1
|
Elsherif WM, Hassanien AA, Zayed GM, Kamal SM. Natural approach of using nisin and its nanoform as food bio-preservatives against methicillin resistant Staphylococcus aureus and E.coli O157:H7 in yoghurt. BMC Vet Res 2024; 20:192. [PMID: 38734600 PMCID: PMC11088153 DOI: 10.1186/s12917-024-03985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/21/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Natural antimicrobial agents such as nisin were used to control the growth of foodborne pathogens in dairy products. The current study aimed to examine the inhibitory effect of pure nisin and nisin nanoparticles (nisin NPs) against methicillin resistant Staphylococcus aureus (MRSA) and E.coli O157:H7 during the manufacturing and storage of yoghurt. Nisin NPs were prepared using new, natural, and safe nano-precipitation method by acetic acid. The prepared NPs were characterized using zeta-sizer and transmission electron microscopy (TEM). In addition, the cytotoxicity of nisin NPs on vero cells was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The minimum inhibitory concentrations (MICs) of nisin and its nanoparticles were determined using agar well-diffusion method. Further, fresh buffalo's milk was inoculated with MRSA or E.coli O157:H7 (1 × 106 CFU/ml) with the addition of either nisin or nisin NPs, and then the inoculated milk was used for yoghurt making. The organoleptic properties, pH and bacterial load of the obtained yoghurt were evaluated during storage in comparison to control group. RESULTS The obtained results showed a strong antibacterial activity of nisin NPs (0.125 mg/mL) against MRSA and E.coli O157:H7 in comparison with control and pure nisin groups. Notably, complete eradication of MRSA and E.coli O157:H7 was observed in yoghurt formulated with nisin NPs after 24 h and 5th day of storage, respectively. The shelf life of yoghurt inoculated with nisin nanoparticles was extended than those manufactured without addition of such nanoparticles. CONCLUSIONS Overall, the present study indicated that the addition of nisin NPs during processing of yoghurt could be a useful tool for food preservation against MRSA and E.coli O157:H7 in dairy industry.
Collapse
Affiliation(s)
- Walaa M Elsherif
- Certified Food Lab, Nanotechnology Research and Synthesis Unit, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Assiut,, Egypt
- Faculty of Health Sciences Technology, New Assiut Technological University (NATU), Assiut, Egypt
| | - Alshimaa A Hassanien
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Gamal M Zayed
- Faculty of Health Sciences Technology, New Assiut Technological University (NATU), Assiut, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Al-Azhar University, Assiut, Egypt
| | - Sahar M Kamal
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
2
|
Puls JS, Winnerling B, Power JJ, Krüger AM, Brajtenbach D, Johnson M, Bilici K, Camus L, Fließwasser T, Schneider T, Sahl HG, Ghosal D, Kubitscheck U, Heilbronner S, Grein F. Staphylococcus epidermidis bacteriocin A37 kills natural competitors with a unique mechanism of action. THE ISME JOURNAL 2024; 18:wrae044. [PMID: 38470311 PMCID: PMC10988021 DOI: 10.1093/ismejo/wrae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Many bacteria produce antimicrobial compounds such as lantibiotics to gain advantage in the competitive natural environments of microbiomes. Epilancins constitute an until now underexplored family of lantibiotics with an unknown ecological role and unresolved mode of action. We discovered production of an epilancin in the nasal isolate Staphylococcus epidermidis A37. Using bioinformatic tools, we found that epilancins are frequently encoded within staphylococcal genomes, highlighting their ecological relevance. We demonstrate that production of epilancin A37 contributes to Staphylococcus epidermidis competition specifically against natural corynebacterial competitors. Combining microbiological approaches with quantitative in vivo and in vitro fluorescence microscopy and cryo-electron tomography, we show that A37 enters the corynebacterial cytoplasm through a partially transmembrane-potential-driven uptake without impairing the cell membrane function. Upon intracellular aggregation, A37 induces the formation of intracellular membrane vesicles, which are heavily loaded with the compound and are essential for the antibacterial activity of the epilancin. Our work sheds light on the ecological role of epilancins for staphylococci mediated by a mode of action previously unknown for lantibiotics.
