1
|
Li D, Yuan X, Ma J, Lu T, Zhang J, Liu H, Zhang G, Wang Y, Liu X, Xie Q, Zhou L, Xu M. Morusin, a novel inhibitor of ACLY, induces mitochondrial apoptosis in hepatocellular carcinoma cells through ROS-mediated mitophagy. Biomed Pharmacother 2024; 180:117510. [PMID: 39341077 DOI: 10.1016/j.biopha.2024.117510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVE Morusin (Mor), a prenylated flavonoid isolated from the root bark of Morus alba L., exhibits potent anti-tumour effects; however, the molecular target of Mor is still not entirely clear. This study aimed to elucidate the mechanism of Mor against hepatocellular carcinoma (HCC) and identify potential molecular targets. METHODS Mitochondrial function was assessed by measuring the mitochondrial membrane potential, mitochondrial ultrastructure, oxygen consumption, and ATP levels. Mor-induced mitophagy was confirmed using western blotting, immunofluorescence, and fluorescent probes. Transcriptomics, flow cytometry, western blotting, qRT-PCR and biochemical assays were used to reveal the molecular mechanisms and targets of Mor against HCC. We further validated the interaction between Mor and the target proteins using molecular docking and biolayer interferometry (BLI). The inhibitory effect of Mor in vivo was evaluated using a Hep3B murine xenograft model. RESULTS Mor significantly reduced the ATP citrate lyase (ACLY) expression and inhibited ACLY activity in HCC cells. BLI analysis demonstrated a direct interaction between Mor and the ACLY active domain. Mor-induced ACLY inhibition led to ROS accumulation in HCC cells, which caused mitochondrial damage, triggered PINK1/Parkin-mediated mitophagy, and ultimately induced mitochondrial apoptosis. We further verified that ROS is crucial in the apoptotic action of Mor through experiments regarding an ROS scavenger. Mor also significantly inhibited tumour xenograft growth in vivo. In addition, analysis of human liver cancer clinical samples revealed elevated ACLY levels positively correlated with histologic grade. CONCLUSION Collectively, our findings highlight Mor as a potent bioactive inhibitor of ACLY and a promising candidate for HCC therapy.
Collapse
Affiliation(s)
- Desheng Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiaoqing Yuan
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Jianjun Ma
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong 264002, PR China
| | - Tao Lu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Jinjin Zhang
- Medical Research Center, Binzhou Medical University, Yantai 264003, PR China
| | - Huan Liu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Guanqing Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Yue Wang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiaohan Liu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Qiqiang Xie
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
2
|
Nué-Martinez JJ, Cisneros D, Moreno-Blázquez MD, Fonseca-Berzal C, Manzano JI, Kraeutler D, Ungogo MA, Aloraini MA, Elati HAA, Ibáñez-Escribano A, Lagartera L, Herraiz T, Gamarro F, de Koning HP, Gómez-Barrio A, Dardonville C. Synthesis and Biophysical and Biological Studies of N-Phenylbenzamide Derivatives Targeting Kinetoplastid Parasites. J Med Chem 2023; 66:13452-13480. [PMID: 37729094 PMCID: PMC10578353 DOI: 10.1021/acs.jmedchem.3c00697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 09/22/2023]
Abstract
The AT-rich mitochondrial DNA (kDNA) of trypanosomatid parasites is a target of DNA minor groove binders. We report the synthesis, antiprotozoal screening, and SAR studies of three series of analogues of the known antiprotozoal kDNA binder 2-((4-(4-((4,5-dihydro-1H-imidazol-3-ium-2-yl)amino)benzamido)phenyl)amino)-4,5-dihydro-1H-imidazol-3-ium (1a). Bis(2-aminoimidazolines) (1) and bis(2-aminobenzimidazoles) (2) showed micromolar range activity against Trypanosoma brucei, whereas bisarylimidamides (3) were submicromolar inhibitors of T. brucei, Trypanosoma cruzi, and Leishmania donovani. None of the compounds showed relevant activity against the urogenital, nonkinetoplastid parasite Trichomonas vaginalis. We show that series 1 and 3 bind strongly and selectively to the minor groove of AT DNA, whereas series 2 also binds by intercalation. The measured pKa indicated different ionization states at pH 7.4, which correlated with the DNA binding affinities (ΔTm) for series 2 and 3. Compound 3a, which was active and selective against the three parasites and displayed adequate metabolic stability, is a fine candidate for in vivo studies.
Collapse
Affiliation(s)
- J. Jonathan Nué-Martinez
- Instituto
de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
- PhD
Programme in Medicinal Chemistry, Doctoral School, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - David Cisneros
- Instituto
de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
- PhD
Programme in Medicinal Chemistry, Doctoral School, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | | | - Cristina Fonseca-Berzal
- Departamento
de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - José Ignacio Manzano
- Instituto
de Parasitología y Biomedicina “Löpez Neyra”,
IPBLN-CSIC, Parque Tecnolögico
de Ciencias de la Salud, 18016 Granada, Spain
| | - Damien Kraeutler
- Instituto
de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Marzuq A. Ungogo
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, G12 8TA Glasgow, U.K.
| | - Maha A. Aloraini
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, G12 8TA Glasgow, U.K.
| | - Hamza A. A. Elati
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, G12 8TA Glasgow, U.K.
| | - Alexandra Ibáñez-Escribano
- Departamento
de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Laura Lagartera
- Instituto
de Química Médica, IQM−CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Tomás Herraiz
- Instituto
de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN−CSIC, José Antonio Novais 10, Ciudad
Universitaria, 28040 Madrid, Spain
| | - Francisco Gamarro
- Instituto
de Parasitología y Biomedicina “Löpez Neyra”,
IPBLN-CSIC, Parque Tecnolögico
de Ciencias de la Salud, 18016 Granada, Spain
| | - Harry P. de Koning
- Institute
of Infection, Immunity and Inflammation, College of Medical, Veterinary
and Life Sciences, University of Glasgow, G12 8TA Glasgow, U.K.
