1
|
Liu X, Thistlethwaite S, Kholiya R, Pierscianowski J, Saliba KJ, Auclair K. Chemical synthesis and enzymatic late-stage diversification of novel pantothenate analogues with antiplasmodial activity. Eur J Med Chem 2024; 280:116902. [PMID: 39423490 DOI: 10.1016/j.ejmech.2024.116902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/21/2024]
Abstract
The emergence of resistance to nearly every therapeutic agent directed against malaria-causing Plasmodium parasites emphasises the dire need for new antimalarials. Despite their high potency and low cytotoxicity in vitro, the clinical use of pantothenamides is hindered by pantetheinase-mediated hydrolysis in human serum. We herein report the chemical synthesis and biological activity of a new series of pantothenamide analogues in which the labile amide group is replaced with an isoxazole ring. In addition, we utilised, for the first time, enzymatic late-stage diversification to generate additional isoxazole-containing pantothenamide-mimics. Thirteen novel isoxazole-containing pantothenamide-mimics were generated, several of which display nanomolar antiplasmodial activity against Plasmodium falciparum and are non-toxic to human cells in vitro. Although the derivatives generated via late-stage diversification are less potent than the parent compounds, the most potent still exerted its activity via a mechanism that interferes with the pantothenate-utilising process and appears to be nontoxic to human cells. This increases the appeal of using late-stage diversification to modify pantothenamide-mimics, potentially leading to compounds with improved antiplasmodial and/or pharmacological properties.
Collapse
Affiliation(s)
- Xiangning Liu
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Sian Thistlethwaite
- Department of Chemistry, McGill University, Montreal, Quebec, Canada, H3A 0B8
| | - Rohit Kholiya
- Department of Chemistry, McGill University, Montreal, Quebec, Canada, H3A 0B8
| | | | - Kevin J Saliba
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, Quebec, Canada, H3A 0B8.
| |
Collapse
|
2
|
Khairnar P, Aleshire SL, Kumar Ongolu R, Jin L, Laidlaw MG, Donsbach KO, Gupton BF, Nelson RC, Shanahan CS. Highly Regioselective Protecting-Group-Free Synthesis of the Antimalarial Drug MMV693183. Org Process Res Dev 2024; 28:273-280. [PMID: 38268773 PMCID: PMC10804412 DOI: 10.1021/acs.oprd.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
MMV693183 is a promising antimalarial drug candidate that works for uncomplicated malaria treatment and resistance management. Herein, we report an efficient and highly regioselective synthesis of MMV693183. This novel synthetic method highlights a three-step route with an overall yield of 46% from readily available starting materials. The key to the success lies in (1) utilizing the subtle difference of the two amino groups in the starting material (S)-propane-1,2-diamine dihydrochloride without amino protection and (2) identifying the L-(+)-tartaric acid as the counter acid for the organic salt formation, yielding the desired regioisomer up to 100:0. The efficient and scalable three-step protocol operates under mild conditions with a high chemo/regioselectivity, providing effective access to MMV693183.
Collapse
Affiliation(s)
- Pankaj
V. Khairnar
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Sarah L. Aleshire
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Ravi Kumar Ongolu
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Limei Jin
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Michael G. Laidlaw
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Kai O. Donsbach
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - B. Frank Gupton
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Ryan C. Nelson
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Charles S. Shanahan
- Medicines for All Institute, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| |
Collapse
|
3
|
Riske BF, Luckhart S, Riehle MA. Starving the Beast: Limiting Coenzyme A Biosynthesis to Prevent Disease and Transmission in Malaria. Int J Mol Sci 2023; 24:13915. [PMID: 37762222 PMCID: PMC10530615 DOI: 10.3390/ijms241813915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Malaria parasites must acquire all necessary nutrients from the vertebrate and mosquito hosts to successfully complete their life cycle. Failure to acquire these nutrients can limit or even block parasite development and presents a novel target for malaria control. One such essential nutrient is pantothenate, also known as vitamin B5, which the parasite cannot synthesize de novo and is required for the synthesis of coenzyme A (CoA) in the parasite. This review examines pantothenate and the CoA biosynthesis pathway in the human-mosquito-malaria parasite triad and explores possible approaches to leverage the CoA biosynthesis pathway to limit malaria parasite development in both human and mosquito hosts. This includes a discussion of sources for pantothenate for the mosquito, human, and parasite, examining the diverse strategies used by the parasite to acquire substrates for CoA synthesis across life stages and host resource pools and a discussion of drugs and alternative approaches being studied to disrupt CoA biosynthesis in the parasite. The latter includes antimalarial pantothenate analogs, known as pantothenamides, that have been developed to target this pathway during the human erythrocytic stages. In addition to these parasite-targeted drugs, we review studies of mosquito-targeted allosteric enzymatic regulators known as pantazines as an approach to limit pantothenate availability in the mosquito and subsequently deprive the parasite of this essential nutrient.
Collapse
Affiliation(s)
- Brendan F. Riske
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA;
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
4
|
de Vries LE, Lunghi M, Krishnan A, Kooij TWA, Soldati-Favre D. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLoS Pathog 2021; 17:e1010124. [PMID: 34969059 PMCID: PMC8717973 DOI: 10.1371/journal.ppat.1010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Apicomplexa phylum comprises thousands of distinct intracellular parasite species, including coccidians, haemosporidians, piroplasms, and cryptosporidia. These parasites are characterized by complex and divergent life cycles occupying a variety of host niches. Consequently, they exhibit distinct adaptations to the differences in nutritional availabilities, either relying on biosynthetic pathways or by salvaging metabolites from their host. Pantothenate (Pan, vitamin B5) is the precursor for the synthesis of an essential cofactor, coenzyme A (CoA), but among the apicomplexans, only the coccidian subgroup has the ability to synthesize Pan. While the pathway to synthesize CoA from Pan is largely conserved across all branches of life, there are differences in the redundancy of enzymes and possible alternative pathways to generate CoA from Pan. Impeding the scavenge of Pan and synthesis of Pan and CoA have been long recognized as potential targets for antimicrobial drug development, but in order to fully exploit these critical pathways, it is important to understand such differences. Recently, a potent class of pantothenamides (PanAms), Pan analogs, which target CoA-utilizing enzymes, has entered antimalarial preclinical development. The potential of PanAms to target multiple downstream pathways make them a promising compound class as broad antiparasitic drugs against other apicomplexans. In this review, we summarize the recent advances in understanding the Pan and CoA biosynthesis pathways, and the suitability of these pathways as drug targets in Apicomplexa, with a particular focus on the cyst-forming coccidian, Toxoplasma gondii, and the haemosporidian, Plasmodium falciparum.
