1
|
Yeh YH, Lin YS, Chiu TC, Hu CC. A Ratiometric Fluorescent Sensor for Penicillin G Based on Color-Tunable Gold-Silver Nanoclusters. ACS OMEGA 2024; 9:10621-10627. [PMID: 38463298 PMCID: PMC10918794 DOI: 10.1021/acsomega.3c09010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Excessive administration of penicillin G and improper disposal of its residues pose a serious risk to human health; therefore, the development of convenient methods for monitoring penicillin G levels in products is essential. Herein, novel gold-silver nanoclusters (AuAgNCs) were synthesized using chicken egg white and 6-aza-2-thiothymine as dual ligands with strong yellow fluorescence at 509 and 689 nm for the highly selective detection of penicillin G. The AuAgNCs were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible absorption spectrophotometry, and fluorescence spectrophotometry. Under optimum conditions, the fluorescence intensity decreased linearly with the concentration of penicillin G from 0.2 to 6 μM, with a low detection limit of 18 nM. Real sample analyses indicated that a sensor developed using the AuAgNCs could detect penicillin G in urine and water samples within 10 min, with the recoveries ranging from 99.7 to 104.0%. The particle size of the AuAgNCs increased from 1.80 to 9.06 nm in the presence of penicillin G. We believe the aggregation-induced quenching of the fluorescence of the AuAgNCs was the main mechanism for the detection of penicillin G. These results demonstrate the ability of our sensor for monitoring penicillin G levels in environmental and clinic samples.
Collapse
Affiliation(s)
- Yu-Hung Yeh
- Department of Applied Science, National Taitung University, No. 369, Sec. 2, University Road, Taitung City, Taitung County 95092, Taiwan (R.O.C.)
| | - Yu-Shen Lin
- Department of Applied Science, National Taitung University, No. 369, Sec. 2, University Road, Taitung City, Taitung County 95092, Taiwan (R.O.C.)
| | - Tai-Chia Chiu
- Department of Applied Science, National Taitung University, No. 369, Sec. 2, University Road, Taitung City, Taitung County 95092, Taiwan (R.O.C.)
| | - Cho-Chun Hu
- Department of Applied Science, National Taitung University, No. 369, Sec. 2, University Road, Taitung City, Taitung County 95092, Taiwan (R.O.C.)
| |
Collapse
|
2
|
Lee EB, Abbas MA, Park J, Tassew DD, Park SC. Optimizing tylosin dosage for co-infection of Actinobacillus pleuropneumoniae and Pasteurella multocida in pigs using pharmacokinetic/pharmacodynamic modeling. Front Pharmacol 2023; 14:1258403. [PMID: 37808183 PMCID: PMC10556534 DOI: 10.3389/fphar.2023.1258403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Formulating a therapeutic strategy that can effectively combat concurrent infections of Actinobacillus pleuropneumoniae (A. pleuropneumoniae) and Pasteurella multocida (P. multocida) can be challenging. This study aimed to 1) establish minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time kill curve, and post-antibiotic effect (PAE) of tylosin against A. pleuropneumoniae and P. multocida pig isolates and employ the MIC data for the development of epidemiological cutoff (ECOFF) values; 2) estimate the pharmacokinetics (PKs) of tylosin following its intramuscular (IM) administration (20 mg/kg) in healthy and infected pigs; and 3) establish a PK-pharmacodynamic (PD) integrated model and predict optimal dosing regimens and PK/PD cutoff values for tylosin in healthy and infected pigs. The MIC of tylosin against both 89 and 363 isolates of A. pleuropneumoniae and P. multocida strains spread widely, ranging from 1 to 256 μg/mL and from 0.5 to 128 μg/mL, respectively. According to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) ECOFFinder analysis ECOFF value (≤64 µg/mL), 97.75% (87 strains) of the A. pleuropnumoniae isolates were wild-type, whereas with the same ECOFF value (≤64 µg/mL), 99.72% (363 strains) of the P. multicoda isolates were considered wild-type to tylosin. Area under the concentration time curve (AUC), T1/2, and Cmax values were significantly greater in healthy pigs than those in infected pigs (13.33 h × μg/mL, 1.99 h, and 5.79 μg/mL vs. 10.46 h × μg/mL, 1.83 h, and 3.59 μg/mL, respectively) (p < 0.05). In healthy pigs, AUC24 h/MIC values for the bacteriostatic activity were 0.98 and 1.10 h; for the bactericidal activity, AUC24 h/MIC values were 1.97 and 1.99 h for A. pleuropneumoniae and P. multocida, respectively. In infected pigs, AUC24 h/MIC values for the bacteriostatic activity were 1.03 and 1.12 h; for bactericidal activity, AUC24 h/MIC values were 2.54 and 2.36 h for A. pleuropneumoniae and P. multocida, respectively. Monte Carlo simulation lead to a 2 μg/mL calculated PK/PD cutoff. Managing co-infections can present challenges, as it often demands the administration of multiple antibiotics to address diverse pathogens. However, using tylosin, which effectively targets both A. pleuropneumoniae and P. multocida in pigs, may enhance the control of bacterial burden. By employing an optimized dosage of 11.94-15.37 mg/kg and 25.17-27.79 mg/kg of tylosin can result in achieving bacteriostatic and bactericidal effects in 90% of co-infected pigs.
