogardt M, Jonas D, Mofrad MRK, Bremges A, McHardy AC, Häussler S. Predicting antimicrobial resistance in Pseudomonas aeruginosa with machine learning-enabled molecular diagnostics. EMBO Mol Med 2020; 12:e10264. [PMID: 32048461 PMCID: PMC7059009 DOI: 10.15252/emmm.201910264] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 12/24/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022] Open
Abstract
Limited therapy options due to antibiotic resistance underscore the need for optimization of current diagnostics. In some bacterial species, antimicrobial resistance can be unambiguously predicted based on their genome sequence. In this study, we sequenced the genomes and transcriptomes of 414 drug-resistant clinical Pseudomonas aeruginosa isolates. By training machine learning classifiers on information about the presence or absence of genes, their sequence variation, and expression profiles, we generated predictive models and identified biomarkers of resistance to four commonly administered antimicrobial drugs. Using these data types alone or in combination resulted in high (0.8-0.9) or very high (> 0.9) sensitivity and predictive values. For all drugs except for ciprofloxacin, gene expression information improved diagnostic performance. Our results pave the way for the development of a molecular resistance profiling tool that reliably predicts antimicrobial susceptibility based on genomic and transcriptomic markers. The implementation of a molecular susceptibility test system in routine microbiology diagnostics holds promise to provide earlier and more detailed information on antibiotic resistance profiles of bacterial pathogens and thus could change how physicians treat bacterial infections.
Collapse
Affiliation(s)
- Ariane Khaledi
- Department of Molecular BacteriologyHelmholtz Centre for Infection ResearchBraunschweigGermany
- Molecular Bacteriology GroupTWINCORE‐Centre for Experimental and Clinical Infection ResearchHannoverGermany
| | - Aaron Weimann
- Molecular Bacteriology GroupTWINCORE‐Centre for Experimental and Clinical Infection ResearchHannoverGermany
- Computational Biology of Infection ResearchHelmholtz Centre for Infection ResearchBraunschweigGermany
- German Center for Infection Research (DZIF)BraunschweigGermany
| | - Monika Schniederjans
- Department of Molecular BacteriologyHelmholtz Centre for Infection ResearchBraunschweigGermany
- Molecular Bacteriology GroupTWINCORE‐Centre for Experimental and Clinical Infection ResearchHannoverGermany
| | - Ehsaneddin Asgari
- Computational Biology of Infection ResearchHelmholtz Centre for Infection ResearchBraunschweigGermany
- Molecular Cell Biomechanics LaboratoryDepartments of Bioengineering and Mechanical EngineeringUniversity of CaliforniaBerkeleyCAUSA
| | - Tzu‐Hao Kuo
- Computational Biology of Infection ResearchHelmholtz Centre for Infection ResearchBraunschweigGermany
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación Hospital Universitario Son EspasesInstituto de Investigación Sanitaria Illes Balears (IdISPa)Palma de MallorcaSpain
| | - Gabriel Cabot
- Servicio de Microbiología y Unidad de Investigación Hospital Universitario Son EspasesInstituto de Investigación Sanitaria Illes Balears (IdISPa)Palma de MallorcaSpain
| | - Axel Kola
- Institute of Hygiene and Environmental MedicineCharité – Universitätsmedizin BerlinBerlinGermany
| | - Petra Gastmeier
- Institute of Hygiene and Environmental MedicineCharité – Universitätsmedizin BerlinBerlinGermany
| | - Michael Hogardt
- Institute of Medical Microbiology and Infection ControlUniversity Hospital FrankfurtFrankfurt/MainGermany
| | - Daniel Jonas