Collapse
Affiliation(s)
- Laura E. de Vries
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Taco W. A. Kooij
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Tisnerat C, Dassonville-Klimpt A, Gosselet F, Sonnet P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 2021; 29:3326-3365. [PMID: 34344287 DOI: 10.2174/0929867328666210803152419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Malaria is a tropical threatening disease caused by Plasmodium parasites, resulting in 409,000 deaths in 2019. The delay of mortality and morbidity has been compounded by the widespread of drug resistant parasites from Southeast Asia since two decades. The emergence of artemisinin-resistant Plasmodium in Africa, where most cases are accounted, highlights the urgent need for new medicines. In this effort, the World Health Organization and Medicines for Malaria Venture joined to define clear goals for novel therapies and characterized the target candidate profile. This ongoing search for new treatments is based on imperative labor in medicinal chemistry which is summarized here with particular attention to hit-to-lead optimizations, key properties, and modes of action of these novel antimalarial drugs. This review, after presenting the current antimalarial chemotherapy, from quinine to the latest marketed drugs, focuses in particular on recent advances of the most promising antimalarial candidates in clinical and preclinical phases.
Collapse
Affiliation(s)
- Camille Tisnerat
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| | | | | | - Pascal Sonnet
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| |
Collapse
|
6
|
Tjhin ET, Howieson VM, Spry C, van Dooren GG, Saliba KJ. A novel heteromeric pantothenate kinase complex in apicomplexan parasites. PLoS Pathog 2021; 17:e1009797. [PMID: 34324601 PMCID: PMC8366970 DOI: 10.1371/journal.ppat.1009797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/16/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Coenzyme A is synthesised from pantothenate via five enzyme-mediated steps. The first step is catalysed by pantothenate kinase (PanK). All PanKs characterised to date form homodimers. Many organisms express multiple PanKs. In some cases, these PanKs are not functionally redundant, and some appear to be non-functional. Here, we investigate the PanKs in two pathogenic apicomplexan parasites, Plasmodium falciparum and Toxoplasma gondii. Each of these organisms express two PanK homologues (PanK1 and PanK2). We demonstrate that PfPanK1 and PfPanK2 associate, forming a single, functional PanK complex that includes the multi-functional protein, Pf14-3-3I. Similarly, we demonstrate that TgPanK1 and TgPanK2 form a single complex that possesses PanK activity. Both TgPanK1 and TgPanK2 are essential for T. gondii proliferation, specifically due to their PanK activity. Our study constitutes the first examples of heteromeric PanK complexes in nature and provides an explanation for the presence of multiple PanKs within certain organisms.
Collapse
Affiliation(s)
- Erick T. Tjhin
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Vanessa M. Howieson
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Giel G. van Dooren
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Kevin J. Saliba
- Research School of Biology, The Australian National University, Canberra, Australia
- Medical School, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
7
|
Abidin MZ, Saravanan T, Strauss E, Poelarends GJ. The broad amine scope of pantothenate synthetase enables the synthesis of pharmaceutically relevant amides. Org Biomol Chem 2021; 19:4515-4519. [PMID: 33913984 PMCID: PMC8150671 DOI: 10.1039/d1ob00238d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
Pantothenate synthetase from Escherichia coli (PSE. coli) catalyzes the ATP-dependent condensation of (R)-pantoic acid and β-alanine to yield (R)-pantothenic acid (vitamin B5), the biosynthetic precursor to coenzyme A. Herein we show that besides the natural amine substrate β-alanine, the enzyme accepts a wide range of structurally diverse amines including 3-amino-2-fluoropropionic acid, 4-amino-2-hydroxybutyric acid, 4-amino-3-hydroxybutyric acid, and tryptamine for coupling to the native carboxylic acid substrate (R)-pantoic acid to give amide products with up to >99% conversion. The broad amine scope of PSE. coli enabled the efficient synthesis of pharmaceutically-relevant vitamin B5 antimetabolites with excellent isolated yield (up to 89%). This biocatalytic amide synthesis strategy may prove to be useful in the quest for new antimicrobials that target coenzyme A biosynthesis and utilisation.
Collapse
Affiliation(s)
- Mohammad Z Abidin
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands. and Department of Animal Products Technology, Gadjah Mada University, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Thangavelu Saravanan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands. and School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India.
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
8
|
Swift RP, Rajaram K, Liu HB, Prigge ST. Dephospho-CoA kinase, a nuclear-encoded apicoplast protein, remains active and essential after Plasmodium falciparum apicoplast disruption. EMBO J 2021; 40:e107247. [PMID: 34031901 PMCID: PMC8365264 DOI: 10.15252/embj.2020107247] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Malaria parasites contain an essential organelle called the apicoplast that houses metabolic pathways for fatty acid, heme, isoprenoid, and iron–sulfur cluster synthesis. Surprisingly, malaria parasites can survive without the apicoplast as long as the isoprenoid precursor isopentenyl pyrophosphate (IPP) is supplemented in the growth medium, making it appear that isoprenoid synthesis is the only essential function of the organelle in blood‐stage parasites. In the work described here, we localized an enzyme responsible for coenzyme A synthesis, DPCK, to the apicoplast, but we were unable to delete DPCK, even in the presence of IPP. However, once the endogenous DPCK was complemented with the E. coli DPCK (EcDPCK), we were successful in deleting it. We were then able to show that DPCK activity is required for parasite survival through knockdown of the complemented EcDPCK. Additionally, we showed that DPCK enzyme activity remains functional and essential within the vesicles present after apicoplast disruption. These results demonstrate that while the apicoplast of blood‐stage P. falciparum parasites can be disrupted, the resulting vesicles remain biochemically active and are capable of fulfilling essential functions.
