1
|
Raza MA, Ashraf MA. Drug resistance and possible therapeutic options against influenza A virus infection over past years. Arch Microbiol 2024; 206:458. [PMID: 39499323 DOI: 10.1007/s00203-024-04181-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
Influenza A virus infection, commonly known as the flu, has persisted in the community for centuries. Although we have yearly vaccinations to prevent seasonal flu, there remains a dire need for antiviral drugs to treat active infections. The constantly evolving genome of the influenza A virus limits the number of effective antiviral therapeutic options. Over time, antiviral drugs become inefficient due to the development of resistance, as seen with adamantanes, which are now largely ineffective against most circulating strains of the virus. Neuraminidase inhibitors have long been the drug of choice, but due to selection pressure, strains are becoming resistant to this class of drugs. Baloxavir marboxil, a drug with a novel mode of action, can be used against strains resistant to other classes of drugs but is still not available in many countries. Deep research into nanoparticles has shown they are effective as antiviral drugs, opening a new avenue of research to use them as antiviral agents with novel modes of action. As this deadly virus, which has killed millions of people in the past, continues to develop resistance, there is an urgent need for new therapeutic agents with novel modes of action to halt active infections in patients. This review article covers the available therapeutic antiviral drug options with different modes of action, their effectiveness, and resistance to various strains of influenza A virus.
Collapse
Affiliation(s)
- Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, No. 320 Yueyang Road, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Ou H, Chen L, Wu H. Enhanced Programmed Cell Death Protein 1/Programmed Cell Death Ligand 1 Expression Induced by Severe Influenza A Virus Infection Impairs Host's Antiviral Response. Viral Immunol 2022; 35:566-576. [PMID: 36094816 DOI: 10.1089/vim.2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Emerging research shows that the Programmed Cell Death Protein 1/Programmed Cell Death Ligand 1(PD-1/PD-L1) pathway modulates the antiviral response following influenza A virus (IAV) infection, and there is a need to understand further the role of the PD-1/PD-L1 signaling pathway in IAV infection. BALB/c mice were infected with different types of IAV to establish models of varying degrees of infection (mild and severe). The mice were pretreated with or without a PD-1 antagonist to evaluate the role of the PD-1/PD-L1 pathway in IAV infection. The general activity, degree of weight change, viral titer, pathological damage, protein expression, transcriptome level, and cytokine expression were evaluated in the mice. IAV infection, especially severe infection, induced expression of PD-1 and PD-L1 in the lungs and spleen of the mice at 6 days postinfection. Moreover, the expression level was positively correlated with the degree of pathological damage in the lung. PD-1 antagonists can alleviate weight loss in severely infected mice, reduce the viral load and pathological damage, enhance immune response-related gene expression, and induce the most robust responses of interferon-gamma without inducing an obvious Th1/Th17 response. The PD-1/PD-L1 signaling pathway induced by severe IAV infection seriously impairs the host's antiviral response; thus, blocking this signaling pathway may promote IAV recovery.
Collapse
Affiliation(s)
- Huilin Ou
- Ningbo Medical Centre, Li Huili Hospital affiliated of Ningbo University, Ningbo, China
| | - Linfang Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongcheng Wu
- Ningbo Medical Centre, Li Huili Hospital affiliated of Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Joo YH, Lee YG, Lim Y, Jeon H, Kim EH, Choi J, Hong W, Jeon H, Ahrweiler M, Kim H, Kang SC, Seo YJ. Potent antiviral activity of the extract of Elaeocarpus sylvestris against influenza A virus in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 97:153892. [PMID: 35033970 DOI: 10.1016/j.phymed.2021.153892] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Elaeocarpus sylvestris (Lour.) Poir. (Elaeocarpaceae) belongs to a genus of tropical and semitropical evergreen trees, which has known biological activities such as antiviral and immunomodulatory activities. However, its antiviral potential against influenza virus infection remains unknown. PURPOSE In this study, we investigated the antiviral activity of the 50% aqueous ethanolic extract of E. sylvestris (ESE) against influenza A virus (IAV) infection, which could lead to the development of novel phytomedicine to treat influenza virus infection. METHODS To investigate the in vitro antiviral activity of ESE and its main ingredients, 1,2,3,4,6-penta-O-galloyl-β-d-glucose (PGG) and geraniin (GE), the levels of viral RNAs, proteins, and infectious viral particles in IAV-infected MDCK cells were analyzed. Molecular docking analysis was performed to determine the binding energy of PGG and GE for IAV proteins. To investigate in vivo antiviral activity, IAV-infected mice were treated intranasally or intragastrically with ESE, PGG, or GE. RESULTS ESE and its gallate main ingredients (PGG and GE) strongly inhibited the production of viral RNAs, viral proteins, and infectious viral particles in vitro. Also through the viral attachment on cells, polymerase activity, signaling pathway, we revealed the ESE, PGG, and GE inhibit multiple steps of IAV replication. Molecular docking analysis revealed that PGG and GE could interact with 12 key viral proteins (M1, NP, NS1 effector domain (ED), NS1 RNA-binding domain (RBD), HA pocket A, HA receptor-binding domain (RBD), NA, PA, PB1, PB2 C-terminal domain, PB2 middle domain, and PB2 cap-binding domain) of IAV proteins with stable binding energy. Furthermore, intranasal administration of ESE, PGG, or GE protected mice from IAV-induced mortality and morbidity. Importantly, oral administration of ESE suppressed IAV replication and the expression of inflammatory cytokines such as IFN-γ, TNF-α, and IL-6 in the lungs to a large extent. CONCLUSION ESE and its major components (PGG and PE) exhibited strong antiviral activity in multiple steps against IAV infection in silico, in vivo, and in vitro. Therefore, ESE could be used as a novel natural product derived therapeutic agent to treat influenza virus infection.
