1
|
Chiang BH, Vega G, Dunwoody SC, Patnode ML. Bacterial interactions on nutrient-rich surfaces in the gut lumen. Infect Immun 2024; 92:e0048023. [PMID: 38506518 PMCID: PMC11384750 DOI: 10.1128/iai.00480-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
The intestinal lumen is a turbulent, semi-fluid landscape where microbial cells and nutrient-rich particles are distributed with high heterogeneity. Major questions regarding the basic physical structure of this dynamic microbial ecosystem remain unanswered. Most gut microbes are non-motile, and it is unclear how they achieve optimum localization relative to concentrated aggregations of dietary glycans that serve as their primary source of energy. In addition, a random spatial arrangement of cells in this environment is predicted to limit sustained interactions that drive co-evolution of microbial genomes. The ecological consequences of random versus organized microbial localization have the potential to control both the metabolic outputs of the microbiota and the propensity for enteric pathogens to participate in proximity-dependent microbial interactions. Here, we review evidence suggesting that several bacterial species adopt organized spatial arrangements in the gut via adhesion. We highlight examples where localization could contribute to antagonism or metabolic interdependency in nutrient degradation, and we discuss imaging- and sequencing-based technologies that have been used to assess the spatial positions of cells within complex microbial communities.
Collapse
Affiliation(s)
- Bo Huey Chiang
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
- Graduate Program in Biological Sciences and Engineering, University of California, Santa Cruz, California, USA
| | - Giovanni Vega
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
- Graduate Program in Biological Sciences and Engineering, University of California, Santa Cruz, California, USA
| | - Sarah C. Dunwoody
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Michael L. Patnode
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| |
Collapse
|
2
|
Kenneally C, Murphy CP, Sleator RD, Culligan EP. Turbidimetric bioassays: A solution to antimicrobial activity detection in asymptomatic bacteriuria isolates against uropathogenic Escherichia coli. Microbiologyopen 2024; 13:e1411. [PMID: 38706434 PMCID: PMC11070844 DOI: 10.1002/mbo3.1411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Traditional bacteriocin screening methods often face limitations due to diffusion-related challenges in agar matrices, which can prevent the peptides from reaching their target organism. Turbidimetric techniques offer a solution to these issues, eliminating diffusion-related problems and providing an initial quantification of bacteriocin efficacy in producer organisms. This study involved screening the cell-free supernatant (CFS) from eight uncharacterized asymptomatic bacteriuria (ABU) isolates and Escherichia coli 83972 for antimicrobial activity against clinical uropathogenic E. coli (UPEC) strains using turbidimetric growth methods. ABU isolates exhibiting activity against five or more UPEC strains were further characterized (PUTS 37, PUTS 58, PUTS 59, S-07-4, and SK-106-1). The inhibition of the CFS by proteinase K suggested that the antimicrobial activity was proteinaceous in nature, potentially bacteriocins. The activity of E. coli PUTS 58 and SK-106-1 was enhanced in an artificial urine medium, with both inhibiting all eight UPECs. A putative microcin H47 operon was identified in E. coli SK-106-1, along with a previously identified microcin V and colicin E7 in E. coli PUTS 37 and PUTS 58, respectively. These findings indicate that ABU bacteriocin-producers could serve as viable prophylactics and therapeutics in the face of increasing antibiotic resistance among uropathogens.
Collapse
Affiliation(s)
- Ciara Kenneally
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Craig P. Murphy
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Roy D. Sleator
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| | - Eamonn P. Culligan
- Department of Biological SciencesMunster Technological University, BishopstownCorkIreland
| |
Collapse
|
3
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
4
|
Dutta P, Bishayi B. Pyrrolidine dithiocarbamate in combination with L-N-monomethyl arginine alleviates Staphylococcus aureus infection via regulation of CXCL8/CXCR1 axis in peritoneal macrophages in vitro. Microb Pathog 2023; 183:106294. [PMID: 37567327 DOI: 10.1016/j.micpath.2023.106294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
The CXCL8/CXCR1 axis in conjoint with the free radicals and anti-oxidants dictates the severity of inflammation caused by the bacteria, Staphylococcus aureus. S.aureus mediated inflammatory processes is regulated by NF-κB and its product, iNOS. The objective of this study was to examine the effects of inhibition of NF-κB and iNOS on CXCL8/CXCR1, alteration in M1/M2 polarization of macrophages and associated inflammatory responses during S.aureus infection in vitro. For this, the murine peritoneal macrophages were pretreated with NF-κB inhibitor, Pyrrolidine dithiocarbamate (PDTC) and iNOS inhibitor, L-N-monomethyl arginine (LNMMA), either alone or in combination, followed by time-dependent S.aureus infection. The chemotactic migrations of macrophages were determined by the agarose spot assay. The iNOS, NF-κB and CXCR1 protein expressions were evaluated. The ROS level (superoxide, H2O2, NO) and antioxidant activities (SOD, CAT, GSH, arginase) were measured. The intra-macrophage phagoctyic activity had been analyzed by confocal microscopy. S.aureus activated macrophages showed increased iNOS expression that symbolizes M1 characterization of macrophages. The results suggest that the combination treatment of LNMMA + PDTC was effective in diminution of CXCL8 production and CXCR1 expression through downregulation of NF-κB and iNOS signaling pathway. Consequently, there was decrement in macrophage migration, reduced ROS generation, elevated antioxidant enzyme activity as well as bacterial phagocytosis at 90 min post bacterial infection. The increased arginase activity further proves the switch from pro-inflammatory M1 to anti-inflammatory M2 polarization of macrophages. Concludingly, the combination of PDTC + LNMMA could resolve S.aureus mediated inflammation through mitigation of CXCL8/CXCR1 pathway switching from M1 to M2 polarization.
Collapse
Affiliation(s)
- Puja Dutta
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, 700009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, 700009, West Bengal, India.