Collapse
Affiliation(s)
- Russell P Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hans B Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
9
|
Guan J, Spry C, Tjhin ET, Yang P, Kittikool T, Howieson VM, Ling H, Starrs L, Duncan D, Burgio G, Saliba KJ, Auclair K. Exploring Heteroaromatic Rings as a Replacement for the Labile Amide of Antiplasmodial Pantothenamides. J Med Chem 2021; 64:4478-4497. [PMID: 33792339 DOI: 10.1021/acs.jmedchem.0c01755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Malaria-causing Plasmodium parasites are developing resistance to antimalarial drugs, providing the impetus for new antiplasmodials. Although pantothenamides show potent antiplasmodial activity, hydrolysis by pantetheinases/vanins present in blood rapidly inactivates them. We herein report the facile synthesis and biological activity of a small library of pantothenamide analogues in which the labile amide group is replaced with a heteroaromatic ring. Several of these analogues display nanomolar antiplasmodial activity against Plasmodium falciparum and/or Plasmodium knowlesi, and are stable in the presence of pantetheinase. Both a known triazole and a novel isoxazole derivative were further characterized and found to possess high selectivity indices, medium or high Caco-2 permeability, and medium or low microsomal clearance in vitro. Although they fail to suppress Plasmodium berghei proliferation in vivo, the pharmacokinetic and contact time data presented provide a benchmark for the compound profile likely required to achieve antiplasmodial activity in mice and should facilitate lead optimization.
Collapse
Affiliation(s)
- Jinming Guan
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Christina Spry
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Erick T Tjhin
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Penghui Yang
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada.,College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Tanakorn Kittikool
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Vanessa M Howieson
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Harriet Ling
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Lora Starrs
- John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601, Australia
| | - Dustin Duncan
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Gaetan Burgio
- John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601, Australia
| | - Kevin J Saliba
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia.,Medical School, The Australian National University, Acton, ACT 2601, Australia
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
10
|
Nurkanto A, Jeelani G, Santos HJ, Rahmawati Y, Mori M, Nakamura Y, Goto K, Saikawa Y, Annoura T, Tozawa Y, Sakura T, Inaoka DK, Shiomi K, Nozaki T. Characterization of Plasmodium falciparum Pantothenate Kinase and Identification of Its Inhibitors From Natural Products. Front Cell Infect Microbiol 2021; 11:639065. [PMID: 33768012 PMCID: PMC7985445 DOI: 10.3389/fcimb.2021.639065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Coenzyme A (CoA) is a well-known cofactor that plays an essential role in many metabolic reactions in all organisms. In Plasmodium falciparum, the most deadly among Plasmodium species that cause malaria, CoA and its biosynthetic pathway have been proven to be indispensable. The first and rate-limiting reaction in the CoA biosynthetic pathway is catalyzed by two putative pantothenate kinases (PfPanK1 and 2) in this parasite. Here we produced, purified, and biochemically characterized recombinant PfPanK1 for the first time. PfPanK1 showed activity using pantetheine besides pantothenate, as the primary substrate, indicating that CoA biosynthesis in the blood stage of P. falciparum can bypass pantothenate. We further developed a robust and reliable screening system to identify inhibitors using recombinant PfPanK1 and identified four PfPanK inhibitors from natural compounds.
Collapse
Affiliation(s)
- Arif Nurkanto
- Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia.,Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yulia Rahmawati
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mihoko Mori
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan.,Biological Resource Center, National Institute of Technology and Evaluation (NITE), Chiba, Japan
| | - Yumi Nakamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kana Goto
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Yoko Saikawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, School of Tropical Medicine and Global Health, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, School of Tropical Medicine and Global Health, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Schalkwijk J, Allman EL, Jansen PAM, de Vries LE, Verhoef JMJ, Jackowski S, Botman PNM, Beuckens-Schortinghuis CA, Koolen KMJ, Bolscher JM, Vos MW, Miller K, Reeves SA, Pett H, Trevitt G, Wittlin S, Scheurer C, Sax S, Fischli C, Angulo-Barturen I, Jiménez-Diaz MB, Josling G, Kooij TWA, Bonnert R, Campo B, Blaauw RH, Rutjes FPJT, Sauerwein RW, Llinás M, Hermkens PHH, Dechering KJ. Antimalarial pantothenamide metabolites target acetyl-coenzyme A biosynthesis in Plasmodium falciparum. Sci Transl Med 2020; 11:11/510/eaas9917. [PMID: 31534021 DOI: 10.1126/scitranslmed.aas9917] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 09/07/2018] [Accepted: 03/28/2019] [Indexed: 01/09/2023]
Abstract
Malaria eradication is critically dependent on new therapeutics that target resistant Plasmodium parasites and block transmission of the disease. Here, we report that pantothenamide bioisosteres were active against blood-stage Plasmodium falciparum parasites and also blocked transmission of sexual stages to the mosquito vector. These compounds were resistant to degradation by serum pantetheinases, showed favorable pharmacokinetic properties, and cleared parasites in a humanized mouse model of P. falciparum infection. Metabolomics revealed that coenzyme A biosynthetic enzymes converted pantothenamides into coenzyme A analogs that interfered with parasite acetyl-coenzyme A anabolism. Resistant parasites generated in vitro showed mutations in acetyl-coenzyme A synthetase and acyl-coenzyme A synthetase 11. Introduction and reversion of these mutations in P. falciparum using CRISPR-Cas9 gene editing confirmed the roles of these enzymes in the sensitivity of the malaria parasites to pantothenamides. These pantothenamide compounds with a new mode of action may have potential as drugs against malaria parasites.