Collapse
Affiliation(s)
- Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aleem Abbas
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jonghyun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- DIVA Bio Incorporation, Daegu, Republic of Korea
| | | | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Mileva R, Milanova A. Doxycycline pharmacokinetics in mammalian species of veterinary interest – an overview. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.15547/bjvm.2321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Doxycycline is a broad-spectrum tetracycline antibiotic widely used in veterinary medicine. The current review aims to summarise the available data about pharmacokinetics in mammalian species of veterinary interest and to indicate the basic strategies for refining dosage regimens in order to use this antibiotic reasonably. Additionally, the available data about population pharmacokinetics are reviewed as this approach exhibits a number of benefits in terms of determination of drug pharmacokinetics, prediction of drug disposition and interpretation of the variations in the pharmacokinetic parameters. Further research with animal species of veterinary interest and pathogens causing diseases in animals is needed to clarify the pharmacokinetics and pharmacodynamics of doxycycline.
Collapse
Affiliation(s)
- R. Mileva
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Facul-ty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| | - A. Milanova
- Department of Pharmacology, Animal Physiology and Physiological Chemistry, Facul-ty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
| |
Collapse
|
4
|
Jorritsma R, Van der Heide A, Van Geijlswijk IM. Survey of veterinarians in the Netherlands on antimicrobial use for surgical prophylaxis in dairy practice. J Dairy Sci 2021; 104:9106-9114. [PMID: 33985775 DOI: 10.3168/jds.2020-19616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/31/2021] [Indexed: 11/19/2022]
Abstract
There is increased concern about the selection pressure of antimicrobial use (AMU) in humans as well in farm animals resulting in antimicrobial (AM) resistance. The introduction of monitoring of AMU in food-producing animals since 2011 has led to a considerable quantitative reduction of AMU in those animal species in the Netherlands. This survey was conducted to explore the possibilities to improve prudent use of AM in the cattle industry. We sent an online questionnaire to 373 veterinarians and asked which antimicrobial prophylaxis they used for their most recently performed cesarean section (CS) and left displaced abomasum (LDA) correction. With a response rate of 30%, we found that older graduates used more AM for CS than recently graduated veterinarians (odds ratio = 2.4 to 2.7 depending on category), whereas antimicrobial prophylaxis in LDA surgeries was significantly different for the available surgical correction methods. The results indicate that the respondents do not adjust the surgical antimicrobial prophylaxis for different conditions of the patient or the environment; 37 (38%) respondents consider that the risks of contamination are similar for CS and LDA. In CS and all LDA correction methods preoperative prophylaxis was significantly less often applied than postoperative antimicrobial treatments (odds ratio = 0.05 and 0.08, respectively). When preoperative prophylaxis was applied, the choice of (combinations of) the AM and the timing of administration were not adequate at the start of the surgical procedure (88% for CS and 90% for LDA). We conclude that considerable qualitative (timing, choice of antimicrobial, route of administration) and quantitative (limit AMU to indicated procedures) improvement on antimicrobial prophylaxis for CS and LDA is possible by appreciation of the risks of the type of surgery (CS, LDA) and its conditions as well as by selecting classes of AM and timing and routes of administration that result in effective drug concentrations at the start of the procedure.