Collapse
Affiliation(s)
- Yong-Hyun Joo
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Korea
| | - Yeong-Geun Lee
- Department of Oriental Medicine Biotechnology, College of Life Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi 17104, Korea
| | - Younghyun Lim
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Korea
| | - Hoyeon Jeon
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Korea
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, Korea
| | - Joongyeon Choi
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Woojae Hong
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyelin Jeon
- Research Institute, GENENCELL Co., Ltd., Yongin 16950, Gyeonggi-do, Korea
| | | | - Hyunggun Kim
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi 17104, Korea.
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Korea.
| |
Collapse
|
4
|
Ti H. Phytochemical Profiles and their Anti-inflammatory Responses Against Influenza from Traditional Chinese Medicine or Herbs. Mini Rev Med Chem 2021; 20:2153-2164. [PMID: 32767941 DOI: 10.2174/1389557520666200807134921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 11/22/2022]
Abstract
Traditional Chinese medicine (TCM) or herbs are widely used in the prevention and treatment of viral infectious diseases. However, the underlying mechanisms of TCMs remain largely obscure due to complicated material basis and multi-target therapeutics. TCMs have been reported to display anti-influenza activity associated with immunoregulatory mechanisms by enhancing host antiinfluenza immune responses. Previous studies have helped us understand the direct harm caused by the virus itself. In this review, we have tried to summarize recent progress in TCM-based anti-influenza research on the indirect harmful immune responses caused by influenza viruses. In particular, the phytochemicals from TCMs responsible for molecular mechanisms of action belonging to different classes, including phenolic compounds, flavonoids, alkaloids and polysaccharides, have been identified and demonstrated. In addition, this review focuses on the pharmacological mechanism, e.g., inflammatory responses and the interferon (IFN) signaling pathway, which can provide a theoretical basis and approaches for TCM based anti-influenza treatment.
Collapse
Affiliation(s)
- Huihui Ti
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
5
|
de Freitas CS, Rocha MEN, Sacramento CQ, Marttorelli A, Ferreira AC, Rocha N, de Oliveira AC, de Oliveira Gomes AM, Dos Santos PS, da Silva EO, da Costa JP, de Lima Moreira D, Bozza PT, Silva JL, Barroso SPC, Souza TML. Agathisflavone, a Biflavonoid from Anacardium occidentale L., Inhibits Influenza Virus Neuraminidase. Curr Top Med Chem 2020; 20:111-120. [PMID: 31854280 DOI: 10.2174/1568026620666191219150738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/31/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Neuraminidase inhibitors (NAIs) are the only class of antivirals in clinical use against influenza virus approved worldwide. However, approximately 1-3% of circulating strains present resistance mutations to oseltamivir (OST), the most used NAI. Therefore, it is important to catalogue new molecules to inhibit influenza virus, especially OST-resistant strains. Natural products from tropical plants used for human consumption represent a worthy class of substances. Their use could be stimulated in resource-limited setting where the access to expensive antiviral therapies is restricted. METHODS We evaluated the anti-influenza virus activity of agathisflavone derived from Anacardium occidentale L. RESULTS The neuraminidase (NA) activity of wild-type and OST-resistant influenza virus was inhibited by agathisflavone, with IC50 values ranging from 20 to 2.0 µM, respectively. Agathisflavone inhibited influenza virus replication with EC50 of 1.3 µM. Sequential passages of the virus in the presence of agathisflavone revealed the emergence of mutation R249S, A250S and R253Q in the NA gene. These changes are outside the OST binding region, meaning that agathisflavone targets this viral enzyme at a region different than conventional NAIs. CONCLUSION Altogether our data suggest that agathisflavone has a promising chemical structure for the development of anti-influenza drugs.
