1
|
Davati N, Ghorbani A. Comparison of the antibiotic resistance mechanisms in a gram-positive and a gram-negative bacterium by gene networks analysis. PLoS One 2024; 19:e0311434. [PMID: 39546505 PMCID: PMC11567557 DOI: 10.1371/journal.pone.0311434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/20/2024] [Indexed: 11/17/2024] Open
Abstract
Nowadays, the emergence of some microbial species resistant to antibiotics, both gram-positive and gram-negative bacteria, is due to changes in molecular activities, biological processes and their cellular structure in order to survive. The aim of the gene network analysis for the drug-resistant Enterococcus faecium as gram-positive and Salmonella Typhimurium as gram-negative bacteria was to gain insights into the important interactions between hub genes involved in key molecular pathways associated with cellular adaptations and the comparison of survival mechanisms of these two bacteria exposed to ciprofloxacin. To identify the gene clusters and hub genes, the gene networks in drug-resistant E. faecium and S. Typhimurium were analyzed using Cytoscape. Subsequently, the putative regulatory elements were found by examining the promoter regions of the hub genes and their gene ontology (GO) was determined. In addition, the interaction between milRNAs and up-regulated genes was predicted. RcsC and D920_01853 have been identified as the most important of the hub genes in S. Typhimurium and E. faecium, respectively. The enrichment analysis of hub genes revealed the importance of efflux pumps, and different enzymatic and binding activities in both bacteria. However, E. faecium specifically increases phospholipid biosynthesis and isopentenyl diphosphate biosynthesis, whereas S. Typhimurium focuses on phosphorelay signal transduction, transcriptional regulation, and protein autophosphorylation. The similarities in the GO findings of the promoters suggest common pathways for survival and basic physiological functions of both bacteria, including peptidoglycan production, glucose transport and cellular homeostasis. The genes with the most interactions with milRNAs include dpiB, rcsC and kdpD in S. Typhimurium and EFAU004_01228, EFAU004_02016 and EFAU004_00870 in E. faecium, respectively. The results showed that gram-positive and gram-negative bacteria have different mechanisms to survive under antibiotic stress. By deciphering their intricate adaptations, we can develop more effective therapeutic approaches and combat the challenges posed by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Nafiseh Davati
- Faculty of Food Industry, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
| | - Abozar Ghorbani
- Nuclear Science and Technology Research Institute (NSTRI), Nuclear Agriculture Research School, Karaj, Iran
| |
Collapse
|
2
|
Gorski DB, Vlainić J, Škrlec I, Novak S, Novosel Ž, Biloglav Z, Plečko V, Kosalec I. Virulence Factors and Susceptibility to Ciprofloxacin, Vancomycin, Triclosan, and Chlorhexidine among Enterococci from Clinical Specimens, Food, and Wastewater. Microorganisms 2024; 12:1808. [PMID: 39338482 PMCID: PMC11434535 DOI: 10.3390/microorganisms12091808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Enterococcus faecalis and E. faecium are opportunistic pathogens commonly found in the microbiota of humans and other animals as well as in the environment. This article presents the results of antimicrobial susceptibility testing using phenotypic methods (broth microdilution and standardized disk diffusion) on selected clinical, food, and wastewater isolates of E. faecalis and E. faecium. The isolates were divided into subgroups based on their sensitivity to the following antibiotics: vancomycin (VAN) and ciprofloxacin (CIP), and biocides triclosan (TCL) and chlorhexidine (CHX). The study also investigated in vitro virulence factors, including biofilm formation ability, cell surface hydrophobicity (CSH) and β-hemolysis, to explore aspects of pathogenesis. In our study, regardless of the isolation source, VAN-resistant (VAN-R) and CIP-resistant (CIP-R) E. faecalis and E. faecium were detected. The highest proportion of CIP-R strains was found among clinical isolates of E. faecalis and E. faecium, with clinical E. faecium also showing the highest proportion of VAN-R strains. But the highest proportion of VAN-R E. faecalis strains was found in wastewater samples. The highest TCL MIC90 values for E. faecalis were found in wastewater isolates, while for E. faecium, the highest TCL MIC90 values were observed in food isolates. The highest CHX MIC90 values for both E. faecalis and E. faecium were identified in clinical specimens. The results obtained for E. faecalis did not indicate differences in TCL MIC and CHX MIC values with respect to sensitivity to VAN and CIP. Higher CHX MIC50 and CHX MIC90 values were obtained for CIP-R and VAN-R E. faecium. Among the tested isolates, 97.75% of the E. faecalis isolates produced biofilm, while 72.22% of the E. faecium isolates did so as well. In biofilm-forming strength categories III and IV, statistically significantly higher proportions of CIP-susceptible (CIP-S) and VAN-susceptible (VAN-S) E. faecalis were determined. In category III, there is no statistically significant difference in E. faecium CIP sensitivity. In category IV, we had a significantly higher proportion of CIP-R strains. On the other hand, the association between the moderate or strong category of biofilm formation and E. faecium VAN susceptibility was not significant. E. faecalis isolated from wastewater had a CSH index (HI) ≥ 50%, categorizing them as "moderate", while all the other strains were categorized as "low" based on the CSH index. Among the E. faecalis isolates, cell surface hydrophobicity indices differed significantly across isolation sources. In contrast, E. faecium isolates showed similar hydrophobicity indices across isolation sources, with no significant difference found. Moreover, no correlation was found between the enterococcal cell surface hydrophobicity and biofilm formation in vitro. After anaerobic incubation, β-hemolytic activity was confirmed in 19.10% of the E. faecalis and 3.33% of the E. faecium strains.
Collapse
Affiliation(s)
- Diana Brlek Gorski
- Croatian Institute of Public Health, Rockefeller Str. 7, HR-10000 Zagreb, Croatia
| | - Josipa Vlainić
- Division of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia
| | - Silvia Novak
- Department for Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Željka Novosel
- Department for Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Zrinka Biloglav
- Department of Medical Statistics, Epidemiology and Medical Informatics, School of Public Health Andrija Štampar, HR-10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | | | - Ivan Kosalec
- Department for Microbiology, Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb, Croatia
| |
Collapse
|
3
|
Belay WY, Getachew M, Tegegne BA, Teffera ZH, Dagne A, Zeleke TK, Abebe RB, Gedif AA, Fenta A, Yirdaw G, Tilahun A, Aschale Y. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: a review. Front Pharmacol 2024; 15:1444781. [PMID: 39221153 PMCID: PMC11362070 DOI: 10.3389/fphar.2024.1444781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Antibacterial drug resistance poses a significant challenge to modern healthcare systems, threatening our ability to effectively treat bacterial infections. This review aims to provide a comprehensive overview of the types and mechanisms of antibacterial drug resistance. To achieve this aim, a thorough literature search was conducted to identify key studies and reviews on antibacterial resistance mechanisms, strategies and next-generation antimicrobials to contain antimicrobial resistance. In this review, types of resistance and major mechanisms of antibacterial resistance with examples including target site modifications, decreased influx, increased efflux pumps, and enzymatic inactivation of antibacterials has been discussed. Moreover, biofilm formation, and horizontal gene transfer methods has also been included. Furthermore, measures (interventions) taken to control antimicrobial resistance and next-generation antimicrobials have been discussed in detail. Overall, this review provides valuable insights into the diverse mechanisms employed by bacteria to resist the effects of antibacterial drugs, with the aim of informing future research and guiding antimicrobial stewardship efforts.