Collapse
Affiliation(s)
- Jan-Samuel Puls
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
| | - Benjamin Winnerling
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany
| | - Jeffrey J Power
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Annika M Krüger
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Dominik Brajtenbach
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Matthew Johnson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kevser Bilici
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Laura Camus
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas Fließwasser
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany
| | - Hans-Georg Sahl
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
| | - Debnath Ghosal
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, 53115 Bonn, Germany
| | - Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, 72076 Tübingen, Germany
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Present address: Faculty of Biology, Microbiology, Ludwig-Maximilians-University of Munich, 82152 München, Germany
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53115 Bonn, Germany
| |
Collapse
|
3
|
Puls JS, Brajtenbach D, Schneider T, Kubitscheck U, Grein F. Inhibition of peptidoglycan synthesis is sufficient for total arrest of staphylococcal cell division. SCIENCE ADVANCES 2023; 9:eade9023. [PMID: 36947615 PMCID: PMC10032595 DOI: 10.1126/sciadv.ade9023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Bacterial cell wall biosynthesis is the target of many important antibiotics. Its spatiotemporal organization is closely coordinated with cell division. However, the role of peptidoglycan synthesis within cell division is not fully understood. Even less is known about the impact of antibiotics on the coordination of these two essential processes. Visualizing the essential cell division protein FtsZ and other key proteins in Staphylococcus aureus, we show that antibiotics targeting peptidoglycan synthesis arrest cell division within minutes of treatment. The glycopeptides vancomycin and telavancin completely inhibit septum constriction in all phases of cell division. The beta-lactam oxacillin stops division progress by preventing recruitment of the major peptidoglycan synthase PBP2 to the septum, revealing PBP2 as crucial for septum closure. Our work identifies cell division as key cellular target of these antibiotics and provides evidence that peptidoglycan synthesis is the essential driving force of septum constriction throughout cell division of S. aureus.
Collapse
Affiliation(s)
- Jan-Samuel Puls
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Dominik Brajtenbach
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner site Bonn-Cologne, 53115 Bonn, Germany
| |
Collapse
|
4
|
Hossain MI, Rahaman Mizan MF, Toushik SH, Roy PK, Jahid IK, Park SH, Ha SD. Antibiofilm effect of nisin alone and combined with food-grade oil components (thymol and eugenol) against Listeria monocytogenes cocktail culture on food and food-contact surfaces. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Chakraborty P, Oosterhuis D, Bonsignore R, Casini A, Olinga P, Scheffers D. An Organogold Compound as Potential Antimicrobial Agent against Drug-Resistant Bacteria: Initial Mechanistic Insights. ChemMedChem 2021; 16:3060-3070. [PMID: 34181818 PMCID: PMC8518660 DOI: 10.1002/cmdc.202100342] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 01/07/2023]
Abstract
The rise of antimicrobial resistance has necessitated novel strategies to efficiently combat pathogenic bacteria. Metal-based compounds have been proven as a possible alternative to classical organic drugs. Here, we have assessed the antibacterial activity of seven gold complexes of different families. One compound, a cyclometalated Au(III) C^N complex, showed activity against Gram-positive bacteria, including multi-drug resistant clinical strains. The mechanism of action of this compound was studied in Bacillus subtilis. Overall, the studies point towards a complex mode of antibacterial action, which does not include induction of oxidative stress or cell membrane damage. A number of genes related to metal transport and homeostasis were upregulated upon short treatment of the cells with gold compound. Toxicity tests conducted on precision-cut mouse tissue slices ex vivo revealed that the organogold compound is poorly toxic to mouse liver and kidney tissues, and may thus, be treated as an antibacterial drug candidate.