| | - Alicia Gómez-Barrio
- Departamento
de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | | |
Collapse
|
3
|
Bosch-Navarrete C, Pérez-Moreno G, Annang F, Diaz-Gonzalez R, García-Hernández R, Rocha H, Gamarro F, Cordón-Obras C, Navarro M, Rodriguez A, Genilloud O, Reyes F, Vicente F, Ruiz-Pérez LM, González-Pacanowska D. Strasseriolides display in vitro and in vivo activity against trypanosomal parasites and cause morphological and size defects in Trypanosoma cruzi. PLoS Negl Trop Dis 2023; 17:e0011592. [PMID: 37713416 PMCID: PMC10529594 DOI: 10.1371/journal.pntd.0011592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/27/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023] Open
Abstract
Neglected diseases caused by kinetoplastid parasites are a health burden in tropical and subtropical countries. The need to create safe and effective medicines to improve treatment remains a priority. Microbial natural products are a source of chemical diversity that provides a valuable approach for identifying new drug candidates. We recently reported the discovery and bioassay-guided isolation of a novel family of macrolides with antiplasmodial activity. The novel family of four potent antimalarial macrolides, strasseriolides A-D, was isolated from cultures of Strasseria geniculata CF-247251, a fungal strain obtained from plant tissues. In the present study, we analyze these strasseriolides for activity against kinetoplastid protozoan parasites, namely, Trypanosoma brucei brucei, Leishmania donovani and Trypanosoma cruzi. Compounds exhibited mostly low activities against T. b. brucei, yet notable growth inhibition and selectivity were observed for strasseriolides C and D in the clinically relevant intracellular T. cruzi and L. donovani amastigotes with EC50 values in the low micromolar range. Compound C is fast-acting and active against both intracellular and trypomastigote forms of T. cruzi. While cell cycle defects were not identified, prominent morphological changes were visualized by differential interference contrast microscopy and smaller and rounded parasites were visualized upon exposure to strasseriolide C. Moreover, compound C lowers parasitaemia in vivo in acute models of infection of Chagas disease. Hence, strasseriolide C is a novel natural product active against different forms of T. cruzi in vitro and in vivo. The study provides an avenue for blocking infection of new cells, a strategy that could additionally contribute to avoid treatment failure.
Collapse
Affiliation(s)
- Cristina Bosch-Navarrete
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Frederick Annang
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Rosario Diaz-Gonzalez
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Hedy Rocha
- Department of Microbiology, Core Anti-infectives, New York University School of Medicine, New York, New York, United States of America
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Carlos Cordón-Obras
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Ana Rodriguez
- Department of Microbiology, Core Anti-infectives, New York University School of Medicine, New York, New York, United States of America
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Luis M. Ruiz-Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| |
Collapse
|
4
|
Shah SI, Nasir F, Malik NS, Alamzeb M, Abbas M, Rehman IU, Khuda F, Shah Y, Goh KW, Zeb A, Ming LC. Efficacy Evaluation of 10-Hydroxy Chondrofoline and Tafenoquine against Leishmania tropica (HTD7). Pharmaceuticals (Basel) 2022; 15:ph15081005. [PMID: 36015153 PMCID: PMC9415556 DOI: 10.3390/ph15081005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Leishmaniasis is affirmed as a category one disease (most emerging and unmanageable) by the World Health Organization (WHO), affecting 98 countries with an annual global incidence of ~1.2 million cases. Options for chemotherapeutic treatment are limited due to drug resistance and cytotoxicity. Thus, the search for new chemical compounds is instantly desirable. In this study, we used two compounds, i.e., 10-hydroxy chondrofoline and tafenoquine, for their antileishmanial activity against L. tropica (HTD7). First, the cytotoxicity assay of the test compounds against THP-1 cells was carried out, and these compounds were found safe. Intra-THP-1 amastigote activity (in vitro) was performed, which was then followed by the in vivo activity of 10-hydroxy chondrofoline in the murine cutaneous leishmaniasis (CL) model. A total of three concentrations were used, i.e., 25, 50, and 100 µM, to check the in vitro activity of the test compounds against the amastigotes. 10-hydroxy chondrofoline was found to be the most potent compound in vitro (and thus was selected for in vivo studies) with an LD50 value of 43.80 µM after 48 h incubation, whilst tafenoquine had an LD50 value of 53.57 µM. In vivo activity was conducted by injecting 10-hydroxy chondrofoline in the left hind foot of the infected BALB/c mice, where it caused a statistically significant 58.3% (F = 14.18; p = 0.002) reduction in lesion size (0.70 ± 0.03 mm) when compared with negative control (1.2 ± 0.3 mm).
Collapse
Affiliation(s)
- Sayyed Ibrahim Shah
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
- Correspondence: (S.I.S.); (L.C.M.)
| | - Fazli Nasir
- Department of Pharmacy, University of Peshawar, Khyber Pakhtunkhwa 25100, Pakistan
| | - Nadia Shamshad Malik
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Muhammad Alamzeb
- Department of Chemistry, University of Kotli, Kotli 11100, Pakistan
| | - Muhammad Abbas
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Inayat Ur Rehman
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Fazli Khuda
- Department of Pharmacy, University of Peshawar, Khyber Pakhtunkhwa 25100, Pakistan
| | - Yasir Shah
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Khang Weh Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Alam Zeb
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Correspondence: (S.I.S.); (L.C.M.)
| |
Collapse
|
5
|
2,3-Dihydroquinazolin-4(1H)-one as a New Class of Anti-Leishmanial Agents: A Combined Experimental and Computational Study. CRYSTALS 2021. [DOI: 10.3390/cryst12010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leishmaniasis is a neglected parasitic disease caused by various Leishmania species. The discovery of new protozoa drugs makes it easier to treat the disease; but, conventional clinical issues like drug resistance, cumulative toxicity, and target selectivity are also getting attention. So, there is always a need for new therapeutics to treat Leishmaniasis. Here, we have reported 2,3-dihydroquinazolin-4(1H)-one derivative as a new class of anti-leishmanial agents. Two derivatives, 3a (6,8-dinitro-2,2-disubstituted-2,3-dihydroquinazolin-4(1H)-ones) and 3b (2-(4-chloro-3-nitro-phenyl)-2-methyl-6,8-dinitro-2,3-dihydro-1H-quinazolin-4-one) were prepared that show promising in silico anti-leishmanial activities. Molecular docking was performed against the Leishmanial key proteins including Pyridoxal Kinase and Trypanothione Reductase. The stability of the ligand-protein complexes was further studied by 100 ns MD simulations and MM/PBSA calculations for both compounds. 3b has been shown to be a better anti-leishmanial candidate. In vitro studies also agree with the in-silico results where IC50 for 3a and 3b was 1.61 and 0.05 µg/mL, respectively.