| |
Collapse
|
5
|
Hafeez AB, Pełka K, Buzun K, Worobo R, Szweda P. Whole-genome sequencing and antimicrobial potential of bacteria isolated from Polish honey. Appl Microbiol Biotechnol 2023; 107:6389-6406. [PMID: 37665371 PMCID: PMC10560198 DOI: 10.1007/s00253-023-12732-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
The aim of this study was the whole-genome analysis and assessment of the antimicrobial potential of bacterial isolates from honey harvested in one geographical location-the north of Poland. In total, 132 strains were derived from three honey samples, and the antimicrobial activity of CFAM (cell-free after-culture medium) was used as a criterion for strain selection and detailed genomic investigation. Two of the tested isolates (SZA14 and SZA16) were classified as Bacillus paralicheniformis, and one isolate (SZB3) as Bacillus subtilis based on their ANI and phylogenetic analysis relatedness. The isolates SZA14 and SZA16 were harvested from the same honey sample with a nucleotide identity of 98.96%. All three isolates have been found to be potential producers of different antimicrobial compounds. The secondary metabolite genome mining pipeline (antiSMASH) identified 14 gene cluster coding for non-ribosomal peptide synthetases (NRPs), polyketide synthases (PKSs), and ribosomally synthesized and post-translationally modified peptides (RiPPs) that are potential sources of novel antibacterials. The BAGEL4 analysis revealed the presence of nine putative gene clusters of interest in the isolates SZA14 and SZA16 (including the presence of six similar clusters present in both isolates, coding for the production of enterocin Nkr-5-3B, haloduracin-alpha, sonorensin, bottromycin, comX2, and lasso peptide), and four in B. subtilis isolate SZB3 (competence factor, sporulation-killing factor, subtilosin A, and sactipeptides). The outcomes of this study confirm that honey-derived Bacillus spp. strains can be considered potential producers of a broad spectrum of antimicrobial agents. KEY POINTS: • Bacteria of the genus Bacillus are an important component of honey microbiota. • Honey-derived Bacillus spp. strains are potential producers of new antimicrobials.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Karolina Pełka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Kamila Buzun
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Randy Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853 USA
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
6
|
Van Zyl WF, Van Staden AD, Dicks LMT, Trindade M. Use of the mCherry fluorescent protein to optimize the expression of class I lanthipeptides in Escherichia coli. Microb Cell Fact 2023; 22:149. [PMID: 37559122 PMCID: PMC10413542 DOI: 10.1186/s12934-023-02162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/29/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Lanthipeptides are a rapidly expanding family of ribosomally synthesized and post-translationally modified natural compounds with diverse biological functions. Lanthipeptide structural and biosynthetic genes can readily be identified in genomic datasets, which provides a substantial repository for unique peptides with a wide range of potentially novel bioactivities. To realize this potential efficiently optimized heterologous production systems are required. However, only a few class I lanthipeptides have been successfully expressed using Escherichia coli as heterologous producer. This may be attributed to difficulties experienced in the co-expression of structural genes and multiple processing genes as well as complex optimization experiments. RESULTS Here, an optimized modular plasmid system is presented for the complete biosynthesis for each of the class I lanthipeptides nisin and clausin, in E. coli. Genes encoding precursor lanthipeptides were fused to the gene encoding the mCherry red fluorescent protein and co-expressed along with the required synthetases from the respective operons. Antimicrobially active nisin and clausin were proteolytically liberated from the expressed mCherry fusions. The mCherry-NisA expression system combined with in vivo fluorescence monitoring was used to elucidate the effect of culture media composition, promoter arrangement, and culture conditions including choice of growth media and inducer agents on the heterologous expression of the class I lanthipeptides. To evaluate the promiscuity of the clausin biosynthetic enzymes, the optimized clausin expression system was used for the heterologous expression of epidermin. CONCLUSION We succeeded in developing novel mCherry-fusion based plug and play heterologous expression systems to produce two different subgroups of class I lanthipeptides. Fully modified Pre-NisA, Pre-ClausA and Pre-EpiA fused to the mCherry fluorescence gene was purified from the Gram-negative host E. coli BL21 (DE3). Our study demonstrates the potential of using in vivo fluorescence as a platform to evaluate the expression of mCherry-fused lanthipeptides in E. coli. This allowed a substantial reduction in optimization time, since expression could be monitored in real-time, without the need for extensive and laborious purification steps or the use of in vitro activity assays. The optimized heterologous expression systems developed in this study may be employed in future studies for the scalable expression of novel NisA derivatives, or novel genome mined derivatives of ClausA and other class I lanthipeptides in E. coli.
Collapse
Affiliation(s)
- Winschau F Van Zyl
- Department of Microbiology, Stellenbosch University, Cape Town, South Africa.
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.
| | - Anton D Van Staden
- Department of Microbiology, Stellenbosch University, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Cape Town, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
7
|
Heinzinger LR, Pugh AR, Wagner JA, Otto M. Evaluating the Translational Potential of Bacteriocins as an Alternative Treatment for Staphylococcus aureus Infections in Animals and Humans. Antibiotics (Basel) 2023; 12:1256. [PMID: 37627676 PMCID: PMC10451987 DOI: 10.3390/antibiotics12081256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance remains a global threat to human and animal health. Staphylococcus aureus is an opportunistic pathogen that causes minor to life-threatening infections. The widespread use of antibiotics in the clinical, veterinary, and agricultural setting combined with the increasing prevalence of antibiotic-resistant S. aureus strains makes it abundantly clear that alternatives to antibiotics are urgently needed. Bacteriocins represent one potential alternative therapeutic. They are antimicrobial peptides that are produced by bacteria that are generally nontoxic and have a relatively narrow target spectrum, and they leave many commensals and most mammalian cells unperturbed. Multiple studies involving bacteriocins (e.g., nisin, epidermicin, mersacidin, and lysostaphin) have demonstrated their efficacy at eliminating or treating a wide variety of S. aureus infections in animal models. This review provides a comprehensive and updated evaluation of animal studies involving bacteriocins and highlights their translational potential. The strengths and limitations associated with bacteriocin treatments compared with traditional antibiotic therapies are evaluated, and the challenges that are involved with implementing novel therapeutics are discussed.
Collapse
Affiliation(s)
| | | | | | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA; (L.R.H.); (A.R.P.); (J.A.W.)
| |
Collapse
|
8
|
Abstract
A wound is an injury to the skin or damage to the body tissue. The healing process differs between various kinds of wounds. Treatment of hard-to-heal (chronic) wounds becomes challenging for healthcare practitioners, especially if patients have underlying health complications such as diabetes. Infection of wounds is another factor that interferes with the healing process and extends its duration. Active research is being conducted into the development of advanced wound dressing technologies. These wound dressings are intended to manage the exudate, reduce bacterial infection and speed up the healing process. Probiotics have been receiving much attention because of their potential application in the clinical field, especially in diagnostics and treatment strategies of various infectious and non-infectious diseases. The host immune-modulatory response and antimicrobial activity of probiotics are expanding their role in the development of improved wound dressing technology.
Collapse
Affiliation(s)
- Shanmugaraja Meenakshi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Chennai, Tamil Nadu, India
| | - Ramadevi Santhanakumar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Chennai, Tamil Nadu, India
| |
Collapse
|
9
|
Complete Genome Sequences of Bioluminescent Staphylococcus aureus Strains Xen31 and Xen36, Derived from Two Clinical Isolates. Microbiol Resour Announc 2023; 12:e0002423. [PMID: 36840571 PMCID: PMC10019319 DOI: 10.1128/mra.00024-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Here, we report complete genome sequences of two clinical isolates of Staphylococcus aureus, namely, Xen31 and Xen36, which have been genetically modified to express an optimized Photorhabdus luminescens luciferase operon. Xen31 and Xen36 are bioluminescent strains used widely for investigation of bacterial pathogenesis, drug discovery, and development of novel therapies.
Collapse
|
10
|
Saravanan P, R P, Balachander N, K KRS, S S, S R. Anti-inflammatory and wound healing properties of lactic acid bacteria and its peptides. Folia Microbiol (Praha) 2023; 68:337-353. [PMID: 36780113 PMCID: PMC9924211 DOI: 10.1007/s12223-022-01030-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/29/2022] [Indexed: 02/14/2023]
Abstract
Recent studies manifest an increase of inflammatory diseases at an alarming rate due to gut microbiota dysbiosis, genetic and other environmental factors. Lactic acid bacteria (LAB) are known for their antimicrobial properties and their extensive applications in food and pharmaceutical industries. Cyclic peptides are receiving increased attention due to their remarkable stability to withstand variations in temperature and pH. LAB produces anti-inflammatory that can inhibit lipopolysaccharide-induced production of proinflammatory cytokines in macrophages. The structural backbones of cyclic peptides offer a promising approach for the treatment of chronic inflammatory conditions. The current review aims to present the overview of anti-inflammatory and wound healing properties of LAB-derived cyclic peptides.