Collapse
Affiliation(s)
- R Jorritsma
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Division Farm Animal Health, Utrecht University, 3584 CL, Utrecht, the Netherlands.
| | - A Van der Heide
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Division Farm Animal Health, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - I M Van Geijlswijk
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Division of Institute for Risk Assessment Sciences (IRAS), Pharmacy, Utrecht University, 3584 CM, Utrecht, the Netherlands
| |
Collapse
|
5
|
Lees P, Pelligand L, Giraud E, Toutain PL. A history of antimicrobial drugs in animals: Evolution and revolution. J Vet Pharmacol Ther 2021; 44:137-171. [PMID: 32725687 DOI: 10.1111/jvp.12895] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
The evolutionary process of antimicrobial drug (AMD) uses in animals over a mere eight decades (1940-2020) has led to a revolutionary outcome, and both evolution and revolution are ongoing, with reports on a range of uses, misuses and abuses escalating logarithmically. As well as veterinary therapeutic perspectives (efficacy, safety, host toxicity, residues, selection of drug, determination of dose and measurement of outcome in treating animal diseases), there are also broader, nontherapeutic uses, some of which have been abandoned, whilst others hopefully will soon be discontinued, at least in more developed countries. Although AMD uses for treatment of animal diseases will continue, it must: (a) be sustainable within the One Health paradigm; and (b) devolve into more prudent, rationally based therapeutic uses. As this review on AMDs is published in a Journal of Pharmacology and Therapeutics, its scope has been made broader than most recent reviews in this field. Many reviews have focused on negative aspects of AMD actions and uses, especially on the question of antimicrobial resistance. This review recognizes these concerns but also emphasizes the many positive aspects deriving from the use of AMDs, including the major research-based advances underlying both the prudent and rational use of AMDs. It is structured in seven sections: (1) Introduction; (2) Sulfonamide history; (3) Nontherapeutic and empirical uses of AMDs (roles of agronomists and veterinarians); (4) Rational uses of AMDs (roles of pharmacologists, clinicians, industry and regulatory controls); (5) Prudent use (residue monitoring, antimicrobial resistance); (6) International and inter-disciplinary actions; and (7) Conclusions.
Collapse
Affiliation(s)
- Peter Lees
- The Royal Veterinary College, University of London, London, UK
| | | | - Etienne Giraud
- INTHERES, INRA, ENVT, Université de Toulouse, Toulouse, France
| | - Pierre-Louis Toutain
- The Royal Veterinary College, University of London, London, UK
- INTHERES, INRA, ENVT, Université de Toulouse, Toulouse, France
| |
Collapse
|
6
|
Park M, Sutherland JB, Rafii F. β-Lactam resistance development affects binding of penicillin-binding proteins (PBPs) of Clostridium perfringens to the fluorescent penicillin, BOCILLIN FL. Anaerobe 2020; 62:102179. [PMID: 32088319 DOI: 10.1016/j.anaerobe.2020.102179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 01/11/2023]
Abstract
Alteration in the binding of bacterial penicillin-binding proteins (PBPs) to β-lactams is important in the development of drug resistance. The PBPs of wild type Clostridium perfringens ATCC 13124 and three β-lactam-resistant mutants were compared for the ability to bind to a fluorescent penicillin, BOCILLIN FL. The binding of the high molecular weight protein PBP1, a transpeptidase, to BOCILLIN FL was reduced in all of the resistant strains. In contrast, the binding of BOCILLIN FL to a low molecular weight protein, PBP6, a D-alanyl-d-alanine carboxypeptidase that was more abundant in all three resistant strains, was substantially increased. A competition assay with β-lactams reduced the binding of all of the PBPs, including PBP6, to BOCILLIN FL. β-Lactams enhanced transcription of the putative gene for PBP6 in both wild type and resistant strains. This is the first report showing that mutations in a high molecular weight PBP and overexpression of a low molecular weight PBP in resistant C. perfringens strains affected their binding to β-lactams.