Collapse
Affiliation(s)
- Parichita Chakraborty
- Department of Molecular MicrobiologyGroningen Institute for Biomolecular Sciences and BiotechnologyUniversity of Groningen9747 AGGroningenThe Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and BiopharmacyGroningen Research Institute of PharmacyUniversity of Groningen9713AVGroningenThe Netherlands
| | - Riccardo Bonsignore
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstr. 485748Garching b. MünchenGermany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstr. 485748Garching b. MünchenGermany
| | - Peter Olinga
- Department of Pharmaceutical Technology and BiopharmacyGroningen Research Institute of PharmacyUniversity of Groningen9713AVGroningenThe Netherlands
| | - Dirk‐Jan Scheffers
- Department of Molecular MicrobiologyGroningen Institute for Biomolecular Sciences and BiotechnologyUniversity of Groningen9747 AGGroningenThe Netherlands
| |
Collapse
|
6
|
Smits SHJ, Schmitt L, Beis K. Self-immunity to antibacterial peptides by ABC transporters. FEBS Lett 2020; 594:3920-3942. [PMID: 33040342 DOI: 10.1002/1873-3468.13953] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
Bacteria produce under certain stress conditions bacteriocins and microcins that display antibacterial activity against closely related species for survival. Bacteriocins and microcins exert their antibacterial activity by either disrupting the membrane or inhibiting essential intracellular processes of the bacterial target. To this end, they can lyse bacterial membranes and cause subsequent loss of their integrity or nutrients, or hijack membrane receptors for internalisation. Both bacteriocins and microcins are ribosomally synthesised and several are posttranslationally modified, whereas others are not. Such peptides are also toxic to the producer bacteria, which utilise immunity proteins or/and dedicated ATP-binding cassette (ABC) transporters to achieve self-immunity and peptide export. In this review, we discuss the structure and mechanism of self-protection that is conferred by these ABC transporters.
Collapse
Affiliation(s)
- Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany.,Center for Structural Studies, Heinrich-Heine-University, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, UK.,Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, UK
| |
Collapse
|
7
|
Morão LG, Lorenzoni ASG, Chakraborty P, Ayusso GM, Cavalca LB, Santos MB, Marques BC, Dilarri G, Zamuner C, Regasini LO, Ferreira H, Scheffers DJ. Investigating the Modes of Action of the Antimicrobial Chalcones BC1 and T9A. Molecules 2020; 25:molecules25204596. [PMID: 33050236 PMCID: PMC7587203 DOI: 10.3390/molecules25204596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 02/02/2023] Open
Abstract
Xanthomonas citri subsp. citri (X. citri) is an important phytopathogen and causes Asiatic Citrus Canker (ACC). To control ACC, copper sprays are commonly used. As copper is an environmentally damaging heavy metal, new antimicrobials are needed to combat citrus canker. Here, we explored the antimicrobial activity of chalcones, specifically the methoxychalcone BC1 and the hydroxychalcone T9A, against X. citri and the model organism Bacillus subtilis. BC1 and T9A prevented growth of X. citri and B. subtilis in concentrations varying from 20 µg/mL to 40 µg/mL. BC1 and T9A decreased incorporation of radiolabeled precursors of DNA, RNA, protein, and peptidoglycan in X. citri and B. subtilis. Both compounds mildly affected respiratory activity in X. citri, but T9A strongly decreased respiratory activity in B. subtilis. In line with that finding, intracellular ATP decreased strongly in B. subtilis upon T9A treatment, whereas BC1 increased intracellular ATP. In X. citri, both compounds resulted in a decrease in intracellular ATP. Cell division seems not to be affected in X. citri, and, although in B. subtilis the formation of FtsZ-rings is affected, a FtsZ GTPase activity assay suggests that this is an indirect effect. The chalcones studied here represent a sustainable alternative to copper for the control of ACC, and further studies are ongoing to elucidate their precise modes of action.