Collapse
Affiliation(s)
- Parikhshith Saravanan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Pooja R
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Nanditaa Balachander
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Kesav Ram Singh K
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Silpa S
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Rupachandra S
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India.
| |
Collapse
|
11
|
Poosarla VG, Shivshetty N, Nagarajan S, Rajagopalan G. Development of recombinant lantibiotics and their potent uses. LANTIBIOTICS AS ALTERNATIVE THERAPEUTICS 2023:65-83. [DOI: 10.1016/b978-0-323-99141-4.00021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Bekiaridou A, Karlafti E, Oikonomou IM, Ioannidis A, Papavramidis TS. Probiotics and Their Effect on Surgical Wound Healing: A Systematic Review and New Insights into the Role of Nanotechnology. Nutrients 2021; 13:nu13124265. [PMID: 34959817 PMCID: PMC8704946 DOI: 10.3390/nu13124265] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Skin tissue repair is of fundamental importance for maintaining homeostasis regulation, protection barrier, absorption, and excretion of skin tissue. Wound healing is a complicated process that can be impaired by infections and therefore have a significant economic and social impact. Simultaneously, the overuse of antibiotics has led to antimicrobial resistance and loss of their efficacy. Thus, the need for alternative antimicrobial agents is urgent. The newest approaches on wound dressings employ new therapeutic agents, such as probiotics. Probiotics alone or in tandem with nanotechnology-based techniques exhibit a broad range of benefits on surgical wounds. This systematic review aims to consider current knowledge of probiotic effects on animals and humans regarding surgical wound healing and provide new insights into the role of nanotechnology. The databases included were PubMed (MEDLINE), Scopus, and Cochrane Library (CENTRAL). Studies focused on burns, chronic wounds, and diabetic ulcers were excluded. The promising industry of probiotics demonstrates a significant upsurge as more and more healthy individuals rely their well-being on alternative medicine. Included probiotics illustrated positive results on wound re-epithelization, neovascularization, and wound healing. No adverse effects were noted.
Collapse
Affiliation(s)
- Alexandra Bekiaridou
- 1st Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (A.B.); (E.K.); (I.M.O.)
| | - Eleni Karlafti
- 1st Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (A.B.); (E.K.); (I.M.O.)
| | - Ilias Marios Oikonomou
- 1st Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (A.B.); (E.K.); (I.M.O.)
| | - Aristidis Ioannidis
- 1st Propaedeutic Surgical Department, University Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki (AUTH), 54621 Thessaloniki, Greece;
| | - Theodossis S. Papavramidis
- 1st Propaedeutic Surgical Department, University Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki (AUTH), 54621 Thessaloniki, Greece;
- Correspondence: ; Fax: +30-231-042-0293
| |
Collapse
|
13
|
Kumar S, Pal S, Thakur J, Rani P, Rana K, Kar A, Kar R, Mehta D, Jha SK, Pradhan MK, Jain D, Rajput K, Mishra S, Ganguli M, Srivastava A, Dasgupta U, Patil VS, Bajaj A. Nonimmunogenic Hydrogel-Mediated Delivery of Antibiotics Outperforms Clinically Used Formulations in Mitigating Wound Infections. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44041-44053. [PMID: 34491724 DOI: 10.1021/acsami.1c12265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Treatment of chronic wound infections caused by Gram-positive bacteria such as Staphylococcus aureus is highly challenging due to the low efficacy of existing formulations, thereby leading to drug resistance. Herein, we present the synthesis of a nonimmunogenic cholic acid-glycine-glycine conjugate (A6) that self-assembles into a supramolecular viscoelastic hydrogel (A6 gel) suitable for topical applications. The A6 hydrogel can entrap different antibiotics with high efficacy without compromising its viscoelastic behavior. Activities against different bacterial species using a disc diffusion assay demonstrated the antimicrobial effect of the ciprofloxacin-loaded A6 hydrogel (CPF-Gel). Immune profiling and gene expression studies after the application of the A6 gel to mice confirmed its nonimmunogenic nature to host tissues. We further demonstrated that topical application of CPF-Gel clears S. aureus-mediated wound infections more effectively than clinically used formulations. Therefore, cholic acid-derived hydrogels are an efficacious matrix for topical delivery of antibiotics and should be explored further.
Collapse
Affiliation(s)
- Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Jyoti Thakur
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal By-pass Road, Bhauri, Bhopal 462030, India
| | - Parul Rani
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Animesh Kar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Raunak Kar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Somesh Kumar Jha
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Manas Kumar Pradhan
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal By-pass Road, Bhauri, Bhopal 462030, India
| | - Dolly Jain
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Kajal Rajput
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon 122413, Haryana, India
| | - Sarita Mishra
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aasheesh Srivastava
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon 122413, Haryana, India
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon 122413, Haryana, India
| | - Veena S Patil
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
14
|
Gerst MM, Somogyi Á, Yang X, Yousef AE. Detection and characterization of a rare two-component lantibiotic, amyloliquecidin GF610 produced by Bacillus velezensis, using a combination of culture, molecular and bioinformatic analyses. J Appl Microbiol 2021; 132:994-1007. [PMID: 34487591 DOI: 10.1111/jam.15290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 08/30/2021] [Indexed: 01/26/2023]
Abstract
AIM To detect and characterize novel lantibiotics from a collection of Bacillus spp. using a multifaceted analytical approach. METHODS AND RESULTS A previously completed microassay identified 45 Bacillus isolates with anti-Listeria activity. The isolates were PCR screened using degenerate primers targeting conserved sequences in lanM-type lantibiotics. B. velezensis GF610 produced a PCR product whose sequence, along with genome mining and bioinformatics, guided the liquid chromatographic analysis of strain's cell-free extracts and the mass spectrometry of purified fractions. Results revealed a new amyloliquecidin variant (designated GF610) produced by the strain. Amyloliquecidin GF610 is a two-component lantibiotic with α and β peptides having monoisotopic masses of 3026 and 2451 Da, and molecular formulae C130 H191 N35 O39 S5 and C110 H158 N26 O30 S4 , respectively. Amyloliquecidin GF610 is active against Listeria monocytogenes, Clostridium sporogenes, Clostridioides difficile, Staphylococcus aureus and Alicyclobacillus acidoterrestris with minimum inhibitory concentrations (MICs) in the range of 0.5-7.0 µmol l-1 . CONCLUSIONS The proposed multifaceted analytical approach was valuable to provide a deep and proper characterization of a novel bacteriocin, amyloliquecidin GF610, with high antimicrobial activity against Gram-positive bacteria. SIGNIFICANCE AND IMPACT The discovered Amyloliquecidin GF610 is potentially useful in food, agricultural or medical applications. The analytical approach followed may facilitate future discoveries of two-component lantibiotics, which are challenging compounds to detect and characterize.