Collapse
Affiliation(s)
- Caroline S de Freitas
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Marco E N Rocha
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Química de Produtos Naturais 5, Farmanguinhos, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Q Sacramento
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andressa Marttorelli
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - André C Ferreira
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Natasha Rocha
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Andrea Cheble de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Andre Marco de Oliveira Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Patrícia Souza Dos Santos
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Edilene Oliveira da Silva
- Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Biologia Estrutural, Belém, Pará, Brazil
| | - Josineide Pantoja da Costa
- Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Biologia Estrutural, Belém, Pará, Brazil
| | - Davyson de Lima Moreira
- Laboratório de Química de Produtos Naturais 5, Farmanguinhos, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Shana Priscila Coutinho Barroso
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciencia e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Instituto de Pesquisas Biomédicas, Hospital Naval Marcílio Dias, Marinha do Brasil, Brazil
| | - Thiago Moreno L Souza
- Laboratorio de Imunofarmacologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Rohini K, Roy R, Ramanathan K, Shanthi V. E-pharmacophore hypothesis strategy to discover potent inhibitor for influenza treatment. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2019. [DOI: 10.1142/s0219633619500214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The surface protein of Influenza virus, Neuraminidase (NA), is believed to play a critical role in the release of new viral particle and thus spreads infection. It has been recognized as a valid drug target for anti-influenza therapy. Despite the number of available approved drugs for the influenza infection treatment, the emergence of resistant variants with novel mutations are the foremost challenges for the currently used NA inhibitors. Thus, the current investigation was carried out to ascertain potent inhibitors using computational strategies such as e-pharmacophore based virtual screening and docking approach. A three-dimensional e-pharmacophore hypothesis was generated based on the chemical features of complexes of the drugs and NA protein using PHASE module of Schrödinger suite. The generated hypothesis consisted of one hydrogen bond acceptor (A), two hydrogen bond donors (D), one negatively charged group (N) and one aromatic ring (R), ADDNR. The hypothesis was further evaluated for its integrity using enrichment analysis and used to filter out molecules with similar pharmacophoric features from approved, investigational and experimental subsets of DrugBank and ZINC database. In addition, ligand filtration was performed to curb down the molecules to an efficient collection of hit molecules by using Lipinski “rule of five and ADME analysis by using Qikprop module. Overall, the results from our analysis suggest that compound lisinopril and formoterol could serve as potent antiviral compounds for the treatment of influenza A virus infection. It is worth mentioning that the results correlate well with literature evidences.
Collapse
Affiliation(s)
- K. Rohini
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Roosha Roy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - K. Ramanathan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - V. Shanthi
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
7
|
Lack of selective resistance of influenza A virus in presence of host-targeted antiviral, UV-4B. Sci Rep 2019; 9:7484. [PMID: 31097731 PMCID: PMC6522537 DOI: 10.1038/s41598-019-43030-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023] Open
Abstract
Development of antiviral drug resistance is a continuous concern for viruses with high mutation rates such as influenza. The use of antiviral drugs targeting host proteins required for viral replication is less likely to result in the selection of resistant viruses than treating with direct-acting antivirals. The iminosugar UV-4B is a host-targeted glucomimetic that inhibits endoplasmic reticulum α-glucosidase I and II enzymes resulting in improper glycosylation and misfolding of viral glycoproteins. UV-4B has broad-spectrum antiviral activity against diverse viruses including dengue and influenza. To examine the ability of influenza virus to develop resistance against UV-4B, mouse-adapted influenza virus was passaged in mice in the presence or absence of UV-4B and virus isolated from lungs was used to infect the next cohort of mice, for five successive passages. Deep sequencing was performed to identify changes in the viral genome during passaging in the presence or absence of UV-4B. Relatively few minor variants were identified within each virus and the ratio of nonsynonymous to synonymous (dN/dS) substitutions of minor variants confirmed no apparent positive selection following sustained exposure to UV-4B. Three substitutions (one synonymous in PB2, one nonsynonymous in M and PA each) were specifically enriched (>3%) in UV-4B-treated groups at passage five. Recombinant viruses containing each individual or combinations of these nonsynonymous mutations remained sensitive to UV-4B treatment in mice. Overall, these data provide evidence that there is a high genetic barrier to the generation and selection of escape mutants following exposure to host-targeted iminosugar antivirals.