Collapse
Affiliation(s)
- Luana G. Morão
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, 130506-900 SP Rio Claro, Brazil; (L.G.M.); (G.D.); (C.Z.)
| | - André S. G. Lorenzoni
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; (A.S.G.L.); (P.C.); (L.B.C.)
| | - Parichita Chakraborty
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; (A.S.G.L.); (P.C.); (L.B.C.)
| | - Gabriela M. Ayusso
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, 15054-000 SP São José do Rio Preto, Brazil; (G.M.A.); (M.B.S.); (B.C.M.); (L.O.R.)
| | - Lucia B. Cavalca
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; (A.S.G.L.); (P.C.); (L.B.C.)
| | - Mariana B. Santos
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, 15054-000 SP São José do Rio Preto, Brazil; (G.M.A.); (M.B.S.); (B.C.M.); (L.O.R.)
| | - Beatriz C. Marques
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, 15054-000 SP São José do Rio Preto, Brazil; (G.M.A.); (M.B.S.); (B.C.M.); (L.O.R.)
| | - Guilherme Dilarri
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, 130506-900 SP Rio Claro, Brazil; (L.G.M.); (G.D.); (C.Z.)
| | - Caio Zamuner
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, 130506-900 SP Rio Claro, Brazil; (L.G.M.); (G.D.); (C.Z.)
| | - Luis O. Regasini
- Departamento de Química e Ciências Ambientais, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, 15054-000 SP São José do Rio Preto, Brazil; (G.M.A.); (M.B.S.); (B.C.M.); (L.O.R.)
| | - Henrique Ferreira
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista, 130506-900 SP Rio Claro, Brazil; (L.G.M.); (G.D.); (C.Z.)
- Correspondence: (H.F.); (D.-J.S.); Tel.: +31-50-3632319 (D.-J.S.)
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; (A.S.G.L.); (P.C.); (L.B.C.)
- Correspondence: (H.F.); (D.-J.S.); Tel.: +31-50-3632319 (D.-J.S.)
| |
Collapse
|
8
|
Godoy-Santos F, Pitts B, Stewart PS, Mantovani HC. Nisin penetration and efficacy against Staphylococcus aureus biofilms under continuous-flow conditions. MICROBIOLOGY-SGM 2019; 165:761-771. [PMID: 31088602 DOI: 10.1099/mic.0.000804] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biofilms may enhance the tolerance of bacterial pathogens to disinfectants, biocides and other stressors by restricting the penetration of antimicrobials into the matrix-enclosed cell aggregates, which contributes to the recalcitrance of biofilm-associated infections. In this work, we performed real-time monitoring of the penetration of nisin into the interior of Staphylococcus aureus biofilms under continuous flow and compared the efficacy of this lantibiotic against planktonic and sessile cells of S. aureus. Biofilms were grown in Center for Disease Control (CDC) reactors and the spatial and temporal effects of nisin action on S. aureus cells were monitored by real-time confocal microscopy. Under continuous flow, nisin caused loss of membrane integrity of sessile cells and reached the bottom of the biofilms within ~20 min of exposure. Viability analysis using propidium iodide staining indicated that nisin was bactericidal against S. aureus biofilm cells. Time-kill assays showed that S. aureus viability reduced 6.71 and 1.64 log c.f.u. ml-1 for homogenized planktonic cells in exponential and stationary phase, respectively. For the homogenized and intact S. aureus CDC biofilms, mean viability decreased 1.25 and 0.50 log c.f.u. ml-1, respectively. Our results demonstrate the kinetics of biofilm killing by nisin under continuous-flow conditions, and shows that alterations in the physiology of S. aureus cells contribute to variations in sensitivity to the lantibiotic. The approach developed here could be useful to evaluate the antibiofilm efficacy of other bacteriocins either independently or in combination with other antimicrobials.
