1
|
Ding J, Zhang SS, Fernandopulle NA, Karas JA, Li J, Ziogas J, Velkov T, Mackay GA. Differential MRGPRX2-dependent activation of human mast cells by polymyxins and octapeptins. Eur J Pharmacol 2024; 984:177050. [PMID: 39389528 DOI: 10.1016/j.ejphar.2024.177050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The emergence of multi-drug resistant Gram-negative bacteria has led to renewed interest in the antimicrobial activity of polymyxins and novel polymyxin analogues (e.g. nonapeptides and octapeptin). In some individuals, clinically used polymyxins can cause acute hypersensitivity reactions through mast cell activation, with a recent study attributing this effect to activation of the MAS-related G protein-coupled receptor X2 (MRGPRX2). In the present study, HEK293 cells expressing human MRGPRX2 and the human mast cell line LAD2 were used to characterize the activity of the broader family of polymyxins. Octapeptin C4, polymyxin B and colistin produced concentration-dependent calcium mobilization, degranulation, and CCL-2 (MCP-1) release in LAD2 mast cells, with the former being highly potent. CRISPR-Cas9 knockdown of MRGPRX2 in LAD2 cells and a MRGPRX2 inverse agonist caused a significant reduction in calcium mobilization, degranulation, and CCL-2 release, demonstrating dependency on MRGPRX2 expression. In contrast, polymyxin nonapeptides were far less potent calcium mobilisers and failed to induce functional degranulation in LAD2 cells. Our results confirm that activation of mast cells induced by polymyxin-related antibiotics is MRGPRX2-dependent and reveal that octapeptin C4 might be more liable, whilst nonapeptides are less liable, to trigger immediate hypersensitivity reactions clinically. The mechanism underpinning the difference in MRGPRX2 activation between polymyxin-related antibiotics is important to better understand as it may help design new, safer polymyxins and guide the optimal clinical use of existing polymyxin drugs.
Collapse
Affiliation(s)
- Jie Ding
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephanie S Zhang
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nithya A Fernandopulle
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - John A Karas
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - James Ziogas
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tony Velkov
- Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Graham A Mackay
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Ferreira L, Pos E, Nogueira DR, Ferreira FP, Sousa R, Abreu MA. Antibiotics with antibiofilm activity - rifampicin and beyond. Front Microbiol 2024; 15:1435720. [PMID: 39268543 PMCID: PMC11391936 DOI: 10.3389/fmicb.2024.1435720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The management of prosthetic joint infections is a complex and multilayered process that is additionally complicated by the formation of bacterial biofilm. Foreign material provides the ideal grounds for the development of an intricate matrix that hinders treatment and creates a difficult environment for antibiotics to act. Surgical intervention is often warranted but requires appropriate adjunctive therapy. Despite available guidelines, several aspects of antibiotic therapy with antibiofilm activity lack clear definition. Given the escalating challenges posed by antimicrobial resistance, extended treatment durations, and tolerance issues, it is essential to ensure that antimicrobials with antibiofilm activity are both potent and diverse. Evidence of biofilm-active drugs is highlighted, and alternatives to classical regimens are further discussed.
Collapse
Affiliation(s)
- Luís Ferreira
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
| | - Ema Pos
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
| | | | - Filipa Pinto Ferreira
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
| | - Ricardo Sousa
- Department of Orthopaedic Surgery, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
- Grupo de Infeção Osteoarticular do Porto, Porto, Portugal
| | - Miguel Araújo Abreu
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
- Grupo de Infeção Osteoarticular do Porto, Porto, Portugal
| |
Collapse
|
3
|
Jalil AT, Alrawe RTA, Al-Saffar MA, Shaghnab ML, Merza MS, Abosaooda M, Latef R. The use of combination therapy for the improvement of colistin activity against bacterial biofilm. Braz J Microbiol 2024; 55:411-427. [PMID: 38030866 PMCID: PMC10920569 DOI: 10.1007/s42770-023-01189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Colistin is used as a last resort for the management of infections caused by multi-drug resistant (MDR) bacteria. However, the use of this antibiotic could lead to different side effects, such as nephrotoxicity, in most patients, and the high prevalence of colistin-resistant strains restricts the use of colistin in the clinical setting. Additionally, colistin could induce resistance through the increased formation of biofilm; biofilm-embedded cells are highly resistant to antibiotics, and as with other antibiotics, colistin is impaired by bacteria in the biofilm community. In this regard, the researchers used combination therapy for the enhancement of colistin activity against bacterial biofilm, especially MDR bacteria. Different antibacterial agents, such as antimicrobial peptides, bacteriophages, natural compounds, antibiotics from different families, N-acetylcysteine, and quorum-sensing inhibitors, showed promising results when combined with colistin. Additionally, the use of different drug platforms could also boost the efficacy of this antibiotic against biofilm. The mentioned colistin-based combination therapy not only could suppress the formation of biofilm but also could destroy the established biofilm. These kinds of treatments also avoided the emergence of colistin-resistant subpopulations, reduced the required dosage of colistin for inhibition of biofilm, and finally enhanced the dosage of this antibiotic at the site of infection. However, the exact interaction of colistin with other antibacterial agents has not been elucidated yet; therefore, further studies are required to identify the precise mechanism underlying the efficient removal of biofilms by colistin-based combination therapy.