Collapse
Affiliation(s)
- Joost Schalkwijk
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Erik L Allman
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802 USA
| | - Patrick A M Jansen
- Department of Dermatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Laura E de Vries
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Julie M J Verhoef
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | | | | | | | | | - Karen Miller
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stacy A Reeves
- St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Helmi Pett
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christian Scheurer
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sibylle Sax
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christoph Fischli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | | | - Gabrielle Josling
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802 USA
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,TropIQ Health Sciences, Nijmegen, Netherlands
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802 USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 USA
| | | | | |
Collapse
|
12
|
Spry C, Barnard L, Kok M, Powell AK, Mahesh D, Tjhin ET, Saliba KJ, Strauss E, de Villiers M. Toward a Stable and Potent Coenzyme A-Targeting Antiplasmodial Agent: Structure-Activity Relationship Studies of N-Phenethyl-α-methyl-pantothenamide. ACS Infect Dis 2020; 6:1844-1854. [PMID: 32375471 DOI: 10.1021/acsinfecdis.0c00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pantothenamides (PanAms) are potent antiplasmodials with low human toxicity currently being investigated as antimalarials with a novel mode of action. These structural analogues of pantothenate, the vitamin precursor of the essential cofactor coenzyme A, are susceptible to degradation by pantetheinase enzymes present in serum. We previously discovered that α-methylation of the β-alanine moiety of PanAms increases their stability in serum and identified N-phenethyl-α-methyl-pantothenamide as a pantetheinase-resistant PanAm with potent, on-target, and selective antiplasmodial activity. In this study, we performed structure-activity relationship investigations to establish whether stability and potency can be improved further through alternative modification of the scissile amide bond and through substitution/modification of the phenyl ring. Additionally, for the first time, the importance of the stereochemistry of the α-methyl group was evaluated in terms of stability versus potency. Our results demonstrate that α-methylation remains the superior choice for amide modification, and that while monofluoro-substitution of the phenyl ring (that often improves ADME properties) was tolerated, N-phenethyl-α-methyl-pantothenamide remains the most potent analogue. We show that the 2S,2'R-diastereomer is far more potent than the 2R,2'R-diastereomer and that this cannot be attributed to preferential metabolic activation by pantothenate kinase, the first enzyme of the coenzyme A biosynthesis pathway. Unexpectedly, the more potent 2S,2'R-diastereomer is also more prone to pantetheinase-mediated degradation. Finally, the results of in vitro studies to assess permeability and metabolic stability of the 2S,2'R-diastereomer suggested species-dependent degradation via amide hydrolysis. Our study provides important information for the continued development of PanAm-based antimalarials.
Collapse
Affiliation(s)
| | - Leanne Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Michélle Kok
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Andrew K. Powell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Marianne de Villiers
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
13
|
Veale CGL, Müller R. Recent Highlights in Anti-infective Medicinal Chemistry from South Africa. ChemMedChem 2020; 15:809-826. [PMID: 32149446 DOI: 10.1002/cmdc.202000086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/17/2022]
Abstract
Global advancements in biological technologies have vastly increased the variety of and accessibility to bioassay platforms, while simultaneously improving our understanding of druggable chemical space. In the South African context, this has resulted in a rapid expansion in the number of medicinal chemistry programmes currently operating, particularly on university campuses. Furthermore, the modern medicinal chemist has the advantage of being able to incorporate data from numerous related disciplines into the medicinal chemistry process, allowing for informed molecular design to play a far greater role than previously possible. Accordingly, this review focusses on recent highlights in drug-discovery programmes, in which South African medicinal chemistry groups have played a substantive role in the design and optimisation of biologically active compounds which contribute to the search for promising agents for infectious disease.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Ronel Müller
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
14
|
Duncan D, Auclair K. The coenzyme A biosynthetic pathway: A new tool for prodrug bioactivation. Arch Biochem Biophys 2019; 672:108069. [PMID: 31404525 DOI: 10.1016/j.abb.2019.108069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 11/29/2022]
Abstract
Prodrugs account for more than 5% of pharmaceuticals approved worldwide. Over the past decades several prodrug design strategies have been firmly established; however, only a few functional groups remain amenable to this approach. The aim of this overview is to highlight the use of coenzyme A (CoA) biosynthetic enzymes as a recently explored bioactivation scheme and provide information about its scope of utility. This emerging tool is likely to have a strong impact on future medicinal and biological studies as it offers promiscuity, orthogonal selectivity, and the capability of assembling exceptionally large molecules.
Collapse
Affiliation(s)
- Dustin Duncan
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.
| |
Collapse
|
15
|
Jansen PAM, van der Krieken DA, Botman PNM, Blaauw RH, Cavina L, Raaijmakers EM, de Heuvel E, Sandrock J, Pennings LJ, Hermkens PHH, Zeeuwen PLJM, Rutjes FPJT, Schalkwijk J. Stable pantothenamide bioisosteres: novel antibiotics for Gram-positive bacteria. J Antibiot (Tokyo) 2019; 72:682-692. [PMID: 31171848 PMCID: PMC6760626 DOI: 10.1038/s41429-019-0196-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 01/21/2023]
Abstract
The emergence of multidrug resistant bacteria has prioritized the development of new antibiotics. N-substituted pantothenamides, analogs of the natural compound pantetheine, were reported to target bacterial coenzyme A biosynthesis, but these compounds have never reached the clinic due to their instability in biological fluids. Plasma-stable pantothenamide analogs could overcome these issues. We first synthesized a number of bioisosteres of the prototypic pantothenamide N7-Pan. A compound with an inverted amide bond (CXP18.6-012) was found to provide plasma-stability with minimal loss of activity compared to the parent compound N7-Pan. Next, we synthesized inverted pantothenamides with a large variety of side chains. Among these we identified a number of novel stable inverted pantothenamides with selective activity against Gram-positive bacteria such as staphylococci and streptococci, at low micromolar concentrations. These data provide future direction for the development of pantothenamides with clinical potential.