Collapse
Affiliation(s)
- Miseon Park
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 71602, USA
| | - John B Sutherland
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 71602, USA
| | - Fatemeh Rafii
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 71602, USA.
| |
Collapse
|
7
|
Li M, Mainquist-Whigham C, Karriker LA, Wulf LW, Zeng D, Gehring R, Riviere JE, Coetzee JF, Lin Z. An integrated experimental and physiologically based pharmacokinetic modeling study of penicillin G in heavy sows. J Vet Pharmacol Ther 2019; 42:461-475. [PMID: 31012501 DOI: 10.1111/jvp.12766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/12/2019] [Accepted: 03/14/2019] [Indexed: 01/09/2023]
Abstract
Penicillin G is widely used in food-producing animals at extralabel doses and is one of the most frequently identified violative drug residues in animal-derived food products. In this study, the plasma pharmacokinetics and tissue residue depletion of penicillin G in heavy sows after repeated intramuscular administrations at label (6.5 mg/kg) and 5 × label (32.5 mg/kg) doses were determined. Plasma, urine, and environmental samples were tested as potential antemortem markers for penicillin G residues. The collected new data and other available data from the literature were used to develop a population physiologically based pharmacokinetic (PBPK) model for penicillin G in heavy sows. The results showed that antemortem testing of urine provided potential correlation with tissue residue levels. Based on the United States Department of Agriculture Food Safety and Inspection Service action limit of 25 ng/g, the model estimated a withdrawal interval of 38 days for penicillin G in heavy sows after 3 repeated intramuscular injections at 5 × label dose. This study improves our understanding of penicillin G pharmacokinetics and tissue residue depletion in heavy sows and provides a tool to predict proper withdrawal intervals after extralabel use of penicillin G in heavy sows, thereby helping safety assessment of sow-derived meat products.
Collapse
Affiliation(s)
- Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Christine Mainquist-Whigham
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Locke A Karriker
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa.,Swine Medicine Education Center, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Larry W Wulf
- Pharmacology Analytical Support Team (PhAST), Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Dongping Zeng
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ronette Gehring
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Jim E Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Johann F Coetzee
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa.,Pharmacology Analytical Support Team (PhAST), Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
8
|
Martinez MN, Gehring R, Mochel JP, Pade D, Pelligand L. Population variability in animal health: Influence on dose-exposure-response relationships: Part II: Modelling and simulation. J Vet Pharmacol Ther 2018; 41:E68-E76. [PMID: 29806231 DOI: 10.1111/jvp.12666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/15/2018] [Indexed: 11/29/2022]
Abstract
During the 2017 Biennial meeting, the American Academy of Veterinary Pharmacology and Therapeutics hosted a 1-day session on the influence of population variability on dose-exposure-response relationships. In Part I, we highlighted some of the sources of population variability. Part II provides a summary of discussions on modelling and simulation tools that utilize existing pharmacokinetic data, can integrate drug physicochemical characteristics with species physiological characteristics and dosing information or that combine observed with predicted and in vitro information to explore and describe sources of variability that may influence the safe and effective use of veterinary pharmaceuticals.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Center for Veterinary Medicine, US Food and Drug Administration, Rockville, Maryland
| | - Ronette Gehring
- Utrecht Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jonathan P Mochel
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | | | - Ludovic Pelligand
- Department of Clinical Services and Sciences and Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK
| |
Collapse
|
9
|
Sikina ER, Bach JF, Lin Z, Gehring R, KuKanich B. Bioavailability of suppository acetaminophen in healthy and hospitalized ill dogs. J Vet Pharmacol Ther 2018; 41:652-658. [DOI: 10.1111/jvp.12664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 04/03/2018] [Indexed: 12/26/2022]
Affiliation(s)
- E. R. Sikina
- Department of Medical Sciences; School of Veterinary Medicine; University of Wisconsin-Madison; Madison Wisconsin
- Michigan State, College of Veterinary Medicine; East Lansing Michigan
| | - J. F. Bach
- Department of Medical Sciences; School of Veterinary Medicine; University of Wisconsin-Madison; Madison Wisconsin