Collapse
|
6
|
Sánchez-Fernández EM, García-Hernández R, Gamarro F, Arroba AI, Aguilar-Diosdado M, Padrón JM, García Fernández JM, Ortiz Mellet C. Synthesis of sp 2-Iminosugar Selenoglycolipids as Multitarget Drug Candidates with Antiproliferative, Leishmanicidal and Anti-Inflammatory Properties. Molecules 2021; 26:molecules26247501. [PMID: 34946583 PMCID: PMC8705409 DOI: 10.3390/molecules26247501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
sp2-Iminosugar glycolipids (sp2-IGLs) represent a consolidated family of glycoconjugate mimetics encompassing a monosaccharide-like glycone moiety with a pseudoamide-type nitrogen replacing the endocyclic oxygen atom of carbohydrates and an axially-oriented lipid chain anchored at the pseudoanomeric position. The combination of these structural features makes them promising candidates for the treatment of a variety of conditions, spanning from cancer and inflammatory disorders to parasite infections. The exacerbated anomeric effect associated to the putative sp2-hybridized N-atom imparts chemical and enzymatic stability to sp2-IGLs and warrants total α-anomeric stereoselectivity in the key glycoconjugation step. A variety of O-, N-, C- and S-pseudoglycosides, differing in glycone configurational patterns and lipid nature, have been previously prepared and evaluated. Here we expand the chemical space of sp2-IGLs by reporting the synthesis of α-d-gluco-configured analogs with a bicyclic (5N,6O-oxomethylidene)nojirimycin (ONJ) core incorporating selenium at the glycosidic position. Structure-activity relationship studies in three different scenarios, namely cancer, Leishmaniasis and inflammation, convey that the therapeutic potential of the sp2-IGLs is highly dependent, not only on the length of the lipid chain (linear aliphatic C12 vs. C8), but also on the nature of the glycosidic atom (nitrogen vs. sulfur vs. selenium). The ensemble of results highlights the α-dodecylseleno-ONJ-glycoside as a promising multitarget drug candidate.
Collapse
Affiliation(s)
- Elena M. Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain;
- Correspondence: ; Tel.: +34-954-559-997
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina “López-Neyra”, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; (R.G.-H.); (F.G.)
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina “López-Neyra”, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; (R.G.-H.); (F.G.)
| | - Ana I. Arroba
- Research Unit, Biomedical Research and Innovation Institute of Cádiz, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009 Cádiz, Spain; (A.I.A.); (M.A.-D.)
| | - Manuel Aguilar-Diosdado
- Research Unit, Biomedical Research and Innovation Institute of Cádiz, Puerta del Mar University Hospital, Av/Ana de Viya 21, 11009 Cádiz, Spain; (A.I.A.); (M.A.-D.)
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain;
| | - José M. García Fernández
- Instituto de Investigaciones Químicas, CSIC-University of Seville, Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain;
| |
Collapse
|
7
|
Glanzmann N, Antinarelli LMR, da Costa Nunes IK, Pereira HMG, Coelho EAF, Coimbra ES, da Silva AD. Synthesis and biological activity of novel 4-aminoquinoline/1,2,3-triazole hybrids against Leishmania amazonensis. Biomed Pharmacother 2021; 141:111857. [PMID: 34323702 DOI: 10.1016/j.biopha.2021.111857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
Quinoline and 1,2,3-triazoles are well-known nitrogen-based heterocycles presenting diverse pharmacological properties, although their antileishmanial activity is still poorly exploited. As an effort to contribute with studies involving these interesting chemical groups, in the present study, a series of compounds derived from 4-aminoquinoline and 1,2,3-triazole were synthetized and biological studies using L. amazonensis species were performed. The results pointed that the derivative 4, a hybrid of 4-aminoquinoline/1,2,3-triazole exhibited the best antileishmanial action, with inhibitory concentration (IC50) values of ~1 µM against intramacrophage amastigotes of L. amazonensis , and being 16-fold more active to parasites than to the host cell. The mechanism of action of derivative 4 suggest a multi-target action on Leishmania parasites, since the treatment of L. amazonensis promastigotes caused mitochondrial membrane depolarization, accumulation of ROS products, plasma membrane permeabilization, increase in neutral lipids, exposure of phosphatidylserine to the cell surface, changes in the cell cycle and DNA fragmentation. The results suggest that the antileishmanial effect of this compound is primarily altering critical biochemical processes for the correct functioning of organelles and macromolecules of parasites, with consequent cell death by processes related to apoptosis-like and necrosis. No up-regulation of reactive oxygen and nitrogen intermediates was promoted by derivative 4 on L. amazonensis -infected macrophages, suggesting a mechanism of action independent from the activation of the host cell. In conclusion, data suggest that derivative 4 presents selective antileishmanial effect, which is associated with multi-target action, and can be considered for future studies for the treatment against disease.