Collapse
Affiliation(s)
- Patrick A M Jansen
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | - Lian J Pennings
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Guan J, Tjhin ET, Howieson VM, Kittikool T, Spry C, Saliba KJ, Auclair K. Structure-Activity Relationships of Antiplasmodial Pantothenamide Analogues Reveal a New Way by Which Triazoles Mimic Amide Bonds. ChemMedChem 2018; 13:2677-2683. [PMID: 30370998 DOI: 10.1002/cmdc.201800327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/25/2018] [Indexed: 11/12/2022]
Abstract
Pantothenamides are potent growth inhibitors of the malaria parasite Plasmodium falciparum. Their clinical use is, however, hindered due to the ubiquitous presence of pantetheinases in human serum, which rapidly degrade pantothenamides into pantothenate and the corresponding amine. We previously reported that replacement of the labile amide bond with a triazole ring not only imparts stability toward pantetheinases, but also improves activity against P. falciparum. A small library of new triazole derivatives was synthesized, and their use in establishing structure-activity relationships relevant to antiplasmodial activity of this family of compounds is discussed herein. Overall it was observed that 1,4-substitution on the triazole ring and use of an unbranched, one-carbon linker between the pantoyl group and the triazole are optimal for inhibition of intraerythrocytic P. falciparum growth. Our results imply that the triazole ring may mimic the amide bond with an orientation different from what was previously suggested for this amide bioisostere.
Collapse
Affiliation(s)
- Jinming Guan
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Erick T Tjhin
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Vanessa M Howieson
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Tanakorn Kittikool
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Christina Spry
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Kevin J Saliba
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia.,Medical School, The Australian National University, 134 Linnaeus Way, Acton, ACT, 2601, Australia
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|
17
|
Abidin MZ, Saravanan T, Zhang J, Tepper PG, Strauss E, Poelarends GJ. Modular Enzymatic Cascade Synthesis of Vitamin B 5 and Its Derivatives. Chemistry 2018; 24:17434-17438. [PMID: 30192043 PMCID: PMC6471175 DOI: 10.1002/chem.201804151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 12/21/2022]
Abstract
Access to vitamin B5 [(R)‐pantothenic acid] and both diastereoisomers of α‐methyl‐substituted vitamin B5 [(R)‐ and (S)‐3‐((R)‐2,4‐dihydroxy‐3,3‐dimethylbutanamido)‐2‐methylpropanoic acid] was achieved using a modular three‐step biocatalytic cascade involving 3‐methylaspartate ammonia lyase (MAL), aspartate‐α‐decarboxylase (ADC), β‐methylaspartate‐α‐decarboxylase (CrpG) or glutamate decarboxylase (GAD), and pantothenate synthetase (PS) enzymes. Starting from simple non‐chiral dicarboxylic acids (either fumaric acid or mesaconic acid), vitamin B5 and both diastereoisomers of α‐methyl‐substituted vitamin B5, which are valuable precursors for promising antimicrobials against Plasmodium falciparum and multidrug‐resistant Staphylococcus aureus, can be generated in good yields (up to 70 %) and excellent enantiopurity (>99 % ee). This newly developed cascade process may be tailored and used for the biocatalytic production of various vitamin B5 derivatives by modifying the pantoyl or β‐alanine moiety.
Collapse
Affiliation(s)
- Mohammad Z Abidin
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Thangavelu Saravanan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Jielin Zhang
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Pieter G Tepper
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713, AV, Groningen, The Netherlands
| |
Collapse
|
18
|
Barnard L, Mostert KJ, van Otterlo WAL, Strauss E. Developing Pantetheinase-Resistant Pantothenamide Antibacterials: Structural Modification Impacts on PanK Interaction and Mode of Action. ACS Infect Dis 2018; 4:736-743. [PMID: 29332383 DOI: 10.1021/acsinfecdis.7b00240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pantothenamides (PanAms) are analogues of pantothenate, the biosynthetic precursor of coenzyme A (CoA), and show potent antimicrobial activity against several bacteria and the malaria parasite in vitro. However, pantetheinase enzymes that normally degrade pantetheine in human serum also act on the PanAms, thereby reducing their potency. In this study, we designed analogues of the known antibacterial PanAm N-heptylpantothenamide (N7-Pan) to be resistant to pantetheinase by using three complementary structural modification strategies. We show that, while two of these are effective in imparting resistance, the introduced modifications have an impact on the analogues' interaction with pantothenate kinase (PanK, the first CoA biosynthetic enzyme), which acts as a metabolic activator and/or target of the PanAms. This, in turn, directly affects their mode of action. Importantly, we discover that the phosphorylated version of N7-Pan shows pantetheinase resistance and antistaphylococcal activity, providing a lead for future studies in the ongoing search of PanAm analogues that show in vivo efficacy.
Collapse
Affiliation(s)
- Leanne Barnard
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Konrad J. Mostert
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
19
|
Tjhin ET, Spry C, Sewell AL, Hoegl A, Barnard L, Sexton AE, Siddiqui G, Howieson VM, Maier AG, Creek DJ, Strauss E, Marquez R, Auclair K, Saliba KJ. Mutations in the pantothenate kinase of Plasmodium falciparum confer diverse sensitivity profiles to antiplasmodial pantothenate analogues. PLoS Pathog 2018; 14:e1006918. [PMID: 29614109 PMCID: PMC5882169 DOI: 10.1371/journal.ppat.1006918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/01/2018] [Indexed: 12/31/2022] Open
Abstract
The malaria-causing blood stage of Plasmodium falciparum requires extracellular pantothenate for proliferation. The parasite converts pantothenate into coenzyme A (CoA) via five enzymes, the first being a pantothenate kinase (PfPanK). Multiple antiplasmodial pantothenate analogues, including pantothenol and CJ-15,801, kill the parasite by targeting CoA biosynthesis/utilisation. Their mechanism of action, however, remains unknown. Here, we show that parasites pressured with pantothenol or CJ-15,801 become resistant to these analogues. Whole-genome sequencing revealed mutations in one of two putative PanK genes (Pfpank1) in each resistant line. These mutations significantly alter PfPanK activity, with two conferring a fitness cost, consistent with Pfpank1 coding for a functional PanK that is essential for normal growth. The mutants exhibit a different sensitivity profile to recently-described, potent, antiplasmodial pantothenate analogues, with one line being hypersensitive. We provide evidence consistent with different pantothenate analogue classes having different mechanisms of action: some inhibit CoA biosynthesis while others inhibit CoA-utilising enzymes. The coenzyme A (CoA) biosynthetic pathway is under investigation as a target for the development of drugs aimed at several infectious agents, including malaria parasites. To synthesise CoA, the parasite scavenges the essential precursor pantothenate (vitamin B5). Several pantothenate analogues possess potent (nM) activity against the parasite, but their exact mechanism of action is unknown. We have generated mutant parasites that are resistant or hypersensitive to various pantothenate analogues. These parasites harbour mutations in a gene we now show codes for the first enzyme in the CoA biosynthesis pathway. This enzyme is not the target of the analogues, but instead converts them into antimetabolites that, depending on the analogue, either inhibit a CoA biosynthesis enzyme or downstream CoA-utilising enzymes.