- Faculty of MedicineInstitute for Infection Prevention and Hospital EpidemiologyMedical Center‐University of FreiburgFreiburgGermany
| | - Mohammad RK Mofrad
- Molecular Cell Biomechanics LaboratoryDepartments of Bioengineering and Mechanical EngineeringUniversity of CaliforniaBerkeleyCAUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LabBerkeleyCAUSA
| | - Andreas Bremges
- Computational Biology of Infection ResearchHelmholtz Centre for Infection ResearchBraunschweigGermany
- German Center for Infection Research (DZIF)BraunschweigGermany
| | - Alice C McHardy
- Computational Biology of Infection ResearchHelmholtz Centre for Infection ResearchBraunschweigGermany
- German Center for Infection Research (DZIF)BraunschweigGermany
| | - Susanne Häussler
- Department of Molecular BacteriologyHelmholtz Centre for Infection ResearchBraunschweigGermany
- Molecular Bacteriology GroupTWINCORE‐Centre for Experimental and Clinical Infection ResearchHannoverGermany
| |
Collapse
|
20
|
Kim S, Kim SH, Ahn J, Jo I, Lee ZW, Choi SH, Ha NC. Crystal Structure of the Regulatory Domain of MexT, a Transcriptional Activator of the MexEFOprN Efflux Pump in Pseudomonas aeruginosa. Mol Cells 2019; 42:850-857. [PMID: 31722511 PMCID: PMC6939650 DOI: 10.14348/molcells.2019.0168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 10/07/2019] [Indexed: 12/02/2022] Open
Abstract
The Gram-negative opportunistic pathogen, Pseudomonas aeruginosa , has multiple multidrug efflux pumps. MexT, a LysR-type transcriptional regulator, functions as a transcriptional activator of the MexEF-OprN efflux system. MexT consists of an N-terminal DNA-binding domain and a C-terminal regulatory domain (RD). Little is known regarding MexT ligands and its mechanism of activation. We elucidated the crystal structure of the MexT RD at 2.0 Å resolution. The structure comprised two protomer chains in a dimeric arrangement. MexT possessed an arginine-rich region and a hydrophobic patch lined by a variable loop, both of which are putative ligand-binding sites. The three-dimensional structure of MexT provided clues to the interacting ligand structure. A DNase I footprinting assay of full-length MexT identified two MexT-binding sequence in the mexEF oprN promoter. Our findings enhance the understanding of the regulation of MexT-dependent activation of efflux pumps.
Collapse
Affiliation(s)
- Suhyeon Kim
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Songhee H. Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826,
Korea
| | - Jinsook Ahn
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Inseong Jo
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Zee-Won Lee
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Sang Ho Choi
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
21
|
LoVullo ED, Schweizer HP. Pseudomonas aeruginosa mexT is an indicator of PAO1 strain integrity. J Med Microbiol 2019; 69:139-145. [PMID: 31859619 DOI: 10.1099/jmm.0.001128] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Laboratory research with Pseudomonas aeruginosa commonly involves the prototype strain PAO1. There is continued concern that PAO1 sublines maintained and propagated in the same laboratory or different laboratories exhibit genetic and phenotypic variability that may affect the reproducibility and validity of research. Whole-genome sequencing and other research identified the mexT locus as a mutational hotspot, but the explication of the diverse mutations present in the various sublines and consequences remained rather cursory. Here we present evidence that MexT sequence diversity is a predictor of PAO1 lineage integrity and define the protein's prototype sequence.