Collapse
Affiliation(s)
- Michelle M Gerst
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Árpád Somogyi
- Mass Spectrometry and Proteomics Facility, Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio, USA
| | - Xu Yang
- Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| | - Ahmed E Yousef
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA.,Department of Food Science and Technology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Reinseth IS, Ovchinnikov KV, Tønnesen HH, Carlsen H, Diep DB. The Increasing Issue of Vancomycin-Resistant Enterococci and the Bacteriocin Solution. Probiotics Antimicrob Proteins 2021; 12:1203-1217. [PMID: 31758332 PMCID: PMC8613153 DOI: 10.1007/s12602-019-09618-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enterococci are commensals of human and other animals’ gastrointestinal tracts. Only making up a small part of the microbiota, they have not played a significant role in research, until the 1980s. Although the exact year is variable according to different geographical areas, this was the decade when vancomycin-resistant enterococci (VRE) were discovered and since then their role as causative agents of human infections has increased. Enterococcus faecium is on the WHO’s list of “bacteria for which new antibiotics are urgently needed,” and with no new antibiotics in development, the situation is desperate. In this review, different aspects of VRE are outlined, including the mortality caused by VRE, antibiotic resistance profiles, animal-modeling efforts, and virulence. In addition, the limitations of current antibiotic treatments for VRE and prospective new treatments, such as bacteriocins, are reviewed.
Collapse
Affiliation(s)
- Ingvild S Reinseth
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Kirill V Ovchinnikov
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Hanne H Tønnesen
- Section of Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316, Oslo, Norway
| | - Harald Carlsen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Dzung B Diep
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| |
Collapse
|
16
|
van Staden ADP, van Zyl WF, Trindade M, Dicks LMT, Smith C. Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings. Appl Environ Microbiol 2021; 87:e0018621. [PMID: 33962984 PMCID: PMC8231447 DOI: 10.1128/aem.00186-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides, with modifications that are incorporated during biosynthesis by dedicated enzymes. Various modifications of the peptides are possible, resulting in a highly diverse group of bioactive peptides that offer a potential reservoir for use in the fight against a plethora of diseases. Their activities range from the antimicrobial properties of lantibiotics, especially against antibiotic-resistant strains, to antiviral activity, immunomodulatory properties, antiallodynic effects, and the potential to alleviate cystic fibrosis symptoms. Lanthipeptide biosynthetic genes are widespread within bacterial genomes, providing a substantial repository for novel bioactive peptides. Using genome mining tools, novel bioactive lanthipeptides can be identified, and coupled with rapid screening and heterologous expression technologies, the lanthipeptide drug discovery pipeline can be significantly sped up. Lanthipeptides represent a group of bioactive peptides that hold great potential as biotherapeutics, especially at a time when novel and more effective therapies are required. With this review, we provide insight into the latest developments made toward the therapeutic applications and production of lanthipeptides, specifically looking at heterologous expression systems.
Collapse
Affiliation(s)
- Anton Du Preez van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
17
|
CESA-LUNA CATHERINE, ALATORRE-CRUZ JULIAMARÍA, CARREÑO-LÓPEZ RICARDO, QUINTERO-HERNÁNDEZ VERÓNICA, BAEZ ANTONINO. Emerging Applications of Bacteriocins as Antimicrobials, Anticancer Drugs, and Modulators of The Gastrointestinal Microbiota. Pol J Microbiol 2021; 70:143-159. [PMID: 34349808 PMCID: PMC8326989 DOI: 10.33073/pjm-2021-020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
The use of bacteriocins holds great promise in different areas such as health, food, nutrition, veterinary, nanotechnology, among others. Many research groups worldwide continue to advance the knowledge to unravel a novel range of therapeutic agents and food preservatives. This review addresses the advances of bacteriocins and their producer organisms as biocontrol agents for applications in the medical industry and agriculture. Furthermore, the bacteriocin mechanism of action and structural characteristics will be reviewed. Finally, the potential role of bacteriocins to modulate the signaling in host-associated microbial communities will be discussed.
Collapse
Affiliation(s)
- CATHERINE CESA-LUNA
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | | | - RICARDO CARREÑO-LÓPEZ
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | | | - ANTONINO BAEZ
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| |
Collapse
|
18
|
Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: An Overview of Antimicrobial, Toxicity, and Biosafety Assessment by in vivo Models. Front Microbiol 2021; 12:630695. [PMID: 33935991 PMCID: PMC8083986 DOI: 10.3389/fmicb.2021.630695] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The world is facing a significant increase in infections caused by drug-resistant infectious agents. In response, various strategies have been recently explored to treat them, including the development of bacteriocins. Bacteriocins are a group of antimicrobial peptides produced by bacteria, capable of controlling clinically relevant susceptible and drug-resistant bacteria. Bacteriocins have been studied to be able to modify and improve their physicochemical properties, pharmacological effects, and biosafety. This manuscript focuses on the research being developed on the biosafety of bacteriocins, which is a topic that has not been addressed extensively in previous reviews. This work discusses the studies that have tested the effect of bacteriocins against pathogens and assess their toxicity using in vivo models, including murine and other alternative animal models. Thus, this work concludes the urgency to increase and advance the in vivo models that both assess the efficacy of bacteriocins as antimicrobial agents and evaluate possible toxicity and side effects, which are key factors to determine their success as potential therapeutic agents in the fight against infections caused by multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- Diego Francisco Benítez-Chao
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - Jordy Alexis Lerma-Escalera
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico
| |
Collapse
|
19
|
Yano Y, Niiranen TJ. Gut Microbiome over a Lifetime and the Association with Hypertension. Curr Hypertens Rep 2021; 23:15. [PMID: 33686539 DOI: 10.1007/s11906-021-01133-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Microorganisms living within an ecosystem create microbial communities and play key roles in ecosystem functioning. During their lifespan, humans share their bodies with a variety of microorganisms. More than 10-100 trillion symbiotic microorganisms live on and within human beings, and the majority of these microorganisms populate the distal ileum and colon (referred to as the gut microbiota). Interactions between the gut microbiota and the host involve signaling via chemical neurotransmitters and metabolites, neuronal pathways, and the immune system. Hypertension is a complex and heterogeneous pathophenotype. A reductionist approach that assumes that all patients who have the same signs of a disease share a common disease mechanism and thus should be treated similarly is insufficient for optimal blood pressure management. Herein, we have highlighted the contribution of the gut microbiome to blood pressure regulation in humans. RECENT FINDINGS Gut dysbiosis-an imbalance in the composition and function of the gut microbiota-has been shown to be associated with hypertension. Gut dysbiosis occurs via environmental pressures, including caesarean section, antibiotic use, dietary changes, and lifestyle changes over a lifetime. This review highlights how gut dysbiosis may affect a host's blood pressure over a lifetime. The review also clarifies future challenges in studies of associations between the gut microbiome and hypertension.