Collapse
|
8
|
Kosik I, Yewdell JW. Influenza Hemagglutinin and Neuraminidase: Yin⁻Yang Proteins Coevolving to Thwart Immunity. Viruses 2019; 11:E346. [PMID: 31014029 PMCID: PMC6520700 DOI: 10.3390/v11040346] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 01/04/2023] Open
Abstract
Influenza A virions possess two surface glycoproteins-the hemagglutinin (HA) and neuraminidase (NA)-which exert opposite functions. HA attaches virions to cells by binding to terminal sialic acid residues on glycoproteins/glycolipids to initiate the infectious cycle, while NA cleaves terminal sialic acids, releasing virions to complete the infectious cycle. Antibodies specific for HA or NA can protect experimental animals from IAV pathogenesis and drive antigenic variation in their target epitopes that impairs vaccine effectiveness in humans. Here, we review progress in understanding HA/NA co-evolution as each acquires epistatic mutations to restore viral fitness to mutants selected in the other protein by host innate or adaptive immune pressure. We also discuss recent exciting findings that antibodies to HA can function in vivo by blocking NA enzyme activity to prevent nascent virion release and enhance Fc receptor-based activation of innate immune cells.
Collapse
Affiliation(s)
- Ivan Kosik
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
9
|
Xu W, Xia S, Pu J, Wang Q, Li P, Lu L, Jiang S. The Antihistamine Drugs Carbinoxamine Maleate and Chlorpheniramine Maleate Exhibit Potent Antiviral Activity Against a Broad Spectrum of Influenza Viruses. Front Microbiol 2018; 9:2643. [PMID: 30459739 PMCID: PMC6232386 DOI: 10.3389/fmicb.2018.02643] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023] Open
Abstract
Influenza A viruses (IAV) comprise some of the most common infectious pathogens in humans, and they cause significant mortality and morbidity in immunocompromised people as well as children and the elderly. After screening an FDA-approved drug library containing 1280 compounds by cytopathic effect (CPE) reduction assay using the Cell Counting Kit-8, we found two antihistamines, carbinoxamine maleate (CAM) and S-(+)-chlorpheniramine maleate (SCM) with potent antiviral activity against A/Shanghai/4664T/2013(H7N9) infection with IC50 (half-maximal inhibitory concentration) of 3.56 and 11.84 μM, respectively. Further studies showed that CAM and SCM could also inhibit infection by other influenza A viruses, including A/Shanghai/37T/2009(H1N1), A/Puerto Rico/8/1934(H1N1), A/Guizhou/54/1989(H3N2), and one influenza B virus, B/Shanghai/2017(BY). Mice were challenged intranasally with A/H7N9/4664T/2013 (H7N9) virus and intraperitoneally injected with CAM (10 mg/kg per day) or SCM (1 mg/kg per day) for 5 days. CAM or SCM (10 mg/kg per day) were fully protected against challenge with A/Shanghai/4664T/2013(H7N9). The results from mechanistic studies indicate that both could inhibit influenza virus infection by blocking viral entry into the target cell, the early stage of virus life cycle. However, CAM and SCM neither blocked virus attachment, characteristic of HA activity, nor virus release, characteristic of NA activity. Such data suggest that these two compounds may interfere with the endocytosis process. Thus, we have identified two FDA-approved antihistamine drugs, CAM and SCM, which can be repurposed for inhibiting infection by divergent influenza A strains and one influenza B strain with potential to be used for treatment and prevention of influenza virus infection.