Collapse
Affiliation(s)
| | | | - Montaha A Al-Saffar
- Community Health Department, Institute of Medical Technology/Baghdad, Middle Technical University, Baghdad, Iraq
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Rahim Latef
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
4
|
Tiseo G, Galfo V, Falcone M. What is the clinical significance of 'heteroresistance' in nonfermenting Gram-negative strains? Curr Opin Infect Dis 2023; 36:555-563. [PMID: 37729656 PMCID: PMC10624410 DOI: 10.1097/qco.0000000000000964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
PURPOSE OF REVIEW The aim of this study was to discuss the potential clinical significance of heteroresistance in nonfermenting Gram-negative bacilli (GNB). RECENT FINDINGS Recently, heteroresistance has been considered potentially responsible for clinical failure in Acinetobacter baumannii infections. This raised a scientific debate, still open, about the potential clinical significance of heteroresistance in nonfermenting GNB. SUMMARY We reviewed the literature of last 20 years and found a limited number of studies evaluating the relationship between heteroresistance and clinical outcome in nonfermenting GNB. Unlike Gram-positive bacteria, heteroresistance is reported in a significant proportion of nonfermenting GNB with some studies describing it in all tested strains and for several antibiotics (including tigecycline, carbapenems, levofloxacin, cefiderocol, colistin). One important issue is the need for validated detection method since the population analysis profile test, that is considered the gold standard, requires high costs and time. Studies evaluating the correlation between heteroresistance and clinical outcome are contrasting and have several limitations. Although in-vitro detection of heteroresistance in nonfermenting GNB has not been associated with in-vivo treatment failure, its presence may suggest to prefer combination regimens instead monotherapy when treating infections by nonfermenters. Further studies are needed to clarify the clinical significance of heteroresistance.
Collapse
Affiliation(s)
- Giusy Tiseo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
5
|
Aktas Z, Sonmez N, Oksuz L, Boral O, Issever H, Oncul O. Efficacy of antibiotic combinations in an experimental sepsis model with Pseudomonas aeruginosa. Braz J Microbiol 2023; 54:2817-2826. [PMID: 37828396 PMCID: PMC10689617 DOI: 10.1007/s42770-023-01141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
This study aimed to compare the efficacy of fosfomycin, colistin, tobramycin and their dual combinations in an experimental sepsis model. After sepsis was established with a Pseudomonas aeruginosa isolate (P1), antibiotic-administered rats were divided into six groups: Fosfomycin, tobramycin, colistin and their dual combinations were administered by the intravenous or intraperitoneal route to the groups. The brain, heart, lung, liver, spleen and kidney tissues of rats were cultured to investigate bacterial translocation caused by P1. Given the antibiotics and their combinations, bacterial colony counts in liver tissues were decreased in colistin alone and colistin plus tobramycin groups compared with control group, but there were no significant differences. In addition, a non-statistical decrease was found in the spleen tissues of rats in the colistin plus tobramycin group. There was a > 2 log10 CFU/ml decrease in the number of bacterial colonies in the kidney tissues of the rats in the fosfomycin group alone, but the decrease was not statistically significant. However, there was an increase in the number of bacterial colonies in the spleen and kidney samples in the group treated with colistin as monotherapy compared to the control group. The number of bacterial colonies in the spleen samples in fosfomycin plus tobramycin groups increased compared to the control group. Bacterial colony numbers in all tissue samples in the fosfomycin plus colistin group were found to be close to those in the control group. Colistin plus tobramycin combinations are effective against P. aeruginosa in experimental sepsis, and clinical success may be achieved. New in vivo studies demonstrating the ability of P. aeruginosa to biofilm formation in tissues other than the lung are warranted in future.