Collapse
Affiliation(s)
- Wubetu Yihunie Belay
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of clinical pharmacy, College of medicine and health sciences, University of Gondar, Gondar, Ethiopia
| | - Abebaw Abie Gedif
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Getasew Yirdaw
- Department of environmental health science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Tilahun
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
4
|
Mullally CA, Fahriani M, Mowlaboccus S, Coombs GW. Non- faecium non- faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. Clin Microbiol Rev 2024; 37:e0012123. [PMID: 38466110 PMCID: PMC11237509 DOI: 10.1128/cmr.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.
Collapse
Affiliation(s)
- Christopher A Mullally
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marhami Fahriani
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
5
|
Summer M, Ali S, Tahir HM, Abaidullah R, Fiaz U, Mumtaz S, Fiaz H, Hassan A, Mughal TA, Farooq MA. Mode of Action of Biogenic Silver, Zinc, Copper, Titanium and Cobalt Nanoparticles Against Antibiotics Resistant Pathogens. J Inorg Organomet Polym Mater 2024; 34:1417-1451. [DOI: 10.1007/s10904-023-02935-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 08/04/2024]
|
6
|
Bo L, Sun H, Li YD, Zhu J, Wurpel JND, Lin H, Chen ZS. Combating antimicrobial resistance: the silent war. Front Pharmacol 2024; 15:1347750. [PMID: 38420197 PMCID: PMC10899355 DOI: 10.3389/fphar.2024.1347750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Once hailed as miraculous solutions, antibiotics no longer hold that status. The excessive use of antibiotics across human healthcare, agriculture, and animal husbandry has given rise to a broad array of multidrug-resistant (MDR) pathogens, posing formidable treatment challenges. Antimicrobial resistance (AMR) has evolved into a pressing global health crisis, linked to elevated mortality rates in the modern medical era. Additionally, the absence of effective antibiotics introduces substantial risks to medical and surgical procedures. The dwindling interest of pharmaceutical industries in developing new antibiotics against MDR pathogens has aggravated the scarcity issue, resulting in an exceedingly limited pipeline of new antibiotics. Given these circumstances, the imperative to devise novel strategies to combat perilous MDR pathogens has become paramount. Contemporary research has unveiled several promising avenues for addressing this challenge. The article provides a comprehensive overview of these innovative therapeutic approaches, highlighting their mechanisms of action, benefits, and drawbacks.
Collapse
Affiliation(s)
- Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Haidong Sun
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Jonathan Zhu
- Carle Place Middle and High School, Carle Place, NY, United States
| | - John N. D. Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Hanli Lin
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
| |
Collapse
|
7
|
Rao Tatta E, Paul S, Kumavath R. Transcriptome Analysis revealed the Synergism of Novel Rhodethrin inhibition on Biofilm architecture, Antibiotic Resistance and Quorum sensing inEnterococcus faecalis. Gene 2023; 871:147436. [PMID: 37075926 DOI: 10.1016/j.gene.2023.147436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Enterococcus sp. emerged as an opportunistic nosocomial pathogen with the highest antibiotic resistance and mortality rate. Biofilm is problematic primarily since it is regulated by the global bacterial cell to cell communication mediated by the quorum sensing system. sing system. Thus, potential natural antagonists in a novel drug formulation against biofilm-forming Enterococcus faecalis is critical. We used RNA-Seq to evaluate the effects of the novel molecule rhodethrin with chloramphenicol induced on Enterococcus faecalis and DEGs were identified. In transcriptome sequence analysis, a total of 448 with control Vs rhodethrin, 1591 were in control Vs chloramphenicol, 379 genes were DEGs from control Vs synergies, in rhodethrin with chloramphenicol, 379 genes were differentially expressed, whereas 264 genes were significantly downregulated, indicating that 69.69% ofE. faecaliswas altered. The transcriptional sequence data further expression analysis qRT-PCR, and the results shed that the expression profiles of five significant biofilm formation responsible genes such as, Ace, AtpB, lepA, bopD, and typA, 3 genes involved in quorum sensing are sylA, fsrC and camE, and 4 genes involved in resistance were among including liaX, typA, EfrA, and lepA, were significantly suppressed expressions of the biofilm, quorum sensing, and resistance that are supported by transcriptome analysis.
Collapse
Affiliation(s)
- Eswar Rao Tatta
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO), Kasaragod, Kerala 671320, India
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, the University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO), Kasaragod, Kerala 671320, India; Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
8
|
Liang H, Zhang J, Hu J, Li X, Li B. Fluoroquinolone Residues in the Environment Rapidly Induce Heritable Fluoroquinolone Resistance in Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4784-4795. [PMID: 36917150 DOI: 10.1021/acs.est.2c04999] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Extensive antibiotic use increases the environmental presence of their residues and may accelerate the development of antibiotic resistance, although this remains poorly understood at environmentally relevant concentrations. Herein, susceptible Escherichia coli K12 was continuously exposed to five antibiotics at such concentrations for 100 days. The de novo-evolved mutants rapidly obtained fluoroquinolone resistance within 10 days, as indicated by the 4- and 16-fold augmentation of minimum inhibitory concentrations against enrofloxacin and ciprofloxacin, respectively. Moreover, the mutants maintained heritable fluoroquinolone resistance after the withdrawal of antibiotics for 30 days. Genomic analysis identified Asp87Gly or Ser83Leu substitutions in the gyrA gene in the mutants. Transcriptomics data showed that the transcriptional response of the mutants to fluoroquinolones was primarily involved in biofilm formation, cellular motility, porin, oxidative stress defense, and energy metabolism. Homologous recombination and molecular docking revealed that mutations of gyrA primarily mainly conferred fluoroquinolone resistance, while mutations at different positions of gyrA likely endowed different fluoroquinolone resistance levels. Collectively, this study revealed that environmentally relevant concentrations of antibiotics could rapidly induce heritable antibiotic resistance; therefore, the discharge of antibiotics into the environment should be rigorously controlled to prevent the development of antibiotic resistance.
Collapse
Affiliation(s)
- Hebin Liang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiayu Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiahui Hu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
9
|
Aloke C, Achilonu I. Coping with the ESKAPE pathogens: Evolving strategies, challenges and future prospects. Microb Pathog 2023; 175:105963. [PMID: 36584930 DOI: 10.1016/j.micpath.2022.105963] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Globally, the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are the major cause of nosocomial infections. These pathogens are multidrug resistant, and their negative impacts have brought serious health challenges and economic burden on many countries worldwide. Thus, this narrative review exploits different emerging alternative therapeutic strategies including combination antibiotics, antimicrobial peptides ((AMPs), bacteriophage and photodynamic therapies used in the treatment of the ESKAPE pathogens, their merits, limitations, and future prospects. Our findings indicate that ESKAPE pathogens exhibit resistance to drug using different mechanisms including drug inactivation by irreversible enzyme cleavage, drug-binding site alteration, diminution in permeability of drug or drug efflux increment to reduce accumulation of drug as well as biofilms production. However, the scientific community has shown significant interest in using these novel strategies with numerous benefits although they have some limitations including but not limited to instability and toxicity of the therapeutic agents, or the host developing immune response against the therapeutic agents. Thus, comprehension of resistance mechanisms of these pathogens is necessary to further develop or modify these approaches in order to overcome these health challenges including the barriers of bacterial resistance.