| | - Z. Lin
- Institute of Computational Comparative Medicine and the Department of Anatomy and Physiology; College of Veterinary Medicine; Kansas State University; Manhattan Kansas
| | - R. Gehring
- Institute of Computational Comparative Medicine and the Department of Anatomy and Physiology; College of Veterinary Medicine; Kansas State University; Manhattan Kansas
- Veterinary Pharmacology and Therapeutics Group; Institute of Risk Assessment Sciences; Faculty of Veterinary Medicine, Utrecht University; Utrecht The Netherlands
| | - B. KuKanich
- Institute of Computational Comparative Medicine and the Department of Anatomy and Physiology; College of Veterinary Medicine; Kansas State University; Manhattan Kansas
| |
Collapse
|
10
|
Bon C, Toutain PL, Concordet D, Gehring R, Martin-Jimenez T, Smith J, Pelligand L, Martinez M, Whittem T, Riviere JE, Mochel JP. Mathematical modeling and simulation in animal health. Part III: Using nonlinear mixed-effects to characterize and quantify variability in drug pharmacokinetics. J Vet Pharmacol Ther 2018; 41:171-183. [PMID: 29226975 DOI: 10.1111/jvp.12473] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/16/2017] [Indexed: 01/12/2023]
Abstract
A common feature of human and veterinary pharmacokinetics is the importance of identifying and quantifying the key determinants of between-patient variability in drug disposition and effects. Some of these attributes are already well known to the field of human pharmacology such as bodyweight, age, or sex, while others are more specific to veterinary medicine, such as species, breed, and social behavior. Identification of these attributes has the potential to allow a better and more tailored use of therapeutic drugs both in companion and food-producing animals. Nonlinear mixed effects (NLME) have been purposely designed to characterize the sources of variability in drug disposition and response. The NLME approach can be used to explore the impact of population-associated variables on the relationship between drug administration, systemic exposure, and the levels of drug residues in tissues. The latter, while different from the method used by the US Food and Drug Administration for setting official withdrawal times (WT) can also be beneficial for estimating WT of approved animal drug products when used in an extralabel manner. Finally, NLME can also prove useful to optimize dosing schedules, or to analyze sparse data collected in situations where intensive blood collection is technically challenging, as in small animal species presenting limited blood volume such as poultry and fish.
Collapse
Affiliation(s)
- C Bon
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - P L Toutain
- Department of Veterinary Basic Sciences, Royal Veterinary College, Hatfield, UK
| | - D Concordet
- Toxalim, Research Centre in Food Toxicology, Toulouse, France
- Université de Toulouse, ENVT, INP, Toxalim, Toulouse, France
- Laboratoire de Physiologie et Thérapeutique, École Nationale Vétérinaire de Toulouse INRA, UMR 1331, Toulouse, France
| | - R Gehring
- Department of Anatomy and Physiology, College of Veterinary Medicine, Institute of Computational Comparative Medicine (ICCM), Kansas State University, Manhattan, KS, USA
| | - T Martin-Jimenez
- Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - J Smith
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - L Pelligand
- Department of Veterinary Basic Sciences, Royal Veterinary College, Hatfield, UK
| | - M Martinez
- Center for Veterinary Medicine, US Food and Drug Administration, Rockville, MD, USA
| | - T Whittem
- Translational Research and Animal Clinical Trials (TRACTs) Group, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Vic., Australia
| | - J E Riviere
- Department of Anatomy and Physiology, College of Veterinary Medicine, Institute of Computational Comparative Medicine (ICCM), Kansas State University, Manhattan, KS, USA
| | - J P Mochel
- Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| |
Collapse
|
11
|
Li M, Gehring R, Riviere JE, Lin Z. Development and application of a population physiologically based pharmacokinetic model for penicillin G in swine and cattle for food safety assessment. Food Chem Toxicol 2017. [DOI: 10.1016/j.fct.2017.06.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Riviere JE, Tell LA, Baynes RE, Vickroy TW, Gehring R. Guide to FARAD resources: historical and future perspectives. J Am Vet Med Assoc 2017; 250:1131-1139. [DOI: 10.2460/javma.250.10.1131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Volkova VV, KuKanich B, Riviere JE. Exploring Post-Treatment Reversion of Antimicrobial Resistance in Enteric Bacteria of Food Animals as a Resistance Mitigation Strategy. Foodborne Pathog Dis 2016; 13:610-617. [DOI: 10.1089/fpd.2016.2152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Victoriya V. Volkova
- Department of Diagnostic Medicine/Pathobiology, Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Butch KuKanich