Collapse
Affiliation(s)
- Yuichiro Yano
- Center for Novel and Exploratory Clinical Trials, Yokohama City University, 1-1-1, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan. .,Department of Family Medicine and Community Health, Duke University, Durham, NC, USA.
| | - Teemu J Niiranen
- Department of Internal Medicine, University of Turku, Turku, Finland.,Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
20
|
Dong Y, Zhao S, Wang C, Liu W, Zhang Y, Deng L, Zhang J, Huang P, Wang W, Dong A. Combating drug-resistant bacterial infection using biodegradable nanoparticles assembled from comb-like polycarbonates grafted with amphiphilic polyquaternium. J Mater Chem B 2021; 9:357-365. [PMID: 33245311 DOI: 10.1039/d0tb02233k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bacterial infection is a serious clinical threat. The misuse of antibiotics has already resulted in the emergence of antibiotic-resistant strains of pathogenic bacteria. Efficient membrane-destructive antibacterial agents are considered as an alternative, promising solution against bacterial infection. Herein, we prepared a new type of comb-like cationic, polyethylene glycol (PEG) block polycarbonates with polyquaternium arms (G-CgQAs). The amphiphilic G-CgQAs could self-assemble into about 60 nm sized nanoparticles (NPs) with positive charges (20~30 mV). G-CgQA-3 NPs with an appropriate hydrophobic-hydrophilic balance in the polyquaternium arms showed antibacterial activity against Gram-negative, Gram-positive, and drug-resistant strains at low concentrations (MIC 64-128 μg mL-1) and low hemolysis (HC50 > 2000 μg mL-1). In vivo anti-infection tests indicated G-CgQA-3 NPs could highly inhibit the growth of vancomycin-resistant bacteria by spraying on wounds. Collectively, G-CgQA NPs hold great promise for the prevention of infection, serving as new antibacterial agents. This study also highlights the significance of a hydrophobic block in positive polyquaternium arms to facilitate the antibacterial activity of cationic, quaternized polymers. The design of comb-like amphiphilic cationic polycarbonates provides a new method for manufacturing antibacterial nano-agents.
Collapse
Affiliation(s)
- Yanliang Dong
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Shuyue Zhao
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Changrong Wang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wenshuai Liu
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Liandong Deng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Jianhua Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Anjie Dong
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
21
|
van Zyl WF, Deane SM, Dicks LM. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes 2020; 12:1831339. [PMID: 33112695 PMCID: PMC7595611 DOI: 10.1080/19490976.2020.1831339] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) diseases, and in particular those caused by bacterial infections, are a major cause of morbidity and mortality worldwide. Treatment is becoming increasingly difficult due to the increase in number of species that have developed resistance to antibiotics. Probiotic lactic acid bacteria (LAB) have considerable potential as alternatives to antibiotics, both in prophylactic and therapeutic applications. Several studies have documented a reduction, or prevention, of GI diseases by probiotic bacteria. Since the activities of probiotic bacteria are closely linked with conditions in the host's GI-tract (GIT) and changes in the population of enteric microorganisms, a deeper understanding of gut-microbial interactions is required in the selection of the most suitable probiotic. This necessitates a deeper understanding of the molecular capabilities of probiotic bacteria. In this review, we explore how probiotic microorganisms interact with enteric pathogens in the GIT. The significance of probiotic colonization and persistence in the GIT is also addressed.
Collapse
Affiliation(s)
- Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Shelly M. Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M.T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa,CONTACT Leon M.T. Dicks; Department of Microbiology; Stellenbosch University, Stellenbosch7602, South Africa
| |
Collapse
|
22
|
Cesa-Luna C, Baez A, Aguayo-Acosta A, Llano-Villarreal RC, Juárez-González VR, Gaytán P, Bustillos-Cristales MDR, Rivera-Urbalejo A, Muñoz-Rojas J, Quintero-Hernández V. Growth inhibition of pathogenic microorganisms by Pseudomonas protegens EMM-1 and partial characterization of inhibitory substances. PLoS One 2020; 15:e0240545. [PMID: 33057351 PMCID: PMC7561207 DOI: 10.1371/journal.pone.0240545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022] Open
Abstract
The bacterial strain, EMM-1, was isolated from the rhizosphere of red maize ("Rojo Criollo") and identified as Pseudomonas protegens EMM-1 based on phylogenetic analysis of 16S rDNA, rpoB, rpoD, and gyrB gene sequences. We uncovered genes involved in the production of antimicrobial compounds like 2,4-diacetylphloroglucinol (2,4-DAPG), pyoluteorin, and lectin-like bacteriocins. These antimicrobial compounds are also produced by other fluorescent pseudomonads alike P. protegens. Double-layer agar assay showed that P. protegens EMM-1 inhibited the growth of several multidrug-resistant (MDR) bacteria, especially clinical isolates of the genera Klebsiella and β-hemolytic Streptococcus. This strain also displayed inhibitory effects against diverse fungi, such as Aspergillus, Botrytis, and Fusarium. Besides, a crude extract of inhibitory substances secreted into agar was obtained after the cold-leaching process, and physicochemical characterization was performed. The partially purified inhibitory substances produced by P. protegens EMM-1 inhibited the growth of Streptococcus sp. and Microbacterium sp., but no inhibitory effect was noted for other bacterial or fungal strains. The molecular weight determined after ultrafiltration was between 3 and 10 kDa. The inhibitory activity was thermally stable up to 60°C (but completely lost at 100°C), and the inhibitory activity remained active in a wide pH range (from 3 to 9). After treatment with a protease from Bacillus licheniformis, the inhibitory activity was decreased by 90%, suggesting the presence of proteic natural compounds. All these findings suggested that P. protegens EMM-1 is a potential source of antimicrobials to be used against pathogens for humans and plants.
Collapse
Affiliation(s)
- Catherine Cesa-Luna
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Pue., México
| | - Antonino Baez
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Pue., México
| | - Alberto Aguayo-Acosta
- Department of Microbiology and Immunology, Biological Sciences Faculty, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de la Garza, Nuevo León, México
| | - Roberto Carlos Llano-Villarreal
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Pue., México
| | - Víctor Rivelino Juárez-González
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Paul Gaytán
- Unidad de Síntesis y Secuenciación de ADN, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - María del Rocío Bustillos-Cristales
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Pue., México
| | - América Rivera-Urbalejo
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Pue., México
- Facultad de Estomatología, BUAP, Puebla, Pue., México
| | - Jesús Muñoz-Rojas
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Pue., México
| | - Verónica Quintero-Hernández
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Pue., México
- CONACYT–ESMG, LEMM, CICM, IC-BUAP, Puebla, Pue., México
| |
Collapse
|
23
|
Yano Y. Blood pressure management in an ecosystem context. Hypertens Res 2020; 43:989-994. [PMID: 32439913 DOI: 10.1038/s41440-020-0464-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/21/2022]
Abstract
The Hippocratic text On Airs, Waters, Places advises physicians to attend to all aspects of the environment-the seasons, the wind direction, and the soil and water quality, i.e., the ecosystem-when addressing people's health. Hippocrates emphasizes that the ecosystem influences health, disease, and therapeutic choices. Now is the time to consider how this medical wisdom can be integrated into healthcare systems and utilized for people's health. This review discusses how the ecosystem can affect blood pressure (BP) in humans and provides a synthesis of the related resources available in the literature to inform the actions of healthcare providers.