Collapse
Affiliation(s)
- Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa; Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Nigeria.
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| |
Collapse
|
10
|
Ramamurthy T, Ghosh A, Chowdhury G, Mukhopadhyay AK, Dutta S, Miyoshi SI. Deciphering the genetic network and programmed regulation of antimicrobial resistance in bacterial pathogens. Front Cell Infect Microbiol 2022; 12:952491. [PMID: 36506027 PMCID: PMC9727169 DOI: 10.3389/fcimb.2022.952491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance (AMR) in bacteria is an important global health problem affecting humans, animals, and the environment. AMR is considered as one of the major components in the "global one health". Misuse/overuse of antibiotics in any one of the segments can impact the integrity of the others. In the presence of antibiotic selective pressure, bacteria tend to develop several defense mechanisms, which include structural changes of the bacterial outer membrane, enzymatic processes, gene upregulation, mutations, adaptive resistance, and biofilm formation. Several components of mobile genetic elements (MGEs) play an important role in the dissemination of AMR. Each one of these components has a specific function that lasts long, irrespective of any antibiotic pressure. Integrative and conjugative elements (ICEs), insertion sequence elements (ISs), and transposons carry the antimicrobial resistance genes (ARGs) on different genetic backbones. Successful transfer of ARGs depends on the class of plasmids, regulons, ISs proximity, and type of recombination systems. Additionally, phage-bacterial networks play a major role in the transmission of ARGs, especially in bacteria from the environment and foods of animal origin. Several other functional attributes of bacteria also get successfully modified to acquire ARGs. These include efflux pumps, toxin-antitoxin systems, regulatory small RNAs, guanosine pentaphosphate signaling, quorum sensing, two-component system, and clustered regularly interspaced short palindromic repeats (CRISPR) systems. The metabolic and virulence state of bacteria is also associated with a range of genetic and phenotypic resistance mechanisms. In spite of the availability of a considerable information on AMR, the network associations between selection pressures and several of the components mentioned above are poorly understood. Understanding how a pathogen resists and regulates the ARGs in response to antimicrobials can help in controlling the development of resistance. Here, we provide an overview of the importance of genetic network and regulation of AMR in bacterial pathogens.
Collapse
Affiliation(s)
- Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India,*Correspondence: Thandavarayan Ramamurthy,
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-inchi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR- National Institute of Cholera and Enteric Diseases, Kolkata, India,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
11
|
Zhang Q, Demeestere K, De Schamphelaere KAC. A Bioavailability Model to Predict the Impact of pH and Dissolved Organic Carbon on Ciprofloxacin Ecotoxicity to the Cyanobacterium Microcystis aeruginosa. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2835-2847. [PMID: 35920341 DOI: 10.1002/etc.5454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 05/27/2023]
Abstract
Ciprofloxacin (CIP) is a pseudopersistent antibiotic detected in freshwater worldwide. As an ionizable chemical, its fate in freshwater is influenced by water chemistry factors such as pH, hardness, and dissolved organic carbon (DOC) content. We investigated the effect of pH, DOC, and Ca2+ levels on the toxicity of CIP to Microcystis aeruginosa and developed a bioavailability model on the basis of these experimental results. We found that the zwitterion (CIP+/- ) is the most bioavailable species of CIP to M. aeruginosa, whereas DOC is the most dominant factor reducing CIP toxicity, possibly via binding of both CIP+/- and CIP+ to DOC. pH likely also regulates CIP-DOC binding indirectly through its influence on CIP speciation. In addition, higher tolerance to CIP by M. aeruginosa was observed at pH < 7.2, but the underlying mechanism is yet unclear. Calcium was identified as an insignificant factor in CIP bioavailability. When parameterized with the data obtained from toxicity experiments, our bioavailability model is able to provide accurate predictions of CIP toxicity because the observed and predicted total median effective concentrations deviated by <28% from each other. Our model predicts that changes in pH and DOC conditions can affect CIP toxicity by up to 10-fold, suggesting that CIP in many natural environments is likely less toxic than in standard laboratory toxicity experiments. Environ Toxicol Chem 2022;41:2835-2847. © 2022 SETAC.
Collapse
Affiliation(s)
- Qiyun Zhang
- Department of Animal Science and Aquatic Ecology, GhEnToxLab, Ghent University, Ghent, Belgium
| | - Kristof Demeestere
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Research Group EnVOC, Ghent University, Ghent, Belgium
| | | |
Collapse
|
12
|
The Resistome of ESKAPEE Pathogens in Untreated and Treated Wastewater: A Polish Case Study. Biomolecules 2022; 12:biom12081160. [PMID: 36009054 PMCID: PMC9405806 DOI: 10.3390/biom12081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to quantify ESKAPEE bacteria, genes encoding resistance to antibiotics targeting this group of pathogens, as well as integrase genes in municipal wastewater and river water. Environmental DNA was extracted from the collected samples and used in deep sequencing with the Illumina TruSeq kit. The abundance of bacterial genera and species belonging to the ESKAPEE group, 400 ARGs associated with this microbial group, and three classes of integrase genes were determined. A taxonomic analysis revealed that Acinetobacter was the dominant bacterial genus, whereas Acinetobacter baumannii and Escherichia coli were the dominant bacterial species. The analyzed samples were characterized by the highest concentrations of the following ARGs: blaGES, blaOXA-58, blaTEM, qnrB, and qnrS. Acinetobacter baumannii, E. coli, and genes encoding resistance to β-lactams (blaVEB-1, blaIMP-1, blaGES, blaOXA-58, blaCTX-M, and blaTEM) and fluoroquinolones (qnrS) were detected in samples of river water collected downstream from the wastewater discharge point. The correlation analysis revealed a strong relationship between A. baumannii (bacterial species regarded as an emerging human pathogen) and genes encoding resistance to all tested groups of antimicrobials. The transmission of the studied bacteria (in particular A. baumannii) and ARGs to the aquatic environment poses a public health risk.