Collapse
Affiliation(s)
- Erick T. Tjhin
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Alan L. Sewell
- Department of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - Annabelle Hoegl
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Leanne Barnard
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Anna E. Sexton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Ghizal Siddiqui
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Vanessa M. Howieson
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Alexander G. Maier
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Darren J. Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Rodolfo Marquez
- Department of Chemistry, University of Glasgow, Glasgow, United Kingdom
- Department of Chemistry, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Karine Auclair
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Kevin J. Saliba
- Research School of Biology, The Australian National University, Canberra, Australia
- Medical School, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
20
|
Spry C, Sewell AL, Hering Y, Villa MV, Weber J, Hobson SJ, Harnor SJ, Gul S, Marquez R, Saliba KJ. Structure-activity analysis of CJ-15,801 analogues that interact with Plasmodium falciparum pantothenate kinase and inhibit parasite proliferation. Eur J Med Chem 2018; 143:1139-1147. [DOI: 10.1016/j.ejmech.2017.08.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 12/25/2022]
|
21
|
Chiu JE, Thekkiniath J, Choi JY, Perrin BA, Lawres L, Plummer M, Virji AZ, Abraham A, Toh JY, Zandt MV, Aly ASI, Voelker DR, Mamoun CB. The antimalarial activity of the pantothenamide α-PanAm is via inhibition of pantothenate phosphorylation. Sci Rep 2017; 7:14234. [PMID: 29079738 PMCID: PMC5660193 DOI: 10.1038/s41598-017-14074-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 10/06/2017] [Indexed: 12/21/2022] Open
Abstract
The biosynthesis of the major acyl carrier Coenzyme A from pantothenic acid (PA) is critical for survival of Plasmodium falciparum within human erythrocytes. Accordingly, a PA analog α-PanAm showed potent activity against blood stage parasites in vitro; however, its efficacy in vivo and its mode of action remain unknown. We developed a new synthesis route for α-PanAm and showed that the compound is highly effective against blood stages of drug-sensitive and -resistant P. falciparum strains, inhibits development of P. berghei in hepatocytes, and at doses up to 100 mg/kg also inhibits blood stage development of P. chabaudi in mice. We used yeast and its pantothenate kinase Cab1 as models to characterize mode of action of α-PanAm and found that α-PanAm inhibits yeast growth in a PA-dependent manner, and its potency increases dramatically in a yeast mutant with defective pantothenate kinase activity. Biochemical analyses using 14C-PA as a substrate demonstrated that α-PanAm is a competitive inhibitor of Cab1. Interestingly, biochemical and mass spectrometry analyses also showed that the compound is phosphorylated by Cab1. Together, these data suggest that α-PanAm exerts its antimicrobial activity by direct competition with the natural substrate PA for phosphorylation by the pantothenate kinase.
Collapse
Affiliation(s)
- Joy E Chiu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jose Thekkiniath
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jae-Yeon Choi
- Basic Science Section, Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, Colorado, 80206, USA
| | - Benjamin A Perrin
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lauren Lawres
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mark Plummer
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Azan Z Virji
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amanah Abraham
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Justin Y Toh
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Ahmed S I Aly
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Dennis R Voelker
- Basic Science Section, Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, Colorado, 80206, USA
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
22
|
de Villiers M, Spry C, Macuamule CJ, Barnard L, Wells G, Saliba KJ, Strauss E. Antiplasmodial Mode of Action of Pantothenamides: Pantothenate Kinase Serves as a Metabolic Activator Not as a Target. ACS Infect Dis 2017; 3:527-541. [PMID: 28437604 DOI: 10.1021/acsinfecdis.7b00024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
N-Substituted pantothenamides (PanAms) are pantothenate analogues with up to nanomolar potency against blood-stage Plasmodium falciparum (the most virulent species responsible for malaria). Although these compounds are known to target coenzyme A (CoA) biosynthesis and/or utilization, their exact mode of action (MoA) is still unknown. Importantly, PanAms that retain the natural β-alanine moiety are more potent than other variants, consistent with the involvement of processes that are selective for pantothenate (the precursor of CoA) or its derivatives. The transport of pantothenate and its phosphorylation by P. falciparum pantothenate kinase (PfPanK, the first enzyme of CoA biosynthesis) are two such processes previously highlighted as potential targets for the PanAms' antiplasmodial action. In this study, we investigated the effect of PanAms on these processes using their radiolabeled versions (synthesized here for the first time), which made possible the direct measurement of PanAm uptake by isolated blood-stage parasites and PanAm phosphorylation by PfPanK present in parasite lysates. We found that the MoA of PanAms does not involve interference with pantothenate transport and that inhibition of PfPanK-mediated pantothenate phosphorylation does not correlate with PanAm antiplasmodial activity. Instead, PanAms that retain the β-alanine moiety were found to be metabolically activated by PfPanK in a selective manner, forming phosphorylated products that likely inhibit other steps in CoA biosynthesis or are transformed into CoA antimetabolites that can interfere with CoA utilization. These findings provide direction for the ongoing development of CoA-targeted inhibitors as antiplasmodial agents with clinical potential.