Collapse
Affiliation(s)
- Wei Xu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Shuai Xia
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Jing Pu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Qian Wang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Peiyu Li
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Lu Lu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Shibo Jiang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| |
Collapse
|
10
|
Barbezange C, Jones L, Blanc H, Isakov O, Celniker G, Enouf V, Shomron N, Vignuzzi M, van der Werf S. Seasonal Genetic Drift of Human Influenza A Virus Quasispecies Revealed by Deep Sequencing. Front Microbiol 2018; 9:2596. [PMID: 30429836 PMCID: PMC6220372 DOI: 10.3389/fmicb.2018.02596] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/11/2018] [Indexed: 01/06/2023] Open
Abstract
After a pandemic wave in 2009 following their introduction in the human population, the H1N1pdm09 viruses replaced the previously circulating, pre-pandemic H1N1 virus and, along with H3N2 viruses, are now responsible for the seasonal influenza type A epidemics. So far, the evolutionary potential of influenza viruses has been mainly documented by consensus sequencing data. However, like other RNA viruses, influenza A viruses exist as a population of diverse, albeit related, viruses, or quasispecies. Interest in this quasispecies nature has increased with the development of next generation sequencing (NGS) technologies that allow a more in-depth study of the genetic variability. NGS deep sequencing methodologies were applied to determine the whole genome genetic heterogeneity of the three categories of influenza A viruses that circulated in humans between 2007 and 2012 in France, directly from clinical respiratory specimens. Mutation frequencies and single nucleotide polymorphisms were used for comparisons to address the level of natural intrinsic heterogeneity of influenza A viruses. Clear differences in single nucleotide polymorphism profiles between seasons for a given subtype also revealed the constant genetic drift that human influenza A virus quasispecies undergo.
Collapse
Affiliation(s)
- Cyril Barbezange
- Viral Populations and Pathogenesis, Department of Virology, Institut Pasteur, Paris, France
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
| | - Louis Jones
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
- Bioinformatics and Biostatistics HUB, The Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| | - Hervé Blanc
- Viral Populations and Pathogenesis, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
| | - Ofer Isakov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gershon Celniker
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vincent Enouf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
| | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
11
|
Zhao X, Li R, Zhou Y, Xiao M, Ma C, Yang Z, Zeng S, Du Q, Yang C, Jiang H, Hu Y, Wang K, Mok CKP, Sun P, Dong J, Cui W, Wang J, Tu Y, Yang Z, Hu W. Discovery of Highly Potent Pinanamine-Based Inhibitors against Amantadine- and Oseltamivir-Resistant Influenza A Viruses. J Med Chem 2018; 61:5187-5198. [PMID: 29799746 DOI: 10.1021/acs.jmedchem.8b00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Influenza pandemic is a constant major threat to public health caused by influenza A viruses (IAVs). IAVs are subcategorized by the surface proteins hemagglutinin (HA) and neuraminidase (NA), in which they are both essential targets for drug discovery. While it is of great concern that NA inhibitor oseltamivir resistant strains are frequently identified from human or avian influenza virus, structural and functional characterization of influenza HA has raised hopes for new antiviral therapies. In this study, we explored a structure-activity relationship (SAR) of pinanamine-based antivirals and discovered a potent inhibitor M090 against amantadine-resistant viruses, including the 2009 H1N1 pandemic strains, and oseltamivir-resistant viruses. Mechanism of action studies, particularly hemolysis inhibition, indicated that M090 targets influenza HA and it occupied a highly conserved pocket of the HA2 domain and inhibited virus-mediated membrane fusion by "locking" the bending state of HA2 during the conformational rearrangement process. This work provides new binding sites within the HA protein and indicates that this pocket may be a promising target for broad-spectrum anti-influenza A drug design and development.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China.,Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Yang Zhou
- Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Mengjie Xiao
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Zhongjin Yang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Shaogao Zeng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Qiuling Du
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Chunguang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Kefeng Wang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Chris Ka Pun Mok
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China.,HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine , The University of Hong Kong , 5 Sassoon Road , Pokfulam , Hong Kong
| | - Ping Sun
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Jianghong Dong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Wei Cui
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Yaoquan Tu
- Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Wenhui Hu
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| |
Collapse
|
12
|
Hyphenated 3D-QSAR statistical model-drug repurposing analysis for the identification of potent neuraminidase inhibitor. Cell Biochem Biophys 2018; 76:357-376. [PMID: 29687225 DOI: 10.1007/s12013-018-0844-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/10/2018] [Indexed: 01/30/2023]
Abstract
The Influenza A virus is one of the principle causes of respiratory illness in human. The surface glycoprotein of the influenza virus, neuraminidase (NA), has a vital role in the release of new viral particle and spreads infection in the respiratory tract. It has been long recognized as a valid drug target for influenza A virus infection. Oseltamivir is used as a standard drug of choice for the treatment of influenza. However, the emergence of mutants with novel mutations has increased the resistance to potent NA inhibitor. In the present investigation, we have employed computer-assisted combinatorial techniques in the screening of 8621 molecules from Drug Bank to find potent NA inhibitors. A three-dimensional pharmacophore model was generated from the previously reported 28 carbocylic influenza NA inhibitors along with oseltamivir using PHASE module of Schrödinger Suite. The model generated consists of one hydrogen bond acceptor (A), one hydrogen bond donors (D), one hydrophobic group (H), and one positively charged group (P), ADHP. The hypothesis was further validated for its integrity and significance using enrichment analysis. Subsequently, an atom-based 3D-QSAR model was built using the common pharmacophore hypothesis (CPH). The developed 3D-QSAR model was found to be statistically significant with R2 value of 0.9866 and Q2 value of 0.7629. Further screening was accomplished using three-stage docking process using the Glide algorithm. The resultant lead molecules were examined for its drug-like properties using the Qikprop algorithm. Finally, the calculated pIC50 values of the lead compounds were validated by the AutoQSAR algorithm. Overall, the results from our analysis highlights that lisinopril (DB00722) is predicted to bind better with NA than currently approved drug. In addition, it has the best match in binding geometry conformations with the existing NA inhibitor. Note that the antiviral activity of lisinopril is reported in the literature. However, our paper is the first report on lisinopril activity against influenza A virus infection. These results are envisioned to help design the novel NA inhibitors with an increased antiviral efficacy.