Collapse
|
13
|
Freitas AR, Tedim AP, Duarte B, Elghaieb H, Abbassi MS, Hassen A, Read A, Alves V, Novais C, Peixe L. Linezolid-resistant (Tn6246::fexB-poxtA) Enterococcus faecium strains colonizing humans and bovines on different continents: similarity without epidemiological link. J Antimicrob Chemother 2021; 75:2416-2423. [PMID: 32607549 DOI: 10.1093/jac/dkaa227] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/09/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES poxtA is the most recently described gene conferring acquired resistance to linezolid, a relevant antibiotic for treating enterococcal infections. We retrospectively screened for poxtA in diverse enterococci and aimed to characterize its genetic/genomic contexts. METHODS poxtA was screened by PCR in 812 enterococci from 458 samples (hospitals/healthy humans/wastewater/animals/retail food) obtained in Portugal/Angola/Tunisia (1996-2019). Antimicrobial susceptibility testing was performed for 13 antibiotics (EUCAST/CLSI). poxtA stability (∼500 generations), transfer (filter mating), clonality (SmaI-PFGE) and location (S1-PFGE/hybridization) were tested. WGS (Illumina-HiSeq) was performed for clonal representatives. RESULTS poxtA was detected in Enterococcus faecium from six samples (1.3%): a healthy human (rectal swab) in Porto, Portugal (ST32/2001); four farm cows (milk) in Mateur, Tunisia (ST1058/2015); and a hospitalized patient (faeces) in Matosinhos, Portugal (ST1058/2015). All expressed resistance to linezolid (MIC = 8 mg/L), chloramphenicol, tetracycline and erythromycin, with variable resistance to ciprofloxacin and streptomycin. ST1058-poxtA-carrying isolates from Tunisia and Portugal differed by two SNPs and had similar plasmid content. poxtA, located in an IS1216-flanked Tn6246-like element, co-hybridized with fexB on one or more plasmids per isolate (one to three plasmids of 30-100 kb), was stable after several generations and transferred only from ST1058. ST1058 strains carried resistance/virulence genes (Efmqnr/acm) possibly induced under selective quinolone treatment. CONCLUSIONS poxtA has been circulating in Portugal since at least 2001, corresponding to the oldest description worldwide to date. We also extend the reservoir of poxtA to bovines. The similar linezolid-resistant poxtA-carrying strains colonizing humans and livestock on different continents, and without a noticeable relationship, suggests a recent transmission event or convergent evolution of E. faecium populations in different hosts and geographic regions.
Collapse
Affiliation(s)
- Ana R Freitas
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana P Tedim
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Grupo de Investigación Biomédica en Sepsis - BioSepsis, Hospital Universitario Rio Hortega/Instituto de Investigación Biomédica de Salamanca (IBSAL), Valladolid/Salamanca, Spain
| | - Bárbara Duarte
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Unidade de Análises Clínicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Houyem Elghaieb
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis, Tunisia
| | - Mohamed S Abbassi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis, Tunisia
| | - Abdennaceur Hassen
- Laboratoire de Traitement des Eaux Usées, Centre des Recherches et des Technologies des Eaux (CERTE), Technopole Borj Cédria, Soliman, Tunisia
| | - Antónia Read
- Serviço de Patologia Clínica-Microbiologia, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Valquíria Alves
- Serviço de Patologia Clínica-Microbiologia, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Pietsch M, Pfeifer Y, Fuchs S, Werner G. Genome-Based Analyses of Fitness Effects and Compensatory Changes Associated with Acquisition of bla
CMY-, bla
CTX-M-, and bla
OXA-48/VIM-1-Containing Plasmids in Escherichia coli. Antibiotics (Basel) 2021; 10:antibiotics10010090. [PMID: 33477799 PMCID: PMC7832316 DOI: 10.3390/antibiotics10010090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
(1) Background: Resistance plasmids are under selective conditions beneficial for the bacterial host, but in the absence of selective pressure, this carriage may cause fitness costs. Compensation of this fitness burden is important to obtain competitive ability under antibiotic-free conditions. In this study, we investigated fitness effects after a conjugative transfer of plasmids containing various beta-lactamase genes transferred into Escherichia coli. (2) Methods: Fourteen beta-lactamase-encoding plasmids were transferred from clinical donor strains to E. coli J53. Growth rates were compared for all transconjugants and the recipient. Selected transconjugants were challenged in long-term growth experiments. Growth rates were assessed at different time points during growth for 500 generations. Whole-genome sequencing (WGS) of initial and evolved transconjugants was determined. Results: Most plasmid acquisitions resulted in growth differences, ranging from -4.5% to 7.2%. Transfer of a single bla
CMY-16-carrying plasmid resulted in a growth burden and a growth benefit in independent mating. Long-term growth led to a compensation of fitness burdens and benefits. Analyzing WGS revealed genomic changes caused by Single Nucleotide Polymorphisms (SNPs) and insertion sequences over time. Conclusions: Fitness effects associated with plasmid acquisitions were variable. Potential compensatory mutations identified in transconjugants' genomes after 500 generations give interesting insights into aspects of plasmid-host adaptations.
Collapse
Affiliation(s)
- Michael Pietsch
- Robert Koch Institute, Department Infectious Diseases, Division Nosocomial Pathogens and Antimicrobial Resistances, Wernigerode Branch, 38855 Wernigerode, Germany; (M.P.); (Y.P.)
| | - Yvonne Pfeifer
- Robert Koch Institute, Department Infectious Diseases, Division Nosocomial Pathogens and Antimicrobial Resistances, Wernigerode Branch, 38855 Wernigerode, Germany; (M.P.); (Y.P.)
| | - Stephan Fuchs
- Robert Koch Institute, Department Methodology and Research Infrastructure, Division Bioinformatics, 13353 Berlin, Germany;
| | - Guido Werner
- Robert Koch Institute, Department Infectious Diseases, Division Nosocomial Pathogens and Antimicrobial Resistances, Wernigerode Branch, 38855 Wernigerode, Germany; (M.P.); (Y.P.)
- Correspondence: ; Tel.: +49-30-18754-4210
| |
Collapse
|
15
|
Rhodes G, Chuang YH, Hammerschmidt R, Zhang W, Boyd SA, Li H. Uptake of cephalexin by lettuce, celery, and radish from water. CHEMOSPHERE 2021; 263:127916. [PMID: 33297013 DOI: 10.1016/j.chemosphere.2020.127916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 06/12/2023]
Abstract
The introduction of pharmaceuticals into agricultural lands from the application of biosolids and animal manure, and irrigation with treated wastewater has led to concern for animal and human health after the ingestion of pharmaceutical-tainted agricultural products. In this study, the uptake and accumulation of cephalexin, a commonly prescribed antibiotic, was compared in three common vegetables (lettuce, celery, and radish) grown in nutrient solution for 144 h. During the uptake experiments, cephalexin concentration in the nutrient solution decreased in the order of radish > celery > lettuce, while the accumulation of cephalexin in vegetable roots followed the rank of lettuce > celery > radish. The accumulation of cephalexin was below the limit of detection in radish roots. No accumulation of cephalexin was observed in the shoots of all three vegetables. The behaviors of cephalexin in vivo were further elucidated using in vitro measurements of cephalexin sorption by vegetable roots and transformation in plant enzyme extracts. The affinity of cephalexin to lettuce > celery > radish roots, and the respective sorption coefficients of 687, 303, and 161 mL g-1, coupled to the transformation of cephalexin in root enzyme extracts with estimated reaction rate constants of 0.020, 0.027 and 0.024 hr-1 for lettuce, celery and radish, could help elucidate the accumulation observed in the in vivo experiments. Overall, sorption by plant roots (affinity) and reaction with plant enzymes could collectively influence the uptake and accumulation of cephalexin in vegetables.