Collapse
Affiliation(s)
- Yuichiro Yano
- Department of Family Medicine and Community Health, Duke University, Durham, NC, USA.
| |
Collapse
|
24
|
Twomey E, Hill C, Field D, Begley M. Bioengineered Nisin Derivative M17Q Has Enhanced Activity against Staphylococcus epidermidis. Antibiotics (Basel) 2020; 9:antibiotics9060305. [PMID: 32517174 PMCID: PMC7345907 DOI: 10.3390/antibiotics9060305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus epidermidis is frequently implicated in medical device-related infections. As a result of this, novel approaches for control of this opportunistic pathogen are required. We examined the ability of the natural peptide nisin A, produced by Lactococcus lactis, to inhibit S. epidermidis. In addition, a bank of 29 rationally selected bioengineered L. lactis strains were examined with the aim of identifying a nisin derivative with enhanced antimicrobial activity. Agar-based deferred antagonism assays revealed that wild type nisin A inhibited all 18 S. epidermidis strains tested. Larger zones of inhibition than those obtained from the nisin A producing L. lactis strain were observed for each derivative producer against at least one S. epidermidis strain tested. Six derivative producing strains, (VGA, VGT, SGK, M21A, M17Q, AAA), gave larger zones against all 18 strains compared to the wildtype producing strain. The enhanced bioactivity of M17Q was confirmed using well diffusion, minimum inhibitory concentration (MIC) and a broth-based survival assays. Biofilm assays were performed with plastic microtiter plates and medical device substrates (stainless-steel coupons and three catheter materials). The presence of nisin A significantly reduce the amount of biofilm formed on all surfaces. M17Q was significantly better at reducing biofilm production than nisin A on plastic and stainless-steel. Finally, M17Q was significantly better than nisin A at reducing bacterial numbers in a simulated wound fluid. The findings of this study suggest that nisin and bioengineered derivatives warrant further investigation as potential strategies for the control of S. epidermidis.
Collapse
Affiliation(s)
- Ellen Twomey
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland;
| | - Colin Hill
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland
| | - Des Field
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland
- Correspondence: (D.F.); (M.B.)
| | - Maire Begley
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland;
- Correspondence: (D.F.); (M.B.)
| |
Collapse
|
25
|
Lajis AFB. Biomanufacturing process for the production of bacteriocins from Bacillaceae family. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-0295-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractMembers of Bacillaceae family are of major interest in medical industry due to vast antimicrobial peptides they produce as therapeutic agents. For decades, synthetic and natural occurring antibiotics have been used to treat infectious diseases, but heavy dependence on these drugs has led to significant drawbacks which propel continuous development of new antibiotics generation. Recent findings have shown several bacteriocins of Bacillaceae as promising alternatives to the conventional drugs to combat the emergence of new drug-resistant pathogens. In this present review, Bacillaceae bacteriocins’ classification such as lantibiotics and thiazole/oxazole-modified microcins as well as their biochemical characterization such as sensitivity to enzymes, temperature, pH and chemicals are described. This article enlightens on the medical application of several Bacillaceae bacteriocins emphasizing those that underwent and on-going preclinical trials. This review also discusses the development of Bacillaceae bacteriocins production, focusing strains selection and fermentation factors such as inocula size, medium (carbon, nitrogen, minerals sources), temperature, pH, agitation and aeration rate, dissolved oxygen tension (DOT), fermentation time, inducers and mode of operation via various statistical methods for their optimization. It also highlights recent advance in the production of bioengineered and recombinant bacteriocins in bioreactors system which are rarely disclosed in literature.
Collapse
|
26
|
Miller RJ, Crosby HA, Schilcher K, Wang Y, Ortines RV, Mazhar M, Dikeman DA, Pinsker BL, Brown ID, Joyce DP, Zhang J, Archer NK, Liu H, Alphonse MP, Czupryna J, Anderson WR, Bernthal NM, Fortuno-Miranda L, Bulte JWM, Francis KP, Horswill AR, Miller LS. Development of a Staphylococcus aureus reporter strain with click beetle red luciferase for enhanced in vivo imaging of experimental bacteremia and mixed infections. Sci Rep 2019; 9:16663. [PMID: 31723175 PMCID: PMC6853927 DOI: 10.1038/s41598-019-52982-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/26/2019] [Indexed: 02/03/2023] Open
Abstract
In vivo bioluminescence imaging has been used to monitor Staphylococcus aureus infections in preclinical models by employing bacterial reporter strains possessing a modified lux operon from Photorhabdus luminescens. However, the relatively short emission wavelength of lux (peak 490 nm) has limited tissue penetration. To overcome this limitation, the gene for the click beetle (Pyrophorus plagiophtalamus) red luciferase (luc) (with a longer >600 emission wavelength), was introduced singly and in combination with the lux operon into a methicillin-resistant S. aureus strain. After administration of the substrate D-luciferin, the luc bioluminescent signal was substantially greater than the lux signal in vitro. The luc signal had enhanced tissue penetration and improved anatomical co-registration with infected internal organs compared with the lux signal in a mouse model of S. aureus bacteremia with a sensitivity of approximately 3 × 104 CFU from the kidneys. Finally, in an in vivo mixed bacterial wound infection mouse model, S. aureus luc signals could be spectrally unmixed from Pseudomonas aeruginosa lux signals to noninvasively monitor the bacterial burden of both strains. Therefore, the S. aureus luc reporter may provide a technological advance for monitoring invasive organ dissemination during S. aureus bacteremia and for studying bacterial dynamics during mixed infections.
Collapse
Affiliation(s)
- Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heidi A Crosby
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Katrin Schilcher
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Momina Mazhar
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dustin A Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bret L Pinsker
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Isabelle D Brown
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel P Joyce
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey Zhang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Lea Fortuno-Miranda
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Kevin P Francis
- PerkinElmer, Hopkinton, Massachusetts, USA.,Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Alexander R Horswill
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA.,Denver VA Healthcare System, Denver, Colorado, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. .,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA. .,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA.
| |
Collapse
|
27
|
Inda ME, Broset E, Lu TK, de la Fuente-Nunez C. Emerging Frontiers in Microbiome Engineering. Trends Immunol 2019; 40:952-973. [PMID: 31601521 DOI: 10.1016/j.it.2019.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 02/07/2023]
Abstract
The gut microbiome has a significant impact on health and disease and can actively contribute to obesity, diabetes, inflammatory bowel disease, cardiovascular disease, and neurological disorders. We do not yet have the necessary tools to fine-tune the microbial communities that constitute the microbiome, though such tools could unlock extensive benefits to human health. Here, we provide an overview of the current state of technological tools that may be used for microbiome engineering. These tools can enable investigators to define the parameters of a healthy microbiome and to determine how gut bacteria may contribute to the etiology of a variety of diseases. These tools may also allow us to explore the exciting prospect of developing targeted therapies and personalized treatments for microbiome-linked diseases.
Collapse
Affiliation(s)
- María Eugenia Inda
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Esther Broset
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Grupo de Genética de Micobacterias, Departamento de Microbiología y Medicina Preventiva, Facultad de Medicina, Universidad de Zaragoza, 50009, Spain
| | - Timothy K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Cooper R, Kirketerp-Møller K. Non-antibiotic antimicrobial interventions and antimicrobial stewardship in wound care. J Wound Care 2019; 27:355-377. [PMID: 29883284 DOI: 10.12968/jowc.2018.27.6.355] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Control of wound infection today relies largely on antibiotics, but the continual emergence of antibiotic-resistant microorganisms threatens a return to the pre-antibiotic era when physicians used antiseptics to prevent and manage infection. Some of those antiseptics are still used today, and others have become available. A diverse variety of non-antibiotic antimicrobial interventions are found on modern formularies. Unlike the mode of action of antibiotics, which affect specific cellular target sites of pathogens, many non-antibiotic antimicrobials affect multiple cellular target sites in a non-specific way. Although this reduces the likelihood of selecting for resistant strains of microorganisms, some have emerged and cross-resistance between antibiotics and antiseptics has been detected. With the prospect of a post-antibiotic era looming, ways to maintain and extend our antimicrobial armamentarium must be found. In this narrative review, current and emerging non-antibiotic antimicrobial strategies will be considered and the need for antimicrobial stewardship in wound care will be explained.