Collapse
Affiliation(s)
- Marianne de Villiers
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | | | - Leanne Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Gordon Wells
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
23
|
Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments. PLoS Pathog 2016; 12:e1006094. [PMID: 28027318 PMCID: PMC5189940 DOI: 10.1371/journal.ppat.1006094] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/28/2016] [Indexed: 01/02/2023] Open
Abstract
Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design. Malaria kills almost half a million people worldwide every year and more than two hundred million people are diagnosed with this deadly disease annually. It is caused by the protozoan parasite Plasmodium spp., mostly in sub-Saharan Africa and Asia and is transmitted by bites of infected female Anopheles mosquitoes. Due to an increase in resistance to existing drugs and lack of an effective vaccine, new intervention strategies which target development of parasite in human host and transmission through the mosquito vector are urgently needed. In this study, we explored the metabolic capacity of different developmental stages of the malaria parasite to determine carbon source utilization in different host niches and whether any stage-specific switches in metabolism could be exploited in new therapies aimed at eradicating malaria. Using stable isotope labelling and metabolomics, we have identified considerable nutritional adaptability of malaria parasites between the mammalian host and the mosquito vector. Gene disruption in the rodent malaria parasite P. berghei was used to identify the metabolic pathways which are crucial to the survival and development of the parasite. Our data also point at key metabolic differences in different Plasmodium species highlighting the importance of integrating metabolomics analyses with molecular tools and identifies possible transmission blocking candidates for malaria intervention.
Collapse
|
24
|
Triazole Substitution of a Labile Amide Bond Stabilizes Pantothenamides and Improves Their Antiplasmodial Potency. Antimicrob Agents Chemother 2016; 60:7146-7152. [PMID: 27645235 DOI: 10.1128/aac.01436-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022] Open
Abstract
The biosynthesis of coenzyme A (CoA) from pantothenate and the utilization of CoA in essential biochemical pathways represent promising antimalarial drug targets. Pantothenamides, amide derivatives of pantothenate, have potential as antimalarials, but a serum enzyme called pantetheinase degrades pantothenamides, rendering them inactive in vivo In this study, we characterize a series of 19 compounds that mimic pantothenamides with a stable triazole group instead of the labile amide. Two of these pantothenamides are active against the intraerythrocytic stage parasite with 50% inhibitory concentrations (IC50s) of ∼50 nM, and three others have submicromolar IC50s. We show that the compounds target CoA biosynthesis and/or utilization. We investigated one of the compounds for its ability to interact with the Plasmodium falciparum pantothenate kinase, the first enzyme involved in the conversion of pantothenate to CoA, and show that the compound inhibits the phosphorylation of [14C]pantothenate by the P. falciparum pantothenate kinase, but the inhibition does not correlate with antiplasmodial activity. Furthermore, the compounds are not toxic to human cells and, importantly, are not degraded by pantetheinase.
Collapse
|
25
|
Fletcher S, Lucantoni L, Sykes ML, Jones AJ, Holleran JP, Saliba KJ, Avery VM. Biological characterization of chemically diverse compounds targeting the Plasmodium falciparum coenzyme A synthesis pathway. Parasit Vectors 2016; 9:589. [PMID: 27855724 PMCID: PMC5114727 DOI: 10.1186/s13071-016-1860-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/27/2016] [Indexed: 01/10/2023] Open
Abstract
Background In the fight against malaria, the discovery of chemical compounds with a novel mode of action and/or chemistry distinct from currently used drugs is vital to counteract the parasite’s known ability to develop drug resistance. Another desirable aspect is efficacy against gametocytes, the sexual developmental stage of the parasite which enables the transmission through Anopheles vectors. Using a chemical rescue approach, we previously identified compounds targeting Plasmodium falciparum coenzyme A (CoA) synthesis or utilization, a promising target that has not yet been exploited in anti-malarial drug development. Results We report on the outcomes of a series of biological tests that help to define the species- and stage-specificity, as well as the potential targets of these chemically diverse compounds. Compound activity against P. falciparum gametocytes was determined to assess stage-specificity and transmission-reducing potential. Against early stage gametocytes IC50 values ranging between 60 nM and 7.5 μM were obtained. With the exception of two compounds with sub-micromolar potencies across all intra-erythrocytic stages, activity against late stage gametocytes was lower. None of the compounds were specific pantothenate kinase inhibitors. Chemical rescue profiling with CoA pathway intermediates demonstrated that most compounds acted on either of the two final P. falciparum CoA synthesis enzymes, phosphopantetheine adenylyltransferase (PPAT) or dephospho CoA kinase (DPCK). The most active compound targeted either phosphopantothenoylcysteine synthetase (PPCS) or phosphopantothenoylcysteine decarboxylase (PPCDC). Species-specificity was evaluated against Trypanosoma cruzi and Trypanosoma brucei brucei. No specific activity against T. cruzi amastigotes was observed; however three compounds inhibited the viability of trypomastigotes with sub-micromolar potencies and were confirmed to act on T. b. brucei CoA synthesis. Conclusions Utilizing the compounds we previously identified as effective against asexual P. falciparum, we demonstrate for the first time that gametocytes, like the asexual stages, depend on CoA, with two compounds exhibiting sub-micromolar potencies across asexual forms and all gametocytes stages tested. Furthermore, three compounds inhibited the viability of T. cruzi and T. b. brucei trypomastigotes with sub-micromolar potencies and were confirmed to act on T. b. brucei CoA synthesis, indicating that the CoA synthesis pathway might represent a valuable new drug target in these parasite species. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1860-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabine Fletcher
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Leonardo Lucantoni
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Melissa L Sykes
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Amy J Jones
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - John P Holleran
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Kevin J Saliba
- Medical School and Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Vicky M Avery
- Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
26
|
Hart RJ, Cornillot E, Abraham A, Molina E, Nation CS, Ben Mamoun C, Aly ASI. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito. Sci Rep 2016; 6:33518. [PMID: 27644319 PMCID: PMC5028760 DOI: 10.1038/srep33518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/30/2016] [Indexed: 11/24/2022] Open
Abstract
The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes.