Collapse
Affiliation(s)
- Geoff Rhodes
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ya-Hui Chuang
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | - Raymond Hammerschmidt
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA; Environmental Science and Policy Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Stephen A Boyd
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
16
|
Transcriptome changes and polymyxin resistance of acid-adapted Escherichia coli O157:H7 ATCC 43889. Gut Pathog 2020; 12:52. [PMID: 33292490 PMCID: PMC7709258 DOI: 10.1186/s13099-020-00390-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/18/2020] [Indexed: 12/25/2022] Open
Abstract
Background Acid treatment is commonly used for controlling or killing pathogenic microorganisms on medical devices and environments; however, inadequate acid treatment may cause acid tolerance response (ATR) and offer cross-protection against environmental stresses, including antimicrobials. This study aimed to characterise an Escherichia coli strain that can survive in the acidic gastrointestinal environment. Results We developed an acid-tolerant E. coli O157:H7 ATCC 43889 (ATCC 43889) strain that can survive at pH 2.75 via cell adaptation in low pH conditions. We also performed RNA sequencing and qRT-PCR to compare differentially expressed transcripts between acid-adapted and non-adapted cells. Genes related to stress resistance, including kdpA and bshA were upregulated in the acid-adapted ATCC 43889 strain. Furthermore, the polymyxin resistance gene arnA was upregulated in the acid-adapted cells, and resistance against polymyxin B and colistin (polymyxin E) was observed. As polymyxins are important antibiotics, effective against multidrug-resistant gram-negative bacterial infections, the emergence of polymyxin resistance in acid-adapted E. coli is a serious public health concern. Conclusion The transcriptomic and phenotypic changes analysed in this study during the adaptation of E. coli to acid environments can provide useful information for developing intervention technologies and mitigating the risk associated with the emergence and spread of antimicrobial resistance.
Collapse
|
17
|
Michaux C, Hansen EE, Jenniches L, Gerovac M, Barquist L, Vogel J. Single-Nucleotide RNA Maps for the Two Major Nosocomial Pathogens Enterococcus faecalis and Enterococcus faecium. Front Cell Infect Microbiol 2020; 10:600325. [PMID: 33324581 PMCID: PMC7724050 DOI: 10.3389/fcimb.2020.600325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Enterococcus faecalis and faecium are two major representative clinical strains of the Enterococcus genus and are sadly notorious to be part of the top agents responsible for nosocomial infections. Despite their critical implication in worldwide public healthcare, essential and available resources such as deep transcriptome annotations remain poor, which also limits our understanding of post-transcriptional control small regulatory RNA (sRNA) functions in these bacteria. Here, using the dRNA-seq technique in combination with ANNOgesic analysis, we successfully mapped and annotated transcription start sites (TSS) of both E. faecalis V583 and E. faecium AUS0004 at single nucleotide resolution. Analyzing bacteria in late exponential phase, we capture ~40% (E. faecalis) and 43% (E. faecium) of the annotated protein-coding genes, determine 5′ and 3′ UTR (untranslated region) length, and detect instances of leaderless mRNAs. The transcriptome maps revealed sRNA candidates in both bacteria, some found in previous studies and new ones. Expression of candidate sRNAs is being confirmed under biologically relevant environmental conditions. This comprehensive global TSS mapping atlas provides a valuable resource for RNA biology and gene expression analysis in the Enterococci. It can be accessed online at www.helmholtz-hiri.de/en/datasets/enterococcus through an instance of the genomic viewer JBrowse.
Collapse
Affiliation(s)
- Charlotte Michaux
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Elisabeth E Hansen
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Laura Jenniches
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Milan Gerovac
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany.,Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| |
Collapse
|
18
|
Unexpected Cell Wall Alteration-Mediated Bactericidal Activity of the Antifungal Caspofungin against Vancomycin-Resistant Enterococcus faecium. Antimicrob Agents Chemother 2020; 64:AAC.01261-20. [PMID: 32778553 DOI: 10.1128/aac.01261-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Enterococcus faecium has become a major opportunistic pathogen with the emergence of vancomycin-resistant enterococci (VRE). As part of the gut microbiota, they have to cope with numerous stresses, including effects of antibiotics and other xenobiotics, especially in patients hospitalized in intensive care units (ICUs) who receive many medications. The aim of this study was to investigate the impact of the most frequently prescribed xenobiotics for ICU patients on fitness, pathogenicity, and antimicrobial resistance of the vanB-positive E. faecium Aus0004 reference strain. Several phenotypic analyses were carried out, and we observed that caspofungin, an antifungal agent belonging to the family of echinocandins, had an important effect on E. faecium growth in vitro We confirmed this effect by electron microscopy and peptidoglycan analysis and showed that, even at a subinhibitory concentration (1/4× MIC, 8 mg/liter), caspofungin had an impact on cell wall organization, especially with respect to the abundance of some muropeptide precursors. By transcriptome sequencing (RNA-seq), it was also shown that around 20% of the transcriptome was altered in the presence of caspofungin, with 321 and 259 significantly upregulated and downregulated genes, respectively. Since the fungal target of caspofungin (i.e., β-1,3-glucan synthase) was absent in bacteria, the mechanistic pathway of caspofungin activity was investigated. The repression of genes involved in the metabolism of pyruvate seemed to have a drastic impact on bacterial cell viability, while a decrease of glycerol metabolism could explain the conformational modifications of peptidoglycan. This is the first report of caspofungin antibacterial activity against E. faecium, highlighting the potential impact of nonantibiotic xenobiotics against bacterial pathogens.
Collapse
|
19
|
Valat C, Hirchaud E, Drapeau A, Touzain F, de Boisseson C, Haenni M, Blanchard Y, Madec JY. Overall changes in the transcriptome of Escherichia coli O26:H11 induced by a subinhibitory concentration of ciprofloxacin. J Appl Microbiol 2020; 129:1577-1588. [PMID: 32506645 DOI: 10.1111/jam.14741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/27/2020] [Accepted: 06/02/2020] [Indexed: 11/29/2022]
Abstract
AIMS The goal was to explore the effects of subinhibitory concentration (SIC) (0·5 MIC = 20 µg l-1 ) of ciprofloxacin on the transcriptome of enterohaemorrhagic Escherichia coli O26:H11 isolate by 60 minutes of exposure. MATERIALS AND RESULTS We used a combination of comparative genomic and transcriptomic (RNAseq) analyses. The whole genome of the E. coli O26:H11 #30934 strain of bovine origin was sequenced and assembled. This genome was next used as reference for the differential gene expression analysis. A whole-genome-based analysis of 36 publicly available E. coli O26:H11 genomes was performed to define the core and the accessory transcriptome of E. coli O26:H11. Using RNAseq and RT-qPCR analysis we observed overexpression of the SOS response and of T3SS effectors, together with the inhibition of specific motility-associated genes. Among the large set of transposases present, only three were activated, suggesting moderate transposition of genes with low doses of ciprofloxacin. Our results illustrated that transcriptional repressors, such as the CopG family protein, belonging to the core genome of E. coli O26:H11, are altered in response to fluoroquinolone exposure. The gene ontology enrichment analysis showed SIC of ciprofloxacin induced binding functions and catalytic activities, including mostly transferase and hydrolase proteins. The amino acid pathways involved in metabolic processes were significantly enhanced after the treatment. CONCLUSIONS Although the core genome of E. coli O26:H11 constituted only 54·5% of the whole genome, we demonstrated that most differentially expressed genes were associated with the core genome of E. coli O26:H11, and that effects on the mobile genetic element, phage, and plasmid-related genes were rare. SIGNIFICANCE AND IMPACT OF THE STUDY For the first time the effect of low dose of ciprofloxacin on the core transcriptome of E. coli O26:H11 was described. The effects on the main biological functions and protein classes including transcriptional regulators were illustrated.