Collapse
|
13
|
Discovery of Potent Neuraminidase Inhibitors Using a Combination of Pharmacophore-Based Virtual Screening and Molecular Simulation Approach. Appl Biochem Biotechnol 2017; 184:1421-1440. [DOI: 10.1007/s12010-017-2625-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/02/2017] [Indexed: 01/20/2023]
|
14
|
Imidazole-based pinanamine derivatives: Discovery of dual inhibitors of the wild-type and drug-resistant mutant of the influenza A virus. Eur J Med Chem 2016; 108:605-615. [DOI: 10.1016/j.ejmech.2015.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 02/08/2023]
|
15
|
Chin AWH, Yen HL, Krauss S, Webby RJ, Poon LLM. Recombinant influenza virus with a pandemic H2N2 polymerase complex has a higher adaptive potential than one with seasonal H2N2 polymerase complex. J Gen Virol 2015; 97:611-619. [PMID: 26703222 DOI: 10.1099/jgv.0.000385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The reassortment of influenza viral gene segments plays a key role in the genesis of pandemic strains. All of the last three pandemic viruses contained reassorted polymerase complexes with subunits derived from animal viruses, suggesting that the acquisition of a reassorted polymerase complex might have a role in generating these pandemic viruses. Here, we studied polymerase activities of the pandemic H2N2, seasonal H2N2 and pandemic H3N2 viruses. We observed that the viral ribonucleoprotein (vRNP) of pandemic H2N2 virus has a highly robust activity. The polymerase activity of seasonal H2N2 viruses, however, was much reduced. We further identified three mutations (PB2-I114V, PB1-S261N and PA-D383N) responsible for the reduced activity. To determine the potential impact of viral polymerase activity on the viral life cycle, recombinant H3N2 viruses carrying pandemic and seasonal H2N2 vRNP were studied in cell cultures supplemented with oseltamivir carboxylate and tested for their abilities to develop adaptive or resistant mutations. It was found that the recombinant virus with pandemic H2N2 vRNP was more capable of restoring the viral fitness than the one with seasonal vRNP. These results suggest that a robust vRNP is advantageous to influenza virus to cope with a new selection pressure.