Collapse
Affiliation(s)
- Nícolas Glanzmann
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil
| | - Luciana Maria Ribeiro Antinarelli
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil; Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30.130-100, Brazil
| | - Isabelle Karine da Costa Nunes
- Laboratório de Apoio ao Desenvolvimento Tecnológico, Polo de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Ilha do Fundão, Rio de Janeiro 21.941-598, Brazil
| | - Henrique Marcelo Gualberto Pereira
- Laboratório de Apoio ao Desenvolvimento Tecnológico, Polo de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária Ilha do Fundão, Rio de Janeiro 21.941-598, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 30.130-100, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Elaine Soares Coimbra
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil
| | - Adilson David da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais 36.036-900, Brazil.
| |
Collapse
|
8
|
Tear WF, Bag S, Diaz-Gonzalez R, Ceballos-Pérez G, Rojas-Barros DI, Cordon-Obras C, Pérez-Moreno G, García-Hernández R, Martinez-Martinez MS, Ruiz-Perez LM, Gamarro F, Gonzalez Pacanowska D, Caffrey CR, Ferrins L, Manzano P, Navarro M, Pollastri MP. Selectivity and Physicochemical Optimization of Repurposed Pyrazolo[1,5- b]pyridazines for the Treatment of Human African Trypanosomiasis. J Med Chem 2020; 63:756-783. [PMID: 31846577 PMCID: PMC6985937 DOI: 10.1021/acs.jmedchem.9b01741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
From
a high-throughput screen of 42 444 known human kinases
inhibitors, a pyrazolo[1,5-b]pyridazine scaffold
was identified to begin optimization for the treatment of human African
trypanosomiasis. Previously reported data for analogous compounds
against human kinases GSK-3β, CDK-2, and CDK-4 were leveraged
to try to improve the selectivity of the series, resulting in 23a which showed selectivity for T. b. brucei over these three human enzymes. In parallel, properties known to
influence the absorption, distribution, metabolism, and excretion
(ADME) profile of the series were optimized resulting in 20g being progressed into an efficacy study in mice. Though 20g showed toxicity in mice, it also demonstrated CNS penetration in
a PK study and significant reduction of parasitemia in four out of
the six mice.
Collapse
Affiliation(s)
- Westley F Tear
- Department of Chemistry & Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Seema Bag
- Department of Chemistry & Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Rosario Diaz-Gonzalez
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientificas (CSIC) , Granada 18016 , Spain
| | - Gloria Ceballos-Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientificas (CSIC) , Granada 18016 , Spain
| | - Domingo I Rojas-Barros
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientificas (CSIC) , Granada 18016 , Spain
| | - Carlos Cordon-Obras
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientificas (CSIC) , Granada 18016 , Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientificas (CSIC) , Granada 18016 , Spain
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientificas (CSIC) , Granada 18016 , Spain
| | | | - Luis Miguel Ruiz-Perez
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientificas (CSIC) , Granada 18016 , Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientificas (CSIC) , Granada 18016 , Spain
| | - Dolores Gonzalez Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientificas (CSIC) , Granada 18016 , Spain
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Lori Ferrins
- Department of Chemistry & Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Pilar Manzano
- Tres Cantos Medicines Development Campus, DDW and CIB , GlaxoSmithKline , Tres Cantos 28760 , Spain
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Cientificas (CSIC) , Granada 18016 , Spain
| | - Michael P Pollastri
- Department of Chemistry & Chemical Biology , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
9
|
Manzano JI, Cueto-Díaz EJ, Olías-Molero AI, Perea A, Herraiz T, Torrado JJ, Alunda JM, Gamarro F, Dardonville C. Discovery and Pharmacological Studies of 4-Hydroxyphenyl-Derived Phosphonium Salts Active in a Mouse Model of Visceral Leishmaniasis. J Med Chem 2019; 62:10664-10675. [PMID: 31702921 DOI: 10.1021/acs.jmedchem.9b00998] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the discovery of new 4-hydroxyphenyl phosphonium salt derivatives active in the submicromolar range (EC50 from 0.04 to 0.28 μM, SI > 10) against the protozoan parasite Leishmania donovani. The pharmacokinetics and in vivo oral efficacy of compound 1 [(16-(2,4-dihydroxyphenyl)-16-oxohexadecyl)triphenylphosphonium bromide] in a mouse model of visceral leishmaniasis were established. Compound 1 reduced the parasite load in spleen (98.9%) and liver (95.3%) of infected mice after an oral dosage of four daily doses of 1.5 mg/kg. Mode of action studies showed that compound 1 diffuses across the plasma membrane, as designed, and targets the mitochondrion of Leishmania parasites. Disruption of the energetic metabolism, with a decrease of intracellular ATP levels as well as mitochondrial depolarization together with a significant reactive oxygen species production, contributes to the leishmanicidal effect of 1. Importantly, this compound was equally effective against antimonials and miltefosine-resistant clinical isolates of Leishmania infantum, indicating its potential as antileishmanial lead.
Collapse
Affiliation(s)
- José Ignacio Manzano
- Instituto de Parasitología y Biomedicina "López Neyra", IPBLN-CSIC , Parque Tecnológico de Ciencias de la Salud , 18016 Granada , Spain
| | - Eduardo J Cueto-Díaz
- Instituto de Química Médica, IQM-CSIC , Juan de la Cierva 3 , E-28006 Madrid , Spain
| | - Ana Isabel Olías-Molero
- Departamento de Sanidad Animal, Facultad de Veterinaria , Universidad Complutense de Madrid , Avda. Puerta de Hierro s/n , 28040 Madrid , Spain
| | - Ana Perea
- Instituto de Parasitología y Biomedicina "López Neyra", IPBLN-CSIC , Parque Tecnológico de Ciencias de la Salud , 18016 Granada , Spain
| | - Tomás Herraiz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC , Juan de la Cierva 3 , E-28006 Madrid , Spain
| | - Juan J Torrado
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia , Universidad Complutense de Madrid , Plaza de Ramón y Cajal s/n , 28040 Madrid , Spain
| | - José María Alunda
- Departamento de Sanidad Animal, Facultad de Veterinaria , Universidad Complutense de Madrid , Avda. Puerta de Hierro s/n , 28040 Madrid , Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina "López Neyra", IPBLN-CSIC , Parque Tecnológico de Ciencias de la Salud , 18016 Granada , Spain