Collapse
Affiliation(s)
- C Valat
- Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon, Lyon, France
| | - E Hirchaud
- Anses, Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale et Biosécurité, Ploufrangan, France
| | - A Drapeau
- Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon, Lyon, France
| | - F Touzain
- Anses, Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale et Biosécurité, Ploufrangan, France
| | - C de Boisseson
- Anses, Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale et Biosécurité, Ploufrangan, France
| | - M Haenni
- Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon, Lyon, France
| | - Y Blanchard
- Anses, Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale et Biosécurité, Ploufrangan, France
| | - J-Y Madec
- Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon, Lyon, France
| |
Collapse
|
20
|
Gross-Amat O, Guillen M, Gimeno JP, Salzet M, Lebonvallet N, Misery L, Auxenfans C, Nataf S. Molecular Mapping of Hydrogen Sulfide Targets in Normal Human Keratinocytes. Int J Mol Sci 2020; 21:E4648. [PMID: 32629886 PMCID: PMC7369889 DOI: 10.3390/ijms21134648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Although sulfur-rich thermal waters have ancestrally been used in the context of dermatological conditions, a global mapping of the molecular effects exerted by H2S on human keratinocytes is still lacking. To fill this knowledge gap, we subjected cultured human keratinocytes to distinct amounts of the non-gaseous hydrogen sulfur donor NaHS. We first checked that H2S accumulated in the cytoplasm of keratinocytes under our experimental conditions andused a combination of proteomics, genomics and biochemical approaches to unravel functionally relevant H2S targets in human keratinocytes. We found that the identified targets fall into two main categories: (i) the oxidative stress response molecules superoxide dismutase 2 (SOD2), NAD(P)H quinone dehydrogenase 1 (NQO1) and culin 3 (CUL3) and (ii) the chemokines interleukin-8 (IL-8) and CXCL2. Interestingly, NaHS also stimulated the caspase-1 inflammasome pathway, leading to increased secretion of the pro-inflammatory molecule interleukin-18 (IL-18). Interestingly, the secretion of interleukin-1 beta (IL-1β) was only modestly impacted by NaHS exposure despite a significant accumulation of IL-1β pro-form. Finally, we observed that NaHS significantly hampered the growth of human keratinocyte progenitors and stem cells cultured under clonogenic conditions or as epidermal cell sheets. We conclude that H2S exerts specific molecular effects on normal human keratinocytes.
Collapse
Affiliation(s)
- Olivia Gross-Amat
- Lyon-Est School of Medicine, University Claude Bernard Lyon-1, 69100 Villeurbanne, France; (M.G.); (S.N.)
- Bank of Tissues and Cells, Lyon University Hospital (Hospices Civils de Lyon), 69003 Lyon, France;
- CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, 69600 Oullins, France
| | - Marine Guillen
- Lyon-Est School of Medicine, University Claude Bernard Lyon-1, 69100 Villeurbanne, France; (M.G.); (S.N.)
| | - Jean-Pascal Gimeno
- Inserm, CHRU Lille, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, F-59000 Lille, France; (J.-P.G.); (M.S.)
| | - Michel Salzet
- Inserm, CHRU Lille, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, F-59000 Lille, France; (J.-P.G.); (M.S.)
| | - Nicolas Lebonvallet
- Laboratory of Epithelial-Neural Interactions, University of Brest, LIEN, 29200 Brest, France; (N.L.); (L.M.)
| | - Laurent Misery
- Laboratory of Epithelial-Neural Interactions, University of Brest, LIEN, 29200 Brest, France; (N.L.); (L.M.)
- Department of dermatology, Brest University Hospital (CHU de Brest), 29200 Brest, France
| | - Céline Auxenfans
- Bank of Tissues and Cells, Lyon University Hospital (Hospices Civils de Lyon), 69003 Lyon, France;
- Tissue Biology and Therapeutic Engineering Laboratory, UMR 5305, 69007 Lyon, France
| | - Serge Nataf
- Lyon-Est School of Medicine, University Claude Bernard Lyon-1, 69100 Villeurbanne, France; (M.G.); (S.N.)
- Bank of Tissues and Cells, Lyon University Hospital (Hospices Civils de Lyon), 69003 Lyon, France;
- CarMeN Laboratory, INSERM U1060, INRA U1397, INSA de Lyon, 69600 Oullins, France
| |
Collapse
|
21
|
Coates ARM, Hu Y, Holt J, Yeh P. Antibiotic combination therapy against resistant bacterial infections: synergy, rejuvenation and resistance reduction. Expert Rev Anti Infect Ther 2020; 18:5-15. [DOI: 10.1080/14787210.2020.1705155] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Anthony R. M. Coates
- Institute of Infection and Immunity, St George’s, University of London, London, UK
| | - Yanmin Hu
- Institute of Infection and Immunity, St George’s, University of London, London, UK
| | - James Holt
- Division of Infection and Immunity, University College London, London, UK
| | - Pamela Yeh
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
22
|
Kim MH, Kim SY, Son JH, Kim SI, Lee H, Kim S, Shin M, Lee JC. Production of Membrane Vesicles by Enterococcus faecium Cultured With or Without Subinhibitory Concentrations of Antibiotics and Their Pathological Effects on Epithelial Cells. Front Cell Infect Microbiol 2019; 9:295. [PMID: 31475120 PMCID: PMC6702262 DOI: 10.3389/fcimb.2019.00295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/30/2019] [Indexed: 12/25/2022] Open
Abstract
Enterococcus faecium is a clinically important pathogen associated with opportunistic infection and multi-drug resistance. E. faecium has been shown to produce membrane vesicles (MVs), but MV production by E. faecium under antibiotic stress conditions and the pathogenic traits thereof have yet to be determined. This study investigated the production of MVs in E. faecium ATCC 700221 cultured with sub-minimum inhibitory concentrations (MICs) of vancomycin or linezolid and determined their pathologic effects on colon epithelial Caco-2 cells. E. faecium ATCC 700221 cultured with 1/2 MIC of vancomycin or linezolid produced 3.0 and 1.5 times more MV proteins than bacteria cultured without antibiotics, respectively. Totals of 438, 461, and 513 proteins were identified in MVs from E. faecium cultured in brain heart infusion broth (MVs/BHI), BHI broth with 1/2 MIC of vancomycin (MVs/VAN), or BHI broth with 1/2 MIC of linezolid (MVs/LIN), respectively. Intact MVs/BHI induced cytotoxicity and the expression of pro-inflammatory cytokine and chemokine genes in Caco-2 cells in a dose-dependent manner, but proteinase K-treated MVs significantly suppressed these pro-inflammatory responses. MVs/LIN were more cytotoxic toward Caco-2 cells than MVs/BHI and MVs/VAN, whereas MVs/VAN stimulated more pro-inflammatory cytokine gene expression in Caco-2 cells than MVs/BHI and MVs/LIN. Overall results indicated that antibiotics modulate the biogenesis and proteomes of MVs in E. faecium at subinhibitory concentrations. MVs produced by E. faecium cultured under antibiotic stress conditions induce strong host cell responses that may contribute to the pathogenesis E. faecium.