Collapse
Affiliation(s)
- Rose Cooper
- Professor of Microbiology, Department of Biomedical Science, Cardiff School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, UK
| | - Klaus Kirketerp-Møller
- Orthopaedic Surgeon, Copenhagen Wound Healing Center, Department of Dermatology and Wounds, Bispebjerg University Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen NV
| |
Collapse
|
29
|
Dreyer L, Smith C, Deane SM, Dicks LMT, van Staden AD. Migration of Bacteriocins Across Gastrointestinal Epithelial and Vascular Endothelial Cells, as Determined Using In Vitro Simulations. Sci Rep 2019; 9:11481. [PMID: 31391488 PMCID: PMC6685951 DOI: 10.1038/s41598-019-47843-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/24/2019] [Indexed: 01/18/2023] Open
Abstract
Little is known about the migration of bacteriocins across human cells. In this study, we report on migration of three bacteriocins nisin, plantaricin 423 and bacST4SA across colonic adenocarcinoma (Caco-2) cells and human umbilical vein endothelial cells (HUVECs). Bacteriocins were fluorescently labelled while still maintaining antimicrobial activity. Migration of fluorescently labelled bacteriocins across monolayers was assessed in vitro using transmigration well inserts. After 3 h, 75% of nisin, 85% of plantaricin 423 and 82% of bacST4SA migrated across the Caco-2 cell monolayer. Over the same time span, 88% nisin, 93% plantaricin 423 and 91% bacST4SA migrated across the HUVEC monolayer. The viability of both cell types remained unchanged when exposed to 50 µM of nisin, plantaricin 423 or bacST4SA. The effect of human plasma on bacteriocin activity was also assessed. Activity loss was dependent on bacteriocin type and concentration, with the class-IIa bacteriocins retaining more activity compared to nisin. This is the first report of bacteriocins migrating across simulated gastrointestinal- and vascular-barriers. This study provides some of the first evidence that bacteriocins are capable of crossing the gut-blood-barrier. However, in vivo studies need to be performed to confirm these findings and expand on the role of bacteriocin migration across cell barriers.
Collapse
Affiliation(s)
- Leané Dreyer
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Shelly M Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Anton D van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa.
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
30
|
Kumar S, Thakur J, Yadav K, Mitra M, Pal S, Ray A, Gupta S, Medatwal N, Gupta R, Mishra D, Rani P, Padhi S, Sharma P, Kapil A, Srivastava A, Priyakumar UD, Dasgupta U, Thukral L, Bajaj A. Cholic Acid-Derived Amphiphile which Combats Gram-Positive Bacteria-Mediated Infections via Disintegration of Lipid Clusters. ACS Biomater Sci Eng 2019; 5:4764-4775. [PMID: 33448819 DOI: 10.1021/acsbiomaterials.9b00706] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inappropriate and uncontrolled use of antibiotics results in the emergence of antibiotic resistance, thereby threatening the present clinical regimens to treat infectious diseases. Therefore, new antimicrobial agents that can prevent bacteria from developing drug resistance are urgently needed. Selective disruption of bacterial membranes is the most effective strategy for combating microbial infections as accumulation of genetic mutations will not allow for the emergence of drug resistance against these antimicrobials. In this work, we tested cholic acid (CA) derived amphiphiles tethered with different alkyl chains for their ability to combat Gram-positive bacterial infections. In-depth biophysical and biomolecular simulation studies suggested that the amphiphile with a hexyl chain (6) executes more effective interactions with Gram-positive bacterial membranes as compared to other hydrophobic counterparts. Amphiphile 6 is effective against multidrug resistant Gram-positive bacterial strains as well and does not allow the adherence of S. aureus on amphiphile 6 coated catheters implanted in mice. Further, treatment of wound infections with amphiphile 6 clears the bacterial infections. Therefore, the current study presents strategic guidelines in design and development of CA-derived membrane-targeting antimicrobials for Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.,Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal-576104, Karnataka, India
| | - Jyoti Thakur
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India
| | - Kavita Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.,Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal-576104, Karnataka, India
| | - Madhurima Mitra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India.,Kalinga Institute of Industrial Technology, KIIT Road, Patia, Bhubaneswar-751024, Odisha, India
| | - Arjun Ray
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi-110025, India
| | - Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Nihal Medatwal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Ragini Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Deepakkumar Mishra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Parul Rani
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| | - Siladitya Padhi
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Professor CR Rao Road, Gachibowli, Hyderabad-500032, India
| | - Priyanka Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Sri Aurobindo Marg, Ansari Nagar, New Delhi-110029, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, Sri Aurobindo Marg, Ansari Nagar, New Delhi-110029, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India
| | - U Deva Priyakumar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Professor CR Rao Road, Gachibowli, Hyderabad-500032, India
| | - Ujjaini Dasgupta
- Amity Institute of Integrative Sciences and Health, Amity University, Amity Education Valley Gurugram, Panchgaon, Manesar, Gurugram-122413, Haryana, India
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, Opp: Sukhdev Vihar Bus Depot, New Delhi-110025, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| |
Collapse
|
31
|
Du Y, Ma J, Yin Z, Liu K, Yao G, Xu W, Fan L, Du B, Ding Y, Wang C. Comparative genomic analysis of Bacillus paralicheniformis MDJK30 with its closely related species reveals an evolutionary relationship between B. paralicheniformis and B. licheniformis. BMC Genomics 2019; 20:283. [PMID: 30975079 PMCID: PMC6458615 DOI: 10.1186/s12864-019-5646-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/27/2019] [Indexed: 02/03/2023] Open
Abstract
Background Members of the genus Bacillus are important plant growth-promoting rhizobacteria that serve as biocontrol agents. Bacillus paralicheniformis MDJK30 is a PGPR isolated from the peony rhizosphere and can suppress plant-pathogenic bacteria and fungi. To further uncover the genetic mechanism of the plant growth-promoting traits of MDJK30 and its closely related strains, we used comparative genomics to provide insights into the genetic diversity and evolutionary relationship between B. paralicheniformis and B. licheniformis. Results A comparative genomics analysis based on B. paralicheniformis MDJK30 and 55 other previously reported Bacillus strains was performed. The evolutionary position of MDJK30 and the evolutionary relationship between B. paralicheniformis and B. licheniformis were evaluated by studying the phylogeny of the core genomes, a population structure analysis and ANI results. Comparative genomic analysis revealed various features of B. paralicheniformis that contribute to its commensal lifestyle in the rhizosphere, including an opening pan genome, a diversity of transport and the metabolism of the carbohydrates and amino acids. There are notable differences in the numbers and locations of the insertion sequences, prophages, genomic islands and secondary metabolic synthase operons between B. paralicheniformis and B. licheniformis. In particular, we found most gene clusters of Fengycin, Bacitracin and Lantipeptide were only present in B. paralicheniformis and were obtained by horizontal gene transfer (HGT), and these clusters may be used as genetic markers for distinguishing B. paralicheniformis and B. licheniformis. Conclusions This study reveals that MDJK30 and the other strains of lineage paralicheniformis present plant growth-promoting traits at the genetic level and can be developed and commercially formulated in agriculture as PGPR. Core genome phylogenies and population structure analysis has proven to be a powerful tool for differentiating B. paralicheniformis and B. licheniformis. Comparative genomic analyses illustrate the genetic differences between the paralicheniformis-licheniformis group with respect to rhizosphere adaptation. Electronic supplementary material The online version of this article (10.1186/s12864-019-5646-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuhui Du
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People's Republic of China
| | - Jinjin Ma
- College of Life Sciences / National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources / Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Zhiqiu Yin
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, TEDA College, Nankai University, Tianjin, People's Republic of China
| | - Kai Liu
- College of Life Sciences / National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources / Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Gan Yao
- College of Life Sciences / National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources / Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Wenfeng Xu
- State Key Laboratory of Nutrition Resources Integrated Utilization, Linshu, People's Republic of China
| | - Lingchao Fan
- State Key Laboratory of Nutrition Resources Integrated Utilization, Linshu, People's Republic of China
| | - Binghai Du
- College of Life Sciences / National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources / Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, People's Republic of China
| | - Yanqin Ding
- College of Life Sciences / National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources / Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, People's Republic of China.