Collapse
Affiliation(s)
- Eric D LoVullo
- Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, 2055 Mowry Road, Gainesville, FL 32610, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics and Microbiology, College of Medicine, Emerging Pathogens Institute, 2055 Mowry Road, Gainesville, FL 32610, USA
| |
Collapse
|
22
|
Kotani K, Matsumura M, Morita Y, Tomida J, Kutsuna R, Nishino K, Yasuike S, Kawamura Y. 13-(2-Methylbenzyl) Berberine Is a More Potent Inhibitor of MexXY-Dependent Aminoglycoside Resistance than Berberine. Antibiotics (Basel) 2019; 8:antibiotics8040212. [PMID: 31698691 PMCID: PMC6963850 DOI: 10.3390/antibiotics8040212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/18/2022] Open
Abstract
We previously showed that berberine attenuates MexXY efflux-dependent aminoglycoside resistance in Pseudomonas aeruginosa. Here, we aimed to synthesize berberine derivatives with higher MexXY inhibitory activities. We synthesized 11 berberine derivatives, of which 13-(2-methylbenzyl) berberine (13-o-MBB) but not its regiomers showed the most promising MexXY inhibitory activity. 13-o-MBB reduced the minimum inhibitory concentrations (MICs) of various aminoglycosides 4- to 128 fold for a highly multidrug resistant P. aeruginosa strain. Moreover, 13-o-MBB significantly reduced the MICs of gentamicin and amikacin in Achromobacter xylosoxidans and Burkholderia cepacia. The fractional inhibitory concentration indices indicated that 13-o-MBB acted synergistically with aminoglycosides in only MexXY-positive P. aeruginosa strains. Time-kill curves showed that 13-o-MBB or higher concentrations of berberine increased the bactericidal activity of gentamicin by inhibiting MexXY in P. aeruginosa. Our findings indicate that 13-o-MBB inhibits MexXY-dependent aminoglycoside drug resistance more strongly than berberine and that 13-o-MBB is a useful inhibitor of aminoglycoside drug resistance due to MexXY.
Collapse
Affiliation(s)
- Kenta Kotani
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (K.K.); (J.T.); (R.K.)
| | - Mio Matsumura
- Department of Organic and Medicinal Chemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (M.M.); (S.Y.)
| | - Yuji Morita
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo 560-0043, Japan;
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (K.K.); (J.T.); (R.K.)
| | - Ryo Kutsuna
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (K.K.); (J.T.); (R.K.)
| | - Kunihiko Nishino
- Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Osaka 560-0043, Japan;
| | - Shuji Yasuike
- Department of Organic and Medicinal Chemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (M.M.); (S.Y.)
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (K.K.); (J.T.); (R.K.)
- Correspondence:
| |
Collapse
|
23
|
Hill IT, Tallo T, Dorman MJ, Dove SL. Loss of RNA Chaperone Hfq Unveils a Toxic Pathway in Pseudomonas aeruginosa. J Bacteriol 2019; 201:e00232-19. [PMID: 31358608 PMCID: PMC6755729 DOI: 10.1128/jb.00232-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022] Open
Abstract
Hfq is an RNA chaperone that serves as a master regulator of bacterial physiology. Here we show that in the opportunistic pathogen Pseudomonas aeruginosa, the loss of Hfq can result in a dramatic reduction in growth in a manner that is dependent upon MexT, a transcription regulator that governs antibiotic resistance in this organism. Using a combination of chromatin immunoprecipitation with high-throughput sequencing and transposon insertion sequencing, we identify the MexT-activated genes responsible for mediating the growth defect of hfq mutant cells. These include a newly identified MexT-controlled gene that we call hilR We demonstrate that hilR encodes a small protein that is acutely toxic to wild-type cells when produced ectopically. Furthermore, we show that hilR expression is negatively regulated by Hfq, offering a possible explanation for the growth defect of hfq mutant cells. Finally, we present evidence that the expression of MexT-activated genes is dependent upon GshA, an enzyme involved in the synthesis of glutathione. Our findings suggest that Hfq can influence the growth of P. aeruginosa by limiting the toxic effects of specific MexT-regulated genes. Moreover, our results identify glutathione to be a factor important for the in vivo activity of MexT.IMPORTANCE Here we show that the conserved RNA chaperone Hfq is important for the growth of the opportunistic pathogen Pseudomonas aeruginosa We found that the growth defect of hfq mutant cells is dependent upon the expression of genes that are under the control of the transcription regulator MexT. These include a gene that we refer to as hilR, which we show is negatively regulated by Hfq and encodes a small protein that can be toxic when ectopically produced in wild-type cells. Thus, Hfq can influence the growth of P. aeruginosa by limiting the toxic effects of MexT-regulated genes, including one encoding a previously unrecognized small protein. We also show that MexT activity depends on an enzyme that synthesizes glutathione.