Collapse
Affiliation(s)
- Mi Hyun Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Se Yeon Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Joo Hee Son
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Seung Il Kim
- Drug and Disease Target Team, Korea Basic Science Institute, Ochang, South Korea.,Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, South Korea
| | - Hayoung Lee
- Drug and Disease Target Team, Korea Basic Science Institute, Ochang, South Korea.,Department of Bio-Analytical Science, University of Science and Technology (UST), Daejeon, South Korea
| | - Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Je Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
23
|
Sassi M, Guérin F, Lesec L, Isnard C, Fines-Guyon M, Cattoir V, Giard JC. Genetic characterization of a VanG-type vancomycin-resistant Enterococcus faecium clinical isolate. J Antimicrob Chemother 2019; 73:852-855. [PMID: 29346643 DOI: 10.1093/jac/dkx510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023] Open
Abstract
Objectives To characterize, phenotypically and genotypically, the first Enterococcus faecium clinical isolate harbouring a vanG operon. Methods The antibiotic resistance profile of E. faecium 16-346 was determined and its whole genome sequenced using PacBio technology. Attempts to transfer vancomycin resistance by filter mating were performed and the inducibility of expression of the vanG operon was studied by reverse-transcription quantitative PCR (RT-qPCR) in the presence or absence of subinhibitory concentrations of vancomycin. Results E. faecium 16-346 was resistant to rifampicin (MIC >4 mg/L), erythromycin (MIC >4 mg/L), tetracycline (MIC >16 mg/L) and vancomycin (MIC 8 mg/L), but susceptible to teicoplanin (MIC 0.5 mg/L). The strain harboured the vanG operon in its chromosome, integrated in a 45.5 kb putative mobile genetic element, similar to that of Enterococcus faecalis BM4518. We were unable to transfer vancomycin resistance from E. faecium 16-346 to E. faecium BM4107 and E. faecalis JH2-2. Lastly, transcription of the vanG gene was inducible by vancomycin. Conclusions This is, to the best of our knowledge, the first report of a VanG-type vancomycin-resistant strain of E. faecium. Despite the alarm pulled because of the therapeutic problems caused by VRE, our work shows that new resistant loci can still be found in E. faecium.
Collapse
Affiliation(s)
- Mohamed Sassi
- Université Rennes 1, Laboratoire de Biochimie Pharmaceutique, Inserm U1230 - UPRES EA 2311, Rennes, France
| | - François Guérin
- Université de Caen Normandie, EA4655 U2RM (équipe 'Antibio-résistance'), Caen, France.,CHU de Caen, Service de Microbiologie, Caen, France
| | - Léonie Lesec
- Université de Caen Normandie, EA4655 U2RM (équipe 'Antibio-résistance'), Caen, France
| | - Christophe Isnard
- Université de Caen Normandie, EA4655 U2RM (équipe 'Antibio-résistance'), Caen, France.,CHU de Caen, Service de Microbiologie, Caen, France
| | - Marguerite Fines-Guyon
- Université de Caen Normandie, EA4655 U2RM (équipe 'Antibio-résistance'), Caen, France.,CHU de Caen, Service de Microbiologie, Caen, France
| | - Vincent Cattoir
- CHU de Rennes - Hôpital Ponchaillou, Service de Bactériologie-Hygiène hospitalière, Rennes, France.,CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France
| | - Jean-Christophe Giard
- Université de Caen Normandie, EA4655 U2RM (équipe 'Antibio-résistance'), Caen, France
| |
Collapse
|
24
|
Höring S, Sobotta K, Schneider S, Löffler B, Rödel J. Dwarfs in disguise: multiple spinal abscesses and spondylodiscitis caused by an Enterococcus faecium small-colony variant. Access Microbiol 2019; 1:e000012. [PMID: 32974494 PMCID: PMC7470356 DOI: 10.1099/acmi.0.000012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/07/2019] [Indexed: 11/18/2022] Open
Abstract
Small-colony variants are slow-growing subpopulations of bacteria known to be involved in latent or recurrent infections, especially in deep-seated foci. Their atypical growth in small colonies can hamper prompt and correct identification in clinical specimens. Here, we present the first case of multiple spinal abscesses and spondylodiscitis associated with an Enterococcus faecium small-colony-variant in an immunocompetent patient. This case demonstrates the diagnostic challenges when encountering this phenotype in the diagnostic laboratory.
Collapse
Affiliation(s)
- Steffen Höring
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum1, D-07747 Jena, Germany
| | - Katharina Sobotta
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum1, D-07747 Jena, Germany
| | - Sylke Schneider
- Clinic for Internal Medicine, Waldkrankenhaus ‘Rudolf Elle’, Klosterlausnitzer Straße 81, D-07607 Eisenberg, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum1, D-07747 Jena, Germany
| | - Jürgen Rödel
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum1, D-07747 Jena, Germany
| |
Collapse
|
25
|
Effects of sub-minimum inhibitory concentrations of ciprofloxacin on biofilm formation and virulence factors of Escherichia coli. Braz J Infect Dis 2019; 23:15-21. [PMID: 30796889 PMCID: PMC9428002 DOI: 10.1016/j.bjid.2019.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/13/2019] [Accepted: 01/16/2019] [Indexed: 01/13/2023] Open
Abstract
Objective Methods Results Conclusions
Collapse
|
26
|
Maťátková O, Pospíšilová D, Michailidu J, Jaroš P, Masák J. Effect of subinhibitory concentration of antibiotics on Rhodococcus erythropolis and Pseudomonas fluorescens biofilm formation. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0662-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Mack SG, Turner RL, Dwyer DJ. Achieving a Predictive Understanding of Antimicrobial Stress Physiology through Systems Biology. Trends Microbiol 2018. [PMID: 29530606 DOI: 10.1016/j.tim.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dramatic spread and diversity of antibiotic-resistant pathogens has significantly reduced the efficacy of essentially all antibiotic classes, bringing us ever closer to a postantibiotic era. Exacerbating this issue, our understanding of the multiscale physiological impact of antimicrobial challenge on bacterial pathogens remains incomplete. Concerns over resistance and the need for new antibiotics have motivated the collection of omics measurements to provide systems-level insights into antimicrobial stress responses for nearly 20 years. Although technological advances have markedly improved the types and resolution of such measurements, continued development of mathematical frameworks aimed at providing a predictive understanding of complex antimicrobial-associated phenotypes is critical to maximize the utility of multiscale data. Here we highlight recent efforts utilizing systems biology to enhance our knowledge of antimicrobial stress physiology. We provide a brief historical perspective of antibiotic-focused omics measurements, highlight new measurement discoveries and trends, discuss examples and opportunities for integrating measurements with mathematical models, and describe future challenges for the field.