- Department of Anatomy and Physiology, Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Jim E. Riviere
- Department of Anatomy and Physiology, Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
14
|
Lin Z, Gehring R, Mochel JP, Lavé T, Riviere JE. Mathematical modeling and simulation in animal health – Part
II
: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment. J Vet Pharmacol Ther 2016; 39:421-38. [DOI: 10.1111/jvp.12311] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/21/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Z. Lin
- Institute of Computational Comparative Medicine (ICCM) Department of Anatomy and Physiology College of Veterinary Medicine Kansas State University Manhattan KS USA
| | - R. Gehring
- Institute of Computational Comparative Medicine (ICCM) Department of Anatomy and Physiology College of Veterinary Medicine Kansas State University Manhattan KS USA
| | - J. P. Mochel
- Roche Pharmaceutical Research and Early Development Roche Innovation Center Basel Switzerland
| | - T. Lavé
- Roche Pharmaceutical Research and Early Development Roche Innovation Center Basel Switzerland
| | - J. E. Riviere
- Institute of Computational Comparative Medicine (ICCM) Department of Anatomy and Physiology College of Veterinary Medicine Kansas State University Manhattan KS USA
| |
Collapse
|
15
|
Penicillin G-Induced Chlamydial Stress Response in a Porcine Strain of Chlamydia pecorum. Int J Microbiol 2016; 2016:3832917. [PMID: 26997956 PMCID: PMC4779511 DOI: 10.1155/2016/3832917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/26/2016] [Indexed: 01/14/2023] Open
Abstract
Chlamydia pecorum causes asymptomatic infection and pathology in ruminants, pigs, and koalas. We characterized the antichlamydial effect of the beta lactam penicillin G on Chlamydia pecorum strain 1710S (porcine abortion isolate). Penicillin-exposed and mock-exposed infected host cells showed equivalent inclusions numbers. Penicillin-exposed inclusions contained aberrant bacterial forms and exhibited reduced infectivity, while mock-exposed inclusions contained normal bacterial forms and exhibited robust infectivity. Infectious bacteria production increased upon discontinuation of penicillin exposure, compared to continued exposure. Chlamydia-induced cell death occurred in mock-exposed controls; cell survival was improved in penicillin-exposed infected groups. Similar results were obtained both in the presence and in the absence of the eukaryotic protein translation inhibitor cycloheximide and at different times of initiation of penicillin exposure. These data demonstrate that penicillin G induces the chlamydial stress response (persistence) and is not bactericidal, for this chlamydial species/strain in vitro, regardless of host cell de novo protein synthesis.
Collapse
|
16
|
Riviere JE, Gabrielsson J, Fink M, Mochel J. Mathematical modeling and simulation in animal health. Part I: Moving beyond pharmacokinetics. J Vet Pharmacol Ther 2015; 39:213-23. [PMID: 26592724 DOI: 10.1111/jvp.12278] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/29/2015] [Accepted: 10/07/2015] [Indexed: 02/05/2023]
Abstract
The application of mathematical modeling to problems in animal health has a rich history in the form of pharmacokinetic modeling applied to problems in veterinary medicine. Advances in modeling and simulation beyond pharmacokinetics have the potential to streamline and speed-up drug research and development programs. To foster these goals, a series of manuscripts will be published with the following goals: (i) expand the application of modeling and simulation to issues in veterinary pharmacology; (ii) bridge the gap between the level of modeling and simulation practiced in human and veterinary pharmacology; (iii) explore how modeling and simulation concepts can be used to improve our understanding of common issues not readily addressed in human pharmacology (e.g. breed differences, tissue residue depletion, vast weight ranges among adults within a single species, interspecies differences, small animal species research where data collection is limited to sparse sampling, availability of different sampling matrices); and (iv) describe how quantitative pharmacology approaches could help understanding key pharmacokinetic and pharmacodynamic characteristics of a drug candidate, with the goal of providing explicit, reproducible, and predictive evidence for optimizing drug development plans, enabling critical decision making, and eventually bringing safe and effective medicines to patients. This study introduces these concepts and introduces new approaches to modeling and simulation as well as clearly articulate basic assumptions and good practices. The driving force behind these activities is to create predictive models that are based on solid physiological and pharmacological principles as well as adhering to the limitations that are fundamental to applying mathematical and statistical models to biological systems.