Collapse
Affiliation(s)
- Ian T Hill
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Tallo
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew J Dorman
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Housseini B Issa K, Phan G, Broutin I. Functional Mechanism of the Efflux Pumps Transcription Regulators From Pseudomonas aeruginosa Based on 3D Structures. Front Mol Biosci 2018; 5:57. [PMID: 29971236 PMCID: PMC6018408 DOI: 10.3389/fmolb.2018.00057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 01/19/2023] Open
Abstract
Bacterial antibiotic resistance is a worldwide health problem that deserves important research attention in order to develop new therapeutic strategies. Recently, the World Health Organization (WHO) classified Pseudomonas aeruginosa as one of the priority bacteria for which new antibiotics are urgently needed. In this opportunistic pathogen, antibiotics efflux is one of the most prevalent mechanisms where the drug is efficiently expulsed through the cell-wall. This resistance mechanism is highly correlated to the expression level of efflux pumps of the resistance-nodulation-cell division (RND) family, which is finely tuned by gene regulators. Thus, it is worthwhile considering the efflux pump regulators of P. aeruginosa as promising therapeutical targets alternative. Several families of regulators have been identified, including activators and repressors that control the genetic expression of the pumps in response to an extracellular signal, such as the presence of the antibiotic or other environmental modifications. In this review, based on different crystallographic structures solved from archetypal bacteria, we will first focus on the molecular mechanism of the regulator families involved in the RND efflux pump expression in P. aeruginosa, which are TetR, LysR, MarR, AraC, and the two-components system (TCS). Finally, the regulators of known structure from P. aeruginosa will be presented.
Collapse
Affiliation(s)
- Karim Housseini B Issa
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Gilles Phan
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
25
|
López-Causapé C, Cabot G, Del Barrio-Tofiño E, Oliver A. The Versatile Mutational Resistome of Pseudomonas aeruginosa. Front Microbiol 2018; 9:685. [PMID: 29681898 PMCID: PMC5897538 DOI: 10.3389/fmicb.2018.00685] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022] Open
Abstract
One of the most striking features of Pseudomonas aeruginosa is its outstanding capacity for developing antimicrobial resistance to nearly all available antipseudomonal agents through the selection of chromosomal mutations, leading to the failure of the treatment of severe hospital-acquired or chronic infections. Recent whole-genome sequencing (WGS) data obtained from in vitro assays on the evolution of antibiotic resistance, in vivo monitoring of antimicrobial resistance development, analysis of sequential cystic fibrosis isolates, and characterization of widespread epidemic high-risk clones have provided new insights into the evolutionary dynamics and mechanisms of P. aeruginosa antibiotic resistance, thus motivating this review. Indeed, the analysis of the WGS mutational resistome has proven to be useful for understanding the evolutionary dynamics of classical resistance pathways and to describe new mechanisms for the majority of antipseudomonal classes, including β-lactams, aminoglycosides, fluoroquinolones, or polymixins. Beyond addressing a relevant scientific question, the analysis of the P. aeruginosa mutational resistome is expected to be useful, together with the analysis of the horizontally-acquired resistance determinants, for establishing the antibiotic resistance genotype, which should correlate with the antibiotic resistance phenotype and as such, it should be useful for the design of therapeutic strategies and for monitoring the efficacy of administered antibiotic treatments. However, further experimental research and new bioinformatics tools are still needed to overcome the interpretation limitations imposed by the complex interactions (including those leading to collateral resistance or susceptibility) between the 100s of genes involved in the mutational resistome, as well as the frequent difficulties for differentiating relevant mutations from simple natural polymorphisms.
Collapse
Affiliation(s)
- Carla López-Causapé
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Gabriel Cabot
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Ester Del Barrio-Tofiño
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|