Collapse
Affiliation(s)
- Sean G Mack
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Randi L Turner
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Daniel J Dwyer
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA; Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA; Institute for Physical Sciences & Technology, University of Maryland, College Park, MD 20742, USA; Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
28
|
Holman DB, Bearson SMD, Bearson BL, Brunelle BW. Chlortetracycline and florfenicol induce expression of genes associated with pathogenicity in multidrug-resistant Salmonella enterica serovar Typhimurium. Gut Pathog 2018. [PMID: 29515658 PMCID: PMC5836442 DOI: 10.1186/s13099-018-0236-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium (S. Typhimurium) is a serious public health threat as infections caused by these strains are more difficult and expensive to treat. Livestock serve as a reservoir for MDR Salmonella, and the antibiotics chlortetracycline and florfenicol are frequently administrated to food-producing animals to treat and prevent various diseases. Therefore, we evaluated the response of MDR S. Typhimurium after exposure to these two antibiotics. Results We exposed four MDR S. Typhimurium isolates to sub-inhibitory concentrations of chlortetracycline (16 and 32 µg/ml) or florfenicol (16 µg/ml) for 30 min during early-log phase. Differentially expressed genes following antibiotic treatment were identified using RNA-seq, and genes associated with attachment and those located within the Salmonella pathogenicity islands were significantly up-regulated following exposure to either antibiotic. The effect of antibiotic exposure on cellular invasion and motility was also assessed. Swimming and swarming motility were decreased due to antibiotic exposure. However, we observed chlortetracycline enhanced cellular invasion in two strains and florfenicol enhanced invasion in a third isolate. Conclusions Chlortetracycline and florfenicol exposure during early-log growth altered the expression of nearly half of the genes in the S. Typhimurium genome, including a large number of genes associated with virulence and pathogenesis; this transcriptional alteration was not due to the SOS response. The results suggest that exposure to either of these two antibiotics may lead to the expression of virulence genes that are typically only transcribed in vivo, as well as only during late-log or stationary phase in vitro. Electronic supplementary material The online version of this article (10.1186/s13099-018-0236-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Devin B Holman
- 1Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS, USDA, Ames, IA USA.,3Present Address: Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB Canada
| | - Shawn M D Bearson
- 1Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS, USDA, Ames, IA USA
| | - Bradley L Bearson
- 2Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, ARS, USDA, Ames, IA USA
| | - Brian W Brunelle
- 1Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS, USDA, Ames, IA USA.,Present Address: Arbor Biosciences, Ann Arbor, MI USA
| |
Collapse
|
29
|
Sinel C, Augagneur Y, Sassi M, Bronsard J, Cacaci M, Guérin F, Sanguinetti M, Meignen P, Cattoir V, Felden B. Small RNAs in vancomycin-resistant Enterococcus faecium involved in daptomycin response and resistance. Sci Rep 2017; 7:11067. [PMID: 28894187 PMCID: PMC5593968 DOI: 10.1038/s41598-017-11265-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Vancomycin-resistant Enterococcus faecium is a leading cause of hospital-acquired infections and outbreaks. Regulatory RNAs (sRNAs) are major players in adaptive responses, including antibiotic resistance. They were extensively studied in gram-negative bacteria, but less information is available for gram-positive pathogens. No sRNAs are described in E. faecium. We sought to identify a set of sRNAs expressed in vancomycin-resistant E. faecium Aus0004 strain to assess their roles in daptomycin response and resistance. Genomic and transcriptomic analyses revealed a set of 61 sRNA candidates, including 10 that were further tested and validated by Northern and qPCR. RNA-seq was performed with and without subinhibitory concentrations (SICs) of daptomycin, an antibiotic used to treat enterococcal infections. After daptomycin SIC exposure, the expression of 260 coding and srna genes was altered, with 80 upregulated and 180 downregulated, including 51% involved in carbohydrate and transport metabolisms. Daptomycin SIC exposure significantly affected the expression of seven sRNAs, including one experimentally confirmed, sRNA_0160. We studied sRNA expression in isogenic mutants with increasing levels of daptomycin resistance and observed that expression of several sRNAs, including sRNA_0160, was modified in the stepwise mutants. This first genome-wide sRNA identification in E. faecium suggests that some sRNAs are linked to antibiotic stress response and resistance.
Collapse
Affiliation(s)
- Clara Sinel
- University of Caen Normandie, EA4655, Caen, France
| | - Yoann Augagneur
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France
| | - Mohamed Sassi
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France
| | - Julie Bronsard
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France
| | - Margherita Cacaci
- Catholic University of Sacred Heart, Institute of Microbiology, Rome, Italy
| | - François Guérin
- University of Caen Normandie, EA4655, Caen, France.,Caen University Hospital, Department of Clinical Microbiology, Caen, France
| | | | - Pierrick Meignen
- University of Caen Normandie, IUT (department "STID"), Caen, France
| | - Vincent Cattoir
- University of Caen Normandie, EA4655, Caen, France. .,Caen University Hospital, Department of Clinical Microbiology, Caen, France. .,National Reference Center for Antimicrobial Resistance (lab Enterococci), Caen, France. .,Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France.
| | - Brice Felden
- Inserm U1230-Biochimie pharmaceutique, Rennes University, Rennes, France.
| |
Collapse
|
30
|
Hullahalli K, Rodrigues M, Palmer KL. Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations. eLife 2017; 6:e26664. [PMID: 28644125 PMCID: PMC5491264 DOI: 10.7554/elife.26664] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/15/2017] [Indexed: 12/21/2022] Open
Abstract
CRISPR-Cas provides a barrier to horizontal gene transfer in prokaryotes. It was previously observed that functional CRISPR-Cas systems are absent from multidrug-resistant (MDR) Enterococcus faecalis, which only possess an orphan CRISPR locus, termed CRISPR2, lacking cas genes. Here, we investigate how the interplay between CRISPR-Cas genome defense and antibiotic selection for mobile genetic elements shapes in vitro E. faecalis populations. We demonstrate that CRISPR2 can be reactivated for genome defense in MDR strains. Interestingly, we observe that E. faecalis transiently maintains CRISPR targets despite active CRISPR-Cas systems. Subsequently, if selection for the CRISPR target is present, toxic CRISPR spacers are lost over time, while in the absence of selection, CRISPR targets are lost over time. We find that forced maintenance of CRISPR targets induces a fitness cost that can be exploited to alter heterogeneous E. faecalis populations.
Collapse
Affiliation(s)
- Karthik Hullahalli
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, United States
| | - Marinelle Rodrigues
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, United States
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, United States
| |
Collapse
|