Collapse
Affiliation(s)
- Robert J Hart
- Tulane University, Department of Tropical Medicine, New Orleans, LA 70112, USA
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle, Université Montpellier, 34095 Montpellier, France
| | - Amanah Abraham
- Tulane University, Department of Tropical Medicine, New Orleans, LA 70112, USA
| | - Emily Molina
- Tulane University, Department of Tropical Medicine, New Orleans, LA 70112, USA
| | - Catherine S Nation
- Tulane University, Department of Tropical Medicine, New Orleans, LA 70112, USA
| | - Choukri Ben Mamoun
- Yale University School of Medicine, Section of Infectious Diseases, New Haven, CT 06520, USA
| | - Ahmed S I Aly
- Tulane University, Department of Tropical Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
27
|
Hughes SJ, Barnard L, Mottaghi K, Tempel W, Antoshchenko T, Hong BS, Allali-Hassani A, Smil D, Vedadi M, Strauss E, Park HW. Discovery of Potent Pantothenamide Inhibitors of Staphylococcus aureus Pantothenate Kinase through a Minimal SAR Study: Inhibition Is Due to Trapping of the Product. ACS Infect Dis 2016; 2:627-641. [PMID: 27759386 DOI: 10.1021/acsinfecdis.6b00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potent antistaphylococcal activity of N-substituted pantothenamides (PanAms) has been shown to at least partially be due to the inhibition of Staphylococcus aureus's atypical type II pantothenate kinase (SaPanKII), the first enzyme of coenzyme A biosynthesis. This mechanism of action follows from SaPanKII having a binding mode for PanAms that is distinct from those of other PanKs. To dissect the molecular interactions responsible for PanAm inhibitory activity, we conducted a mini SAR study in tandem with the cocrystallization of SaPanKII with two classic PanAms (N5-Pan and N7-Pan), culminating in the synthesis and characterization of two new PanAms, N-Pip-PanAm and MeO-N5-PanAm. The cocrystal structures showed that all of the PanAms are phosphorylated by SaPanKII but remain bound at the active site; this occurs primarily through interactions with Tyr240' and Thr172'. Kinetic analysis showed a strong correlation between kcat (slow PanAm turnover) and IC50 (inhibition of pantothenate phosphorylation) values, suggesting that SaPanKII inhibition occurs via a delay in product release. In-depth analysis of the PanAm-bound structures showed that the capacity for accepting a hydrogen bond from the amide of Thr172' was a stronger determinant for PanAm potency than the capacity to π-stack with Tyr240'. The two new PanAms, N-Pip-PanAm and MeO-N5-PanAm, effectively combine both hydrogen bonding and hydrophobic interactions, resulting in the most potent SaPanKII inhibition described to date. Taken together, our results are consistent with an inhibition mechanism wherein PanAms act as SaPanKII substrates that remain bound upon phosphorylation. The phospho-PanAm-SaPanKII interactions described herein may help future antistaphylococcal drug development.
Collapse
Affiliation(s)
| | - Leanne Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | | | - Tetyana Antoshchenko
- Department
of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, Louisiana 70112, United States
| | | | | | | | | | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Hee-Won Park
- Department
of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
28
|
Rommelaere S, Millet V, Rihet P, Atwell S, Helfer E, Chasson L, Beaumont C, Chimini G, Sambo MDR, Viallat A, Penha-Gonçalves C, Galland F, Naquet P. Serum pantetheinase/vanin levels regulate erythrocyte homeostasis and severity of malaria. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3039-52. [PMID: 26343328 DOI: 10.1016/j.ajpath.2015.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 06/18/2015] [Accepted: 07/16/2015] [Indexed: 11/16/2022]
Abstract
Tissue pantetheinase, encoded by the VNN1 gene, regulates response to stress, and previous studies have shown that VNN genes contribute to the susceptibility to malaria. Herein, we evaluated the role of pantetheinase on erythrocyte homeostasis and on the development of malaria in patients and in a new mouse model of pantetheinase insufficiency. Patients with cerebral malaria have significantly reduced levels of serum pantetheinase activity (PA). In mouse, we show that a reduction in serum PA predisposes to severe malaria, including cerebral malaria and severe anemia. Therefore, scoring pantetheinase in serum may serve as a severity marker in malaria infection. This disease triggers an acute stress in erythrocytes, which enhances cytoadherence and hemolysis. We speculated that serum pantetheinase might contribute to erythrocyte resistance to stress under homeostatic conditions. We show that mutant mice with a reduced serum PA are anemic and prone to phenylhydrazine-induced anemia. A cytofluorometric and spectroscopic analysis documented an increased frequency of erythrocytes with an autofluorescent aging phenotype. This is associated with an enhanced oxidative stress and shear stress-induced hemolysis. Red blood cell transfer and bone marrow chimera experiments show that the aging phenotype is not cell intrinsic but conferred by the environment, leading to a shortening of red blood cell half-life. Therefore, serum pantetheinase level regulates erythrocyte life span and modulates the risk of developing complicated malaria.
Collapse
Affiliation(s)
- Samuel Rommelaere
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France
| | - Virginie Millet
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France
| | - Pascal Rihet
- Technological Advances for Genomics and Clinics (TAGC), Aix-Marseille Université, UMR_S 1090, INSERM U1090, Marseille, France
| | - Scott Atwell
- Marseilles Interdisciplinary Nanoscience Centre, Aix-Marseille Université, CNRS UMR7325, Marseille, France
| | - Emmanuèle Helfer
- Marseilles Interdisciplinary Nanoscience Centre, Aix-Marseille Université, CNRS UMR7325, Marseille, France
| | - Lionel Chasson
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France
| | - Carole Beaumont
- Biomedical Research Center Bichat-Beaujon, Université Paris Diderot, INSERM U773, Paris, France
| | - Giovanna Chimini
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France
| | | | - Annie Viallat
- Marseilles Interdisciplinary Nanoscience Centre, Aix-Marseille Université, CNRS UMR7325, Marseille, France
| | | | - Franck Galland
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France.
| | - Philippe Naquet
- Immunology Center of Marseille-Luminy, Aix Marseille Université (UM2), the National Institute of Health and Medical Research INSERM U1104, the Centre National de la Recherche Scientifique CNRS UMR7280, Marseille, France.
| |
Collapse
|