Collapse
Affiliation(s)
- Fernanda Godoy-Santos
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Betsey Pitts
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | - Hilario C Mantovani
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
9
|
Prince A, Sandhu P, Ror P, Dash E, Sharma S, Arakha M, Jha S, Akhter Y, Saleem M. Lipid-II Independent Antimicrobial Mechanism of Nisin Depends On Its Crowding And Degree Of Oligomerization. Sci Rep 2016; 6:37908. [PMID: 27897200 PMCID: PMC5126574 DOI: 10.1038/srep37908] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
Nisin inhibits bacterial growth by generating pores in cell membrane and interrupting cell-wall biosynthesis through specific lipid II interaction. However, the role of the hinge region and C-terminus residues of the peptide in antibacterial action of nisin is largely unknown. Here, using molecular dynamics simulations and experimental approach, we report that at high concentration regimes of nisin, interaction with phospholipids may equally deform the bacterial cell membranes even under significantly varying amounts of lipid-II. Membrane thinning, destabilization and decrease in lipid density depend on the degree of oligomerization of nisin. Growth kinetics of Bacillus subtilis and Escherichia coli interestingly show recovery by extended lag phase under low concentrations of nisin treatment while high concentrations of nisin caused decrease in cell viability as recorded by striking reduction in membrane potential and surface area. The significant changes in the dipole potential and fluorescence anisotropy were observed in negatively charged membranes in the absence of lipid-II with increasing concentration of nisin. The identical correlation of cell viability, membrane potential dissipation and morphology with the concentration regime of nisin, in both Bacillus subtilis (lipid II rich) and Escherichia coli (lipid II impoverished), hints at a non-specific physical mechanism where degree of membrane deformation depends on degree of crowding and oligomerization of nisin.
Collapse
Affiliation(s)
- Ashutosh Prince
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | - Padmani Sandhu
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, India
| | - Pankaj Ror
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | - Eva Dash
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | - Shingarika Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, India
| | - Manoranjan Arakha
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | - Suman Jha
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| | - Yusuf Akhter
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, India
| | - Mohammed Saleem
- Department of Life Sciences, National Institute of Technology, Rourkela, India
| |
Collapse
|
10
|
Fernandes S, São-José C. More than a hole: the holin lethal function may be required to fully sensitize bacteria to the lytic action of canonical endolysins. Mol Microbiol 2016; 102:92-106. [DOI: 10.1111/mmi.13448] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Sofia Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa, Av. Prof. Gama Pinto; Lisboa 1649-003 Portugal
| | - Carlos São-José
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa, Av. Prof. Gama Pinto; Lisboa 1649-003 Portugal
| |
Collapse
|
11
|
de Sousa Borges A, Scheffers DJ. Bacterial dynamin as a membrane puncture repair kit. Environ Microbiol 2016; 18:2298-301. [PMID: 26768156 DOI: 10.1111/1462-2920.13218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anabela de Sousa Borges
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| |
Collapse
|
12
|
Abstract
Nearly all bacteria contain a peptidoglycan cell wall. The peptidoglycan precursor molecule is LipidII, containing the basic peptidoglycan building block attached to a lipid. Although the suitability of LipidII as an antibacterial target has long been recognized, progress on elucidating the role(s) of LipidII in bacterial cell biology has been slow. The focus of this review is on exciting new developments, both with respect to antibacterials targeting LipidII as well as the emerging role of LipidII in organizing the membrane and cell wall synthesis. It appears that on both sides of the membrane, LipidII plays crucial roles in organizing cytoskeletal proteins and peptidoglycan synthesis machineries. Finally, the recent discovery of no less than three different categories of LipidII flippases will be discussed.
Collapse
Affiliation(s)
- Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
- * E-mail:
| | - Menno B. Tol
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| |
Collapse
|
13
|
Oppedijk SF, Martin NI, Breukink E. Hit 'em where it hurts: The growing and structurally diverse family of peptides that target lipid-II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:947-57. [PMID: 26523408 DOI: 10.1016/j.bbamem.2015.10.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 02/08/2023]
Abstract
Understanding the mode of action of antibiotics is becoming more and more important in the time that microorganisms start to develop resistance. One very well validated target of several classes of antibiotics is the peptidoglycan precursor lipid II. In this review different classes of lipid II targeting antibiotics will be discussed in detail, including the lantibiotics, human invertebrate defensins and the recently discovered teixobactin. By hitting bacteria where it hurts, at the level of lipid II, we expect to be able to develop efficient antibacterial agents in the future. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.
Collapse
Affiliation(s)
- Sabine F Oppedijk
- Membrane biochemistry and Biophysics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Nathaniel I Martin
- Medicinal Chemistry and Chemical Biology, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Eefjan Breukink
- Membrane biochemistry and Biophysics, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|