Collapse
Affiliation(s)
- Alex W H Chin
- Centre of Influenza Research & School of Public Health, University of Hong Kong, Hong Kong, PR China
| | - Hui-L Yen
- Centre of Influenza Research & School of Public Health, University of Hong Kong, Hong Kong, PR China
| | - Scott Krauss
- Virology Division, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Webby
- Virology Division, Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Leo L M Poon
- Centre of Influenza Research & School of Public Health, University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
16
|
Influenza A(H7N9) virus acquires resistance-related neuraminidase I222T substitution when infected mallards are exposed to low levels of oseltamivir in water. Antimicrob Agents Chemother 2015; 59:5196-202. [PMID: 26077257 PMCID: PMC4538561 DOI: 10.1128/aac.00886-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/05/2015] [Indexed: 01/09/2023] Open
Abstract
Influenza A virus (IAV) has its natural reservoir in wild waterfowl, and new human IAVs often contain gene segments originating from avian IAVs. Treatment options for severe human influenza are principally restricted to neuraminidase inhibitors (NAIs), among which oseltamivir is stockpiled in preparedness for influenza pandemics. There is evolutionary pressure in the environment for resistance development to oseltamivir in avian IAVs, as the active metabolite oseltamivir carboxylate (OC) passes largely undegraded through sewage treatment to river water where waterfowl reside. In an in vivo mallard (Anas platyrhynchos) model, we tested if low-pathogenic avian influenza A(H7N9) virus might become resistant if the host was exposed to low levels of OC. Ducks were experimentally infected, and OC was added to their water, after which infection and transmission were maintained by successive introductions of uninfected birds. Daily fecal samples were tested for IAV excretion, genotype, and phenotype. Following mallard exposure to 2.5 μg/liter OC, the resistance-related neuraminidase (NA) I222T substitution, was detected within 2 days during the first passage and was found in all viruses sequenced from subsequently introduced ducks. The substitution generated 8-fold and 2.4-fold increases in the 50% inhibitory concentration (IC50) for OC (P < 0.001) and zanamivir (P = 0.016), respectively. We conclude that OC exposure of IAV hosts, in the same concentration magnitude as found in the environment, may result in amino acid substitutions, leading to changed antiviral sensitivity in an IAV subtype that can be highly pathogenic to humans. Prudent use of oseltamivir and resistance surveillance of IAVs in wild birds are warranted.
Collapse
|
17
|
Marjuki H, Mishin VP, Chesnokov AP, De La Cruz JA, Davis CT, Villanueva JM, Fry AM, Gubareva LV. Neuraminidase Mutations Conferring Resistance to Oseltamivir in Influenza A(H7N9) Viruses. J Virol 2015; 89:5419-26. [PMID: 25740997 PMCID: PMC4442539 DOI: 10.1128/jvi.03513-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/23/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Human infections by avian influenza A(H7N9) virus entail substantial morbidity and mortality. Treatment of infected patients with the neuraminidase (NA) inhibitor oseltamivir was associated with emergence of viruses carrying NA substitutions. In the NA inhibition (NI) assay, R292K conferred highly reduced inhibition by oseltamivir, while E119V and I222K each caused reduced inhibition. To facilitate establishment of laboratory correlates of clinically relevant resistance, experiments were conducted in ferrets infected with virus carrying wild-type or variant NA genes recovered from the A/Taiwan/1/2013 isolate. Oseltamivir treatment (5 or 25 mg/kg of body weight/dose) was given 4 h postinfection, followed by twice-daily treatment for 5 days. Treatment of ferrets infected with wild-type virus resulted in a modest dose-dependent reduction (0.7 to 1.5 log10 50% tissue culture infectious dose [TCID50]) in nasal wash viral titers and inflammation response. Conversely, treatment failed to significantly inhibit the replication of R292K or E119V virus. A small reduction of viral titers was detected on day 5 in ferrets infected with the I222K virus. The propensity for oseltamivir resistance emergence was assessed in oseltamivir-treated animals infected with wild-type virus; emergence of R292K virus was detected in 3 of 6 ferrets within 5 to 7 days postinfection. Collectively, we demonstrate that R292K, E119V, and I222K reduced the inhibitory activity of oseltamivir, not only in the NI assay, but also in infected ferrets, judged particularly by viral loads in nasal washes, and may signal the need for alternative therapeutics. Thus, these clinical outcomes measured in the ferret model may correlate with clinically relevant oseltamivir resistance in humans. IMPORTANCE This report provides more evidence for using the ferret model to assess the susceptibility of influenza A(H7N9) viruses to oseltamivir, the most prescribed anti-influenza virus drug. The information gained can be used to assist in the establishment of laboratory correlates of human disease and drug therapy. The rapid emergence of viruses with R292K in treated ferrets correlates well with the multiple reports on this NA variant in treated human patients. Our findings highlight the importance of the discovery and characterization of new antiviral drugs with different mechanisms of action and the use of combination treatment strategies against emerging viruses with pandemic potential, such as avian H7N9 virus, particularly against those carrying drug resistance markers.