| | | |
Collapse
|
10
|
Imidazo[2,1-a]isoindole scaffold as an uncharted structure active on Leishmania donovani. Eur J Med Chem 2019; 182:111568. [DOI: 10.1016/j.ejmech.2019.111568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 01/13/2023]
|
11
|
Sánchez-Fernández EM, García-Moreno MI, Arroba AI, Aguilar-Diosdado M, Padrón JM, García-Hernández R, Gamarro F, Fustero S, Sánchez-Aparicio JE, Masgrau L, García Fernández JM, Ortiz Mellet C. Synthesis of polyfluoroalkyl sp 2-iminosugar glycolipids and evaluation of their immunomodulatory properties towards anti-tumor, anti-leishmanial and anti-inflammatory therapies. Eur J Med Chem 2019; 182:111604. [PMID: 31425910 DOI: 10.1016/j.ejmech.2019.111604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/27/2019] [Accepted: 08/07/2019] [Indexed: 12/27/2022]
Abstract
Immunomodulatory glycolipids, among which α-galactosylceramide (KRN7000) is an iconic example, have shown strong therapeutic potential in a variety of conditions ranging from cancer and infection to autoimmune or neurodegenerative diseases. A main difficulty for those channels is that they often provoke a cytokine storm comprising both pro- and anti-inflammatory mediators that antagonize each other and negatively affect the immune response. The synthesis of analogues with narrower cytokine secretion-inducing capabilities is hampered by the intrinsic difficulty at controlling the stereochemical outcome in glycosidation reactions, particularly if targeting the α-anomer, which seriously hampers drug optimization strategies. Here we show that replacing the monosaccharide glycone by a sp2-iminosugar glycomimetic moiety allows accessing N-linked sp2-iminosugar glycolipids (sp2-IGLs) with total α-stereocontrol in a single step with no need of protecting groups or glycosidation promotors. The lipid tail has been then readily tailored by incorporating polyfluoroalkyl segments of varied lengths in view of favouring binding to the lipid binding site of the master p38 mitogen activated protein kinase (p38 MAPK), thereby polarizing the immune response in a cell-context dependent manner. The compounds have been evaluated for their antiproliferative, anti-leishmanial and anti-inflammatory activities in different cell assays. The size of the fluorous segment was found to be critical for the biological activity, probably by regulating the aggregation and membrane-crossing properties, whereas the hydroxylation profile (gluco or galacto-like) was less relevant. Biochemical and computational data further support a mechanism of action implying binding to the allosteric lipid binding site of p38 MAPK and subsequent activation of the noncanonical autophosphorylation route. The ensemble of results provide a proof of concept of the potential of sp2-IGLs as immunoregulators.
Collapse
Affiliation(s)
- Elena M Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Seville, Spain.
| | - Ma Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Seville, Spain
| | - Ana I Arroba
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Av/ Ana de Viya 21, 11009, Cádiz, Spain; Research Unit, Jerez University Hospital, Carretera Circunvalación s/n, 11407, Jerez de la Frontera, Spain.
| | - Manuel Aguilar-Diosdado
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Av/ Ana de Viya 21, 11009, Cádiz, Spain; Research Unit, Jerez University Hospital, Carretera Circunvalación s/n, 11407, Jerez de la Frontera, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de la Laguna, PO BOX 456, 38200, La Laguna, Spain
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina "López Neyra", IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016, Granada, Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina "López Neyra", IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016, Granada, Spain
| | - Santos Fustero
- Department of Organic Chemistry, Universidad de Valencia, 46100, Burjassot, Spain
| | | | - Laura Masgrau
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - José Manuel García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, C/ Américo Vespucio 49, Isla de la Cartuja, 41092, Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Profesor García González 1, 41012, Seville, Spain.
| |
Collapse
|
12
|
Sánchez-Fernández EM, García-Moreno MI, García-Hernández R, Padrón JM, García Fernández JM, Gamarro F, Ortiz Mellet C. Thiol-ene "Click" Synthesis and Pharmacological Evaluation of C-Glycoside sp 2-Iminosugar Glycolipids. Molecules 2019; 24:E2882. [PMID: 31398901 PMCID: PMC6720825 DOI: 10.3390/molecules24162882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/30/2022] Open
Abstract
The unique stereoelectronic properties of sp2-iminosugars enable their participation in glycosylation reactions, thereby behaving as true carbohydrate chemical mimics. Among sp2-iminosugar conjugates, the sp2-iminosugar glycolipids (sp2-IGLs) have shown a variety of interesting pharmacological properties ranging from glycosidase inhibition to antiproliferative, antiparasitic, and anti-inflammatory activities. Developing strategies compatible with molecular diversity-oriented strategies for structure-activity relationship studies was therefore highly wanted. Here we show that a reaction sequence consisting in stereoselective C-allylation followed by thiol-ene "click" coupling provides a very convenient access to α-C-glycoside sp2-IGLs. Both the glycone moiety and the aglycone tail can be modified by using sp2-iminosugar precursors with different configurational profiles (d-gluco or d-galacto in this work) and varied thiols, as well as by oxidation of the sulfide adducts (to the corresponding sulfones in this work). A series of derivatives was prepared in this manner and their glycosidase inhibitory, antiproliferative and antileishmanial activities were evaluated in different settings. The results confirm that the inhibition of glycosidases, particularly α-glucosidase, and the antitumor/leishmanicidal activities are unrelated. The data are also consistent with the two later activities arising from the ability of the sp2-IGLs to interfere in the immune system response in a cell line and cell context dependent manner.
Collapse
Affiliation(s)
- Elena M Sánchez-Fernández
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain.
| | - M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina "López-Neyra", IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Centro de Investigaciones Biomédicas de Canarias (CIBCAN), Universidad de La Laguna, 38206 La Laguna, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina "López-Neyra", IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain.