| | - Chengqiang Wang
- College of Life Sciences / National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources / Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, People's Republic of China.
| |
Collapse
|
32
|
de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, Ravensbergen E, Franken M, van der Heijde T, Boekema BK, Kwakman PHS, Kamp N, El Ghalbzouri A, Lohner K, Zaat SAJ, Drijfhout JW, Nibbering PH. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 2019; 10:10/423/eaan4044. [PMID: 29321257 DOI: 10.1126/scitranslmed.aan4044] [Citation(s) in RCA: 320] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/18/2017] [Accepted: 11/13/2017] [Indexed: 01/07/2023]
Abstract
Development of novel antimicrobial agents is a top priority in the fight against multidrug-resistant (MDR) and persistent bacteria. We developed a panel of synthetic antimicrobial and antibiofilm peptides (SAAPs) with enhanced antimicrobial activities compared to the parent peptide, human antimicrobial peptide LL-37. Our lead peptide SAAP-148 was more efficient in killing bacteria under physiological conditions in vitro than many known preclinical- and clinical-phase antimicrobial peptides. SAAP-148 killed MDR pathogens without inducing resistance, prevented biofilm formation, and eliminated established biofilms and persister cells. A single 4-hour treatment with hypromellose ointment containing SAAP-148 completely eradicated acute and established, biofilm-associated infections with methicillin-resistant Staphylococcus aureus and MDR Acinetobacter baumannii from wounded ex vivo human skin and murine skin in vivo. Together, these data demonstrate that SAAP-148 is a promising drug candidate in the battle against antibiotic-resistant bacteria that pose a great threat to human health.
Collapse
Affiliation(s)
- Anna de Breij
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Martijn Riool
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Robert A Cordfunke
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Nermina Malanovic
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, Naturwissenschaftliche Fakultät (NAWI) Graz, BioTechMed, 8010 Graz, Austria
| | - Leonie de Boer
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Roman I Koning
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RC Leiden, Netherlands.,Netherlands Center for Electron Nanoscopy, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Elisabeth Ravensbergen
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Marnix Franken
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Tobias van der Heijde
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Bouke K Boekema
- Association of Dutch Burn Centres, 1942 LT Beverwijk, Netherlands
| | - Paulus H S Kwakman
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Niels Kamp
- Animal Research Institute, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | | | - Karl Lohner
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, Naturwissenschaftliche Fakultät (NAWI) Graz, BioTechMed, 8010 Graz, Austria
| | - Sebastian A J Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, Netherlands
| | - Peter H Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, Netherlands.
| |
Collapse
|
33
|
Xu WK, Tang JY, Yuan Z, Cai CY, Chen XB, Cui SQ, Liu P, Yu L, Cai KY, Ding JD. Accelerated Cutaneous Wound Healing Using an Injectable Teicoplanin-loaded PLGA-PEG-PLGA Thermogel Dressing. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2212-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Dicks LMT, Dreyer L, Smith C, van Staden AD. A Review: The Fate of Bacteriocins in the Human Gastro-Intestinal Tract: Do They Cross the Gut-Blood Barrier? Front Microbiol 2018; 9:2297. [PMID: 30323796 PMCID: PMC6173059 DOI: 10.3389/fmicb.2018.02297] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022] Open
Abstract
The intestinal barrier, consisting of the vascular endothelium, epithelial cell lining, and mucus layer, covers a surface of about 400 m2. The integrity of the gut wall is sustained by transcellular proteins forming tight junctions between the epithelial cells. Protected by three layers of mucin, the gut wall forms a non-permeable barrier, keeping digestive enzymes and microorganisms within the luminal space, separate from the blood stream. Microorganisms colonizing the gut may produce bacteriocins in an attempt to outcompete pathogens. Production of bacteriocins in a harsh and complex environment such as the gastro-intestinal tract (GIT) may be below minimal inhibitory concentration (MIC) levels. At such low levels, the stability of bacteriocins may be compromised. Despite this, most bacteria in the gut have the ability to produce bacteriocins, distributed throughout the GIT. With most antimicrobial studies being performed in vitro, we know little about the migration of bacteriocins across epithelial barriers. The behavior of bacteriocins in the GIT is studied ex vivo, using models, flow cells, or membranes resembling the gut wall. Furthermore, little is known about the effect bacteriocins have on the immune system. It is generally believed that the peptides will be destroyed by macrophages once they cross the gut wall. Studies done on the survival of neurotherapeutic peptides and their crossing of the brain-blood barrier, along with other studies on small peptides intravenously injected, may provide some answers. In this review, the stability of bacteriocins in the GIT, their effect on gut epithelial cells, and their ability to cross epithelial cells are discussed. These are important questions to address in the light of recent papers advocating the use of bacteriocins as possible alternatives to, or used in combination with, antibiotics.
Collapse
Affiliation(s)
- Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Leané Dreyer
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anton D. van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
35
|
A Bioluminescent Francisella tularensis SCHU S4 Strain Enables Noninvasive Tracking of Bacterial Dissemination and the Evaluation of Antibiotics in an Inhalational Mouse Model of Tularemia. Antimicrob Agents Chemother 2016; 60:7206-7215. [PMID: 27671061 DOI: 10.1128/aac.01586-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/08/2016] [Indexed: 11/20/2022] Open
Abstract
Bioluminescence imaging (BLI) enables real-time, noninvasive tracking of infection in vivo and longitudinal infection studies. In this study, a bioluminescent Francisella tularensis strain, SCHU S4-lux, was used to develop an inhalational infection model in BALB/c mice. Mice were infected intranasally, and the progression of infection was monitored in real time using BLI. A bioluminescent signal was detectable from 3 days postinfection (3 dpi), initially in the spleen and then in the liver and lymph nodes, before finally becoming systemic. The level of bioluminescent signal correlated with bacterial numbers in vivo, enabling noninvasive quantification of bacterial burdens in tissues. Treatment with levofloxacin (commencing at 4 dpi) significantly reduced the BLI signal. Furthermore, BLI was able to distinguish noninvasively between different levofloxacin treatment regimens and to identify sites of relapse following treatment cessation. These data demonstrate that BLI and SCHU S4-lux are suitable for the study of F. tularensis pathogenesis and the evaluation of therapeutics for tularemia.
Collapse
|