Collapse
Affiliation(s)
- Henju Marjuki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Vasiliy P Mishin
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anton P Chesnokov
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA Battle Memorial Institute, Atlanta, Georgia, USA
| | - Juan A De La Cruz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA Battle Memorial Institute, Atlanta, Georgia, USA
| | - Charles T Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Julie M Villanueva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alicia M Fry
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Heterosubtypic protection conferred by the human monoclonal antibody PN-SIA28 against influenza A virus lethal infections in mice. Antimicrob Agents Chemother 2015; 59:2647-53. [PMID: 25691648 DOI: 10.1128/aac.00118-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/13/2015] [Indexed: 01/03/2023] Open
Abstract
PN-SIA28 is a human monoclonal antibody (Hu-MAb) targeting highly conserved epitopes within the stem portion of the influenza virus hemagglutinin (HA) (N. Clementi, et al, PLoS One 6:e28001, 2011, http://dx.doi.org/10.1371/journal.pone.0028001). Previous in vitro studies demonstrated PN-SIA28 neutralizing activities against phylogenetically divergent influenza A subtypes. In this study, the protective activity of PN-SIA28 was evaluated in mice inoculated with lethal influenza A/WSN/33 (H1N1), A/Quebec/144147/09 (H1N1)pdm09, and A/Victoria/3/75 (H3N2) viruses. At 24 h postinoculation (p.i.), animals received PN-SIA28 intraperitoneally (1 or 10 mg/kg of body weight) or 10 mg/kg of unrelated Hu-MAb (mock). Body weight loss and mortality rate (MR) were recorded for 14 days postinfection (p.i.). Lung viral titers (LVT) were determined at day 5 p.i. In A/WSN/33 (H1N1)-infected groups, all untreated and mock-receiving mice died, whereas MRs of 87.5% and 25% were observed in mice that received PN-SIA28 1 and 10 mg/kg, respectively. In influenza A(H1N1) pdm09-infected groups, an MR of 75% was recorded for untreated and mock-treated groups, whereas the PN-SIA28 1-mg/kg and 10-mg/kg groups had rates of 62.5% and 0%, respectively. In A/Victoria/3/75 (H3N2)-infected animals, untreated and mock-treated animals had MRs of 37.5% and 25%, respectively, and no mortalities were recorded after PN-SIA28 treatments. Accordingly, PN-SIA28 treatments significantly reduced weight losses and resulted in a ≥ 1-log reduction in LVT compared to the control in all infection groups. This study confirms that antibodies targeting highly conserved epitopes in the influenza HA stem region, like PN-SIA28, not only neutralize influenza A viruses of clinically relevant subtypes in vitro but also, more importantly, protect from a lethal influenza virus challenge in vivo.
Collapse
|
19
|
Lee HK, Tang JWT, Loh TP, Hurt AC, Oon LLE, Koay ESC. Molecular surveillance of antiviral drug resistance of influenza A/H3N2 virus in Singapore, 2009-2013. PLoS One 2015; 10:e0117822. [PMID: 25635767 PMCID: PMC4311985 DOI: 10.1371/journal.pone.0117822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/02/2015] [Indexed: 01/10/2023] Open
Abstract
Adamantanes and neuraminidase inhibitors (NAIs) are two classes of antiviral drugs available for the chemoprophylaxis and treatment of influenza infections. To determine the frequency of drug resistance in influenza A/H3N2 viruses in Singapore, large-scale sequencing of neuraminidase (NA) and matrix protein (MP) genes was performed directly without initial culture amplification. 241 laboratory-confirmed influenza A/H3N2 clinical samples, collected between May 2009 and November 2013 were included. In total, 229 NA (95%) and 241 MP (100%) complete sequences were obtained. Drug resistance mutations in the NA and MP genes were interpreted according to published studies. For the NAIs, a visual inspection of the aligned NA sequences revealed no known drug resistant genotypes (DRGs). For the adamantanes, the well-recognised S31N DRG was identified in all 241 MP genes. In addition, there was an increasing number of viruses carrying the combination of D93G+Y155F+D251V (since May 2013) or D93G (since March 2011) mutations in the NA gene. However, in-vitro NAI testing indicated that neither D93G+Y155F+D251V nor D93G alone conferred any changes in NAI susceptibility. Lastly, an I222T mutation in the NA gene that has previously been reported to cause oseltamivir-resistance in influenza A/H1N1/2009, B, and A/H5N1, was detected from a treatment-naïve patient. Further in-vitro NAI testing is required to confirm the effect of this mutation in A/H3N2 virus.
Collapse
Affiliation(s)
- Hong Kai Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - Julian Wei-Tze Tang
- Clinical Microbiology, Leicester Royal Infirmary, Leicester, United Kingdom
- * E-mail: (JWT); (ESK)
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore, Singapore
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, VIC, Australia
- Melbourne School of Population and Global Health, University of Melbourne, VIC, Australia
| | | | - Evelyn Siew-Chuan Koay
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, National University Health System, Singapore, Singapore
- * E-mail: (JWT); (ESK)
| |
Collapse
|