| |
Collapse
|
13
|
Scariot DB, Volpato H, Fernandes NDS, Soares EFP, Ueda-Nakamura T, Dias-Filho BP, Din ZU, Rodrigues-Filho E, Rubira AF, Borges O, Sousa MDC, Nakamura CV. Activity and Cell-Death Pathway in Leishmania infantum Induced by Sugiol: Vectorization Using Yeast Cell Wall Particles Obtained From Saccharomyces cerevisiae. Front Cell Infect Microbiol 2019; 9:208. [PMID: 31259161 PMCID: PMC6587907 DOI: 10.3389/fcimb.2019.00208] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Visceral leishmaniasis, caused by Leishmania infantum, is a neglected tropical disease, to which efforts in the innovation of effective and affordable treatments remain limited, despite the rising incidence in several regions of the world. In this work, the antileishmanial effects of sugiol were investigated in vitro. This compound was isolated from the bark of Cupressus lusitanica and showed promising activity against L. infantum. In spite of the positive results, it is known that the compound is a poorly water-soluble diterpene molecule, which hinders further investigation, especially in preclinical animal studies. Thus, in an alternative delivery method, sugiol was entrapped in glucan-rich particles obtained from Saccharomyces cerevisiae yeast cell walls (YCWPs). To evaluate the activity of sugiol, the experiments were divided into two parts: (i) the in vitro investigation of antileishmanial activity of free sugiol against L. infantum promastigotes after 24, 48, and 72 h of treatment and (ii) the evaluation of antileishmanial activity of sugiol entrapped in glucan-rich particles against intracellular L. infantum amastigotes. Free sugiol induced the cell-death process in promastigotes, which was triggered by enhancing cytosolic calcium level and promoting the autophagy up to the first 24 h. Over time, the presence of autophagic vacuoles became rarer, especially after treatment with lower concentrations of sugiol, but other cellular events intensified, like ROS production, cell shrinkage, and phosphatidylserine exposure. Hyperpolarization of mitochondrial membrane potential was found at 72 h, induced by the mitochondria calcium uptake, causing an increase in ROS production and lipid peroxidation as a consequence. These events resulted in the cell death of promastigotes by secondary necrosis. Sugiol entrapped in glucan-rich particles was specifically recognized by dectin-1 receptor on the plasma membrane of macrophages, the main host cell of Leishmania spp. Electron micrographs revealed particles containing sugiol within the infected macrophages and these particles were active against the intracellular L. infantum amastigotes without affecting the host cell. Therefore, the YCWPs act like a Trojan horse to successfully deliver sugiol into the macrophage, presenting an interesting strategy to deliver water-insoluble drugs to parasitized cells.
Collapse
Affiliation(s)
- Débora Botura Scariot
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| | - Hélito Volpato
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| | - Nilma de Souza Fernandes
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| | | | - Tânia Ueda-Nakamura
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| | - Benedito Prado Dias-Filho
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| | - Zia Ud Din
- Chemistry Department, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria Do Céu Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in Drugs and Cosmetics Development, State University of Maringá, Maringá, Brazil
| |
Collapse
|
14
|
Spectroscopic, structural and theoretical investigation of 1,3-bis(3-hydroxymethylpyridinium)propane dibromide, tetrabromozincate and tetrabromocuprate. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Rastrojo A, García-Hernández R, Vargas P, Camacho E, Corvo L, Imamura H, Dujardin JC, Castanys S, Aguado B, Gamarro F, Requena JM. Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:246-264. [PMID: 29689531 PMCID: PMC6039315 DOI: 10.1016/j.ijpddr.2018.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/10/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Leishmaniasis is a serious medical issue in many countries around the World, but it remains largely neglected in terms of research investment for developing new control and treatment measures. No vaccines exist for human use, and the chemotherapeutic agents currently used are scanty. Furthermore, for some drugs, resistance and treatment failure are increasing to alarming levels. The aim of this work was to identify genomic and trancriptomic alterations associated with experimental resistance against the common drugs used against VL: trivalent antimony (SbIII, S line), amphotericin B (AmB, A line), miltefosine (MIL, M line) and paromomycin (PMM, P line). A total of 1006 differentially expressed transcripts were identified in the S line, 379 in the A line, 146 in the M line, and 129 in the P line. Also, changes in ploidy of chromosomes and amplification/deletion of particular regions were observed in the resistant lines regarding the parental one. A series of genes were identified as possible drivers of the resistance phenotype and were validated in both promastigotes and amastigotes from Leishmania donovani, Leishmania infantum and Leishmania major species. Remarkably, a deletion of the gene LinJ.36.2510 (coding for 24-sterol methyltransferase, SMT) was found to be associated with AmB-resistance in the A line. In the P line, a dramatic overexpression of the transcripts LinJ.27.T1940 and LinJ.27.T1950 that results from a massive amplification of the collinear genes was suggested as one of the mechanisms of PMM resistance. This conclusion was reinforced after transfection experiments in which significant PMM-resistance was generated in WT parasites over-expressing either gene LinJ.27.1940 (coding for a D-lactate dehydrogenase-like protein, D-LDH) or gene LinJ.27.1950 (coding for an aminotransferase of branched-chain amino acids, BCAT). This work allowed to identify new drivers, like SMT, the deletion of which being associated with resistance to AmB, and the tandem D-LDH-BCAT, the amplification of which being related to PMM resistance.
Collapse
Affiliation(s)
- Alberto Rastrojo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Paola Vargas
- Instituto de Parasitología y Biomedicina ''López-Neyra'' (IPBLN-CSIC), Granada, Spain
| | - Esther Camacho
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Corvo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Santiago Castanys
- Instituto de Parasitología y Biomedicina ''López-Neyra'' (IPBLN-CSIC), Granada, Spain
| | - Begoña Aguado
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina ''López-Neyra'' (IPBLN-CSIC), Granada, Spain.
| | - Jose M Requena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
16
|
Komasa A. Spectroscopic and DFT studies of bis-3-hydroxypyridinium and bis-3-hydroxymethylpyridinium dibromides with tetramethylene linker. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:456-468. [PMID: 28756261 DOI: 10.1016/j.saa.2017.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
Experimental and theoretical IR, Raman, UV-Vis, 1H and 13C NMR spectra of 1,4-di(3-hydroxypyridinium)butane dibromide and 1,4-di(3-hydroxymethylpyridinium)butane dibromide were obtained and analyzed. Optimized geometrical structures of the studied compounds were calculated by B3LYP method using 6-311++G(d,p) basis set and employed to determine the theoretical wavenumbers and intensities of IR and Raman spectra. The frequency assignments were supported by the potential energy distribution (PED) analysis. The significant role of the intermolecular interactions and the hydrogen bond was revealed on the basis of IR spectra. The calculated GIAO/B3LYP/6-311++G(d,p) isotropic magnetic shielding constants were used to predict the 1H and 13C chemical shifts for the optimized structures. Accuracy of the prediction of 1H and 13C chemical shifts was significantly improved by a simulation of the solvent in calculations. On the basis of UV-Vis spectra the acid-base equilibrium in the water solution of 1,4-di(3-hydroxypyridinium)butane dibromide was found.