Collapse
Affiliation(s)
- J E Riviere
- Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - J Gabrielsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - M Fink
- Novartis Pharma AG, Basel, Switzerland
| | - J Mochel
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| |
Collapse
|
17
|
Pennacchio A, Varriale A, Esposito MG, Scala A, Marzullo VM, Staiano M, D’Auria S. A Rapid and Sensitive Assay for the Detection of Benzylpenicillin (PenG) in Milk. PLoS One 2015; 10:e0132396. [PMID: 26168259 PMCID: PMC4500387 DOI: 10.1371/journal.pone.0132396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/12/2015] [Indexed: 12/29/2022] Open
Abstract
Antibiotics, such as benzyl-penicillin (PenG) and cephalosporin, are the most common compounds used in animal therapy. Their massive and illegal use in animal therapy and prophylaxis inevitably causes the presence of traces in foods of animal origin (milk and meat), which creates several problems for human health. With the aim to prevent the negative impact of β-lactam and, in particular, PenG residues present in the milk on customer health, many countries have established maximum residue limits (MRLs). To cope with this problem here, we propose an effective alternative, compared to the analytical methods actually employed, to quantify the presence of penicillin G using the surface plasmon resonance (SPR) method. In particular, the PenG molecule was conjugated to a protein carrier to immunize a rabbit and produce polyclonal antibodies (anti-PenG). The produced antibodies were used as molecular recognition elements for the design of a competitive immune-assay for the detection of PenG by SPR experiments. The detection limit of the developed assay was found to be 8.0 pM, a value much lower than the MRL of the EU regulation limit that is fixed at 12 nM. Thus, our results clearly show that this system could be successfully suitable for the accurate and easy determination of PenG.
Collapse
Affiliation(s)
| | - Antonio Varriale
- Laboratory for Molecular Sensing, IBP-CNR, Naples, Italy
- Institute of Food Science, ISA- CNR, Avellino, Italy
| | | | - Andrea Scala
- Laboratory for Molecular Sensing, IBP-CNR, Naples, Italy
- Institute of Food Science, ISA- CNR, Avellino, Italy
| | | | - Maria Staiano
- Laboratory for Molecular Sensing, IBP-CNR, Naples, Italy
- Institute of Food Science, ISA- CNR, Avellino, Italy
| | | |
Collapse
|
18
|
Li M, Gehring R, Lin Z, Riviere J. A framework for meta-analysis of veterinary drug pharmacokinetic data using mixed effect modeling. J Pharm Sci 2015; 104:1230-9. [PMID: 25641543 DOI: 10.1002/jps.24341] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/27/2022]
Abstract
Combining data from available studies is a useful approach to interpret the overwhelming amount of data generated in medical research from multiple studies. Paradoxically, in veterinary medicine, lack of data requires integrating available data to make meaningful population inferences. Nonlinear mixed-effects modeling is a useful tool to apply meta-analysis to diverse pharmacokinetic (PK) studies of veterinary drugs. This review provides a summary of the characteristics of PK data of veterinary drugs and how integration of these data may differ from human PK studies. The limits of meta-analysis include the sophistication of data mining, and generation of misleading results caused by biased or poor quality data. The overriding strength of meta-analysis applied to this field is that robust statistical analysis of the diverse sparse data sets inherent to veterinary medicine applications can be accomplished, thereby allowing population inferences to be made.
Collapse
Affiliation(s)
- Mengjie Li
- Institute of Computational Comparative Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | | | | | | |
Collapse
|