Collapse
Affiliation(s)
- Anna Komasa
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61614 Poznan, Poland.
| |
Collapse
|
17
|
Lavorato SN, Duarte MC, Andrade PHRD, Coelho EAF, Alves RJ. Synthesis, antileishmanial activity and QSAR studies of 2-chloro- N -arylacetamides. BRAZ J PHARM SCI 2017. [DOI: 10.1590/s2175-97902017000116067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Diniz EMLP, Tomich de Paula da Silva CH, Gómez-Perez V, Federico LB, Campos Rosa JM. GRIND2-based 3D-QSAR and prediction of activity spectra for symmetrical bis-pyridinium salts with promastigote antileishmanial activity. J Biomol Struct Dyn 2016; 35:2430-2440. [DOI: 10.1080/07391102.2016.1221364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | - Verónica Gómez-Perez
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, c/ Campus de Cartuja s/n, Granada 18071, Spain
| | - Leonardo Bruno Federico
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. do Café S/N, CEP: 14040-903, Ribeirão Preto, SP, Brazil
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, c/ Campus de Cartuja s/n, Granada 18071, Spain
| | - Joaquín María Campos Rosa
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica, Universidad de Granada, c/ Campus de Cartuja s/n, Granada 18071, Spain
| |
Collapse
|
19
|
Manzano JI, Cochet F, Boucherle B, Gómez-Pérez V, Boumendjel A, Gamarro F, Peuchmaur M. Arylthiosemicarbazones as antileishmanial agents. Eur J Med Chem 2016; 123:161-170. [PMID: 27475107 DOI: 10.1016/j.ejmech.2016.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 01/15/2023]
Abstract
Based on a screening process, we targeted substituted thiosemicarbazone as potential antileishmanial agents. Our objective was to identify the key structural elements contributing to the anti-parasite activity that might be used for development of effective drugs. A series of 32 compounds was synthesized and their efficacy was evaluated against the clinically relevant intracellular amastigotes of Leishmania donovani. From these, 22 compounds showed EC50 values below 10 μM with the most active derivative (compound 14) showing an EC50 of 0.8 μM with very low toxicity on two different mammalian cell lines. The most relevant structural elements required for higher activity indicate that the presence of a fused bicyclic aromatic ring such as a naphthalene bearing an alkyl or an alkoxy group substituent are prerequisites. Owing to the easy synthesis, high activity and low toxicity, the most active compounds could be considered as a lead for further development.
Collapse
Affiliation(s)
- José Ignacio Manzano
- Instituto de Parasitología y Biomedicina 'López-Neyra', IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain
| | - Florent Cochet
- Univ. Grenoble Alpes, Département de Pharmacochimie Moléculaire DPM UMR 5063, 38041, Grenoble, France; CNRS, DPM UMR 5063, 38041, Grenoble, France
| | - Benjamin Boucherle
- Univ. Grenoble Alpes, Département de Pharmacochimie Moléculaire DPM UMR 5063, 38041, Grenoble, France; CNRS, DPM UMR 5063, 38041, Grenoble, France
| | - Verónica Gómez-Pérez
- Instituto de Parasitología y Biomedicina 'López-Neyra', IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain
| | - Ahcène Boumendjel
- Univ. Grenoble Alpes, Département de Pharmacochimie Moléculaire DPM UMR 5063, 38041, Grenoble, France; CNRS, DPM UMR 5063, 38041, Grenoble, France
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina 'López-Neyra', IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain
| | - Marine Peuchmaur
- Univ. Grenoble Alpes, Département de Pharmacochimie Moléculaire DPM UMR 5063, 38041, Grenoble, France; CNRS, DPM UMR 5063, 38041, Grenoble, France.
| |
Collapse
|
20
|
Gómez Pérez V, García-Hernandez R, Corpas-López V, Tomás AM, Martín-Sanchez J, Castanys S, Gamarro F. Decreased antimony uptake and overexpression of genes of thiol metabolism are associated with drug resistance in a canine isolate of Leishmania infantum. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:133-9. [PMID: 27317865 PMCID: PMC4919363 DOI: 10.1016/j.ijpddr.2016.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/04/2016] [Indexed: 11/23/2022]
Abstract
Visceral leishmaniasis (VL) caused by the protozoan parasite Leishmania infantum, is one of the most important zoonotic diseases affecting dogs and humans in the Mediterranean area. The presence of infected dogs as the main reservoir host of L. infantum is regarded as the most significant risk for potential human infection. We have studied the susceptibility profile to antimony and other anti-leishmania drugs (amphotericin B, miltefosine, paromomycin) in Leishmania infantum isolates extracted from a dog before and after two therapeutic interventions with meglumine antimoniate (subcutaneous Glucantime®, 100 mg/kg/day for 28 days). After the therapeutic intervention, these parasites were significantly less susceptible to antimony than pretreatment isolate, presenting a resistance index of 6-fold to SbIII for promastigotes and >3-fold to SbIII and 3-fold to SbV for intracellular amastigotes. The susceptibility profile of this resistant L. infantum line is related to a decreased antimony uptake due to lower aquaglyceroporin-1 expression levels. Additionally, other mechanisms including an increase in thiols and overexpression of enzymes involved in thiol metabolism, such as ornithine decarboxylase, trypanothione reductase, mitochondrial tryparedoxin and mitochondrial tryparedoxin peroxidase, could contribute to the resistance as antimony detoxification mechanisms. A major contribution of this study in a canine L. infantum isolate is to find an antimony-resistant mechanism similar to that previously described in other human clinical isolates. Antimony resistance in a Leishmania infantum line from a dog is reported. Resistance due to decrease antimony uptake by lower aquaglyceroporin-1 expression. An increase in thiols metabolism contribute to antimony resistance.
Collapse
Affiliation(s)
- Verónica Gómez Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Raquel García-Hernandez
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | | | - Ana M Tomás
- IBMC - Institute for Molecular and Cell Biology, Porto, Portugal
| | | | - Santiago Castanys
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Granada, Spain.
| |
Collapse
|
21
|
In Vitro and In Vivo Activities of 2,3-Diarylsubstituted Quinoxaline Derivatives against Leishmania amazonensis. Antimicrob Agents Chemother 2016; 60:3433-44. [PMID: 27001812 DOI: 10.1128/aac.02582-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/15/2016] [Indexed: 11/20/2022] Open
Abstract
Leishmaniasis is endemic in 98 countries and territories worldwide. The therapies available for leishmaniasis have serious side effects, thus prompting the search for new therapies. The present study investigated the antileishmanial activities of 2,3-diarylsubstituted quinoxaline derivatives against Leishmania amazonensis The antiproliferative activities of 6,7-dichloro-2,3-diphenylquinoxaline (LSPN329) and 2,3-di-(4-methoxyphenyl)-quinoxaline (LSPN331) against promastigotes and intracellular amastigotes were assessed, and the cytotoxicities of LSPN329 and LSPN331 were determined. Morphological and ultrastructural alterations were examined by electron microscopy, and biochemical alterations, reflected by the mitochondrial membrane potential (ΔΨm), mitochondrial superoxide anion (O2·(-)) concentration, the intracellular ATP concentration, cell volume, the level of phosphatidylserine exposure on the cell membrane, cell membrane integrity, and lipid inclusions, were evaluated. In vivo antileishmanial activity was evaluated in a murine cutaneous leishmaniasis model. Compounds LSPN329 and LSPN331 showed significant selectivity for promastigotes and intracellular amastigotes and low cytotoxicity. In promastigotes, ultrastructural alterations were observed, including an increase in lipid inclusions, concentric membranes, and intense mitochondrial swelling, which were associated with hyperpolarization of ΔΨm, an increase in the O2·(-) concentration, decreased intracellular ATP levels, and a decrease in cell volume. Phosphatidylserine exposure and DNA fragmentation were not observed. The cellular membrane remained intact after treatment. Thus, the multifactorial response that was responsible for the cellular collapse of promastigotes was based on intense mitochondrial alterations. BALB/c mice treated with LSPN329 or LSPN331 showed a significant decrease in lesion thickness in the infected footpad. Therefore, the antileishmanial activity and mitochondrial mechanism of action of LSPN329 and LSPN331 and the decrease in lesion thickness in vivo brought about by LSPN329 and LSPN331 make them potential candidates for new drug development for the treatment of leishmaniasis.
Collapse
|
22
|
Sánchez-Fernández EM, Gómez-Pérez V, García-Hernández R, García Fernández JM, Plata GB, Padrón JM, Ortiz Mellet C, Castanys S, Gamarro F. Antileishmanial activity of sp2-iminosugar derivatives. RSC Adv 2015. [DOI: 10.1039/c5ra02627j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
sp2-iminosugar S-linked pseudoglycosides selectively inhibit growth of the intracellular form of Leishmania donovani.
Collapse
Affiliation(s)
| | - Verónica Gómez-Pérez
- Instituto de Parasitología y Biomedicina “López-Neyra”
- IPBLN-CSIC
- Parque Tecnológico de Ciencias de la Salud
- 18016-Granada
- Spain
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina “López-Neyra”
- IPBLN-CSIC
- Parque Tecnológico de Ciencias de la Salud
- 18016-Granada
- Spain
| | | | - Gabriela B. Plata
- BioLab
- Instituto Universitario de Bio-Orgánica “Antonio González”
- Centro de Investigaciones Biomédicas de Canarias
- Universidad de La Laguna
- La Laguna
| | - José M. Padrón
- BioLab
- Instituto Universitario de Bio-Orgánica “Antonio González”
- Centro de Investigaciones Biomédicas de Canarias
- Universidad de La Laguna
- La Laguna
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Spain
| | - Santiago Castanys
- Instituto de Parasitología y Biomedicina “López-Neyra”
- IPBLN-CSIC
- Parque Tecnológico de Ciencias de la Salud
- 18016-Granada
- Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina “López-Neyra”
- IPBLN-CSIC
- Parque Tecnológico de Ciencias de la Salud
- 18016-Granada
- Spain
| |
Collapse
|
23
|
Design, synthesis and anti-leishmanial activity of novel symmetrical bispyridinium cyclophanes. Eur J Med Chem 2015; 89:362-9. [DOI: 10.1016/j.ejmech.2014.10.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/12/2014] [Accepted: 10/12/2014] [Indexed: 11/16/2022]
|
24
|
Mechanisms of action of substituted β-amino alkanols on Leishmania donovani. Antimicrob Agents Chemother 2014; 59:1211-8. [PMID: 25487805 DOI: 10.1128/aac.04003-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmaniasis is the protozoan disease second in importance for human health, superseded only by malaria; however, the options for chemotherapeutic treatment are increasingly limited due to drug resistance and toxicity. Under this perspective, a quest for new chemical compounds is urgently needed. An N-substituted 2-aminoalkan-1-ol scaffold has been shown to be a versatile scaffold for antiparasitic activity. Knowledge about its mechanism of action is still rather limited. In this work, we endeavored to define the leishmanicidal profile of such β-amino alkanol derivatives using a set of 15 N-mono- and disubstituted surrogates, tested on Leishmania donovani promastigotes and intracellular amastigotes. The best compound (compound 5), 2-ethylaminododecan-1-ol, had a 50% effective concentration (EC50) of 0.3 μM and a selectivity index of 72 for infected THP-1 cells and was selected for further elucidation of its leishmanicidal mechanism. It induced fast depletion of intracellular ATP content in promastigotes in the absence of vital dye intracellular entry, ruling out plasma membrane permeabilization as its origin. Confocal and transmission electron microscopy analyses showed that compound 5 induced severe mitochondrial swelling and vesiculation. Polarographic analysis using an oxygen electrode demonstrated that complex II of the respiratory chain (succinate reductase) was strongly inhibited by compound 5, identifying this complex as one of the primary targets. Furthermore, for other β-amino alkanols whose structures differed subtly from that of compound 5, plasma membrane permeabilization or interference with membrane traffic was also observed. In all, N-substituted β-amino alkanols were shown as appealing leishmanicidal candidates deserving further exploration.
Collapse
|