Collapse
Affiliation(s)
- Zerrin Aktas
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Türkiye
| | - Nese Sonmez
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Türkiye
| | - Lutfiye Oksuz
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Türkiye.
| | - Ozden Boral
- Department of Medical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Türkiye
| | - Halim Issever
- Department of Public Health, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Türkiye
| | - Oral Oncul
- Department of Infectious Diseases and Clinical Microbiology, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Türkiye
| |
Collapse
|
6
|
Kothari A, Kherdekar R, Mago V, Uniyal M, Mamgain G, Kalia RB, Kumar S, Jain N, Pandey A, Omar BJ. Age of Antibiotic Resistance in MDR/XDR Clinical Pathogen of Pseudomonas aeruginosa. Pharmaceuticals (Basel) 2023; 16:1230. [PMID: 37765038 PMCID: PMC10534605 DOI: 10.3390/ph16091230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotic resistance in Pseudomonas aeruginosa remains one of the most challenging phenomena of everyday medical science. The universal spread of high-risk clones of multidrug-resistant/extensively drug-resistant (MDR/XDR) clinical P. aeruginosa has become a public health threat. The P. aeruginosa bacteria exhibits remarkable genome plasticity that utilizes highly acquired and intrinsic resistance mechanisms to counter most antibiotic challenges. In addition, the adaptive antibiotic resistance of P. aeruginosa, including biofilm-mediated resistance and the formation of multidrug-tolerant persisted cells, are accountable for recalcitrance and relapse of infections. We highlighted the AMR mechanism considering the most common pathogen P. aeruginosa, its clinical impact, epidemiology, and save our souls (SOS)-mediated resistance. We further discussed the current therapeutic options against MDR/XDR P. aeruginosa infections, and described those treatment options in clinical practice. Finally, other therapeutic strategies, such as bacteriophage-based therapy and antimicrobial peptides, were described with clinical relevance.
Collapse
Affiliation(s)
- Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Radhika Kherdekar
- Department of Dentistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Vishal Mago
- Department of Burn and Plastic Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Madhur Uniyal
- Department of Trauma Surgery, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Garima Mamgain
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Roop Bhushan Kalia
- Department of Orthopaedics, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA;
| | - Neeraj Jain
- Department of Medical Oncology, All India Institute of Medical Sciences, Rishikesh 249203, India
- Division of Cancer Biology, Central Drug Research Institute, Lucknow 226031, India
| | - Atul Pandey
- Department of Entomology, University of Kentucky, Lexington, KY 40503, USA
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India;
| |
Collapse
|
7
|
Karaiskos I, Gkoufa A, Polyzou E, Schinas G, Athanassa Z, Akinosoglou K. High-Dose Nebulized Colistin Methanesulfonate and the Role in Hospital-Acquired Pneumonia Caused by Gram-Negative Bacteria with Difficult-to-Treat Resistance: A Review. Microorganisms 2023; 11:1459. [PMID: 37374959 DOI: 10.3390/microorganisms11061459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Hospital-acquired pneumonia, including ventilator-associated pneumonia (VAP) due to difficult-to-treat-resistant (DTR) Gram-negative bacteria, contributes significantly to morbidity and mortality in ICUs. In the era of COVID-19, the incidences of secondary nosocomial pneumonia and the demand for invasive mechanical ventilation have increased dramatically with extremely high attributable mortality. Treatment options for DTR pathogens are limited. Therefore, an increased interest in high-dose nebulized colistin methanesulfonate (CMS), defined as a nebulized dose above 6 million IU (MIU), has come into sight. Herein, the authors present the available modern knowledge regarding high-dose nebulized CMS and current information on pharmacokinetics, clinical studies, and toxicity issues. A brief report on types of nebulizers is also analyzed. High-dose nebulized CMS was administrated as an adjunctive and substitutive strategy. High-dose nebulized CMS up to 15 MIU was attributed with a clinical outcome of 63%. High-dose nebulized CMS administration offers advantages in terms of efficacy against DTR Gram-negative bacteria, a favorable safety profile, and improved pharmacokinetics in the treatment of VAP. However, due to the heterogeneity of studies and small sample population, the apparent benefit in clinical outcomes must be proven in large-scale trials to lead to the optimal use of high-dose nebulized CMS.
Collapse
Affiliation(s)
- Ilias Karaiskos
- First Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, 4, Erythrou Stavrou Str. & Kifisias, 15123 Athens, Greece
| | - Aikaterini Gkoufa
- Infectious Diseases and COVID-19 Unit, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Elena Polyzou
- School of Medicine, University of Patras, 26504 Patras, Greece
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| | | | - Zoe Athanassa
- Intensive Care Unit, Sismanoglio General Hospital, 15126 Athens, Greece
| | - Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Patras, Greece
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
8
|
Reina R, León-Moya C, Garnacho-Montero J. Treatment of Acinetobacter baumannii severe infections. Med Intensiva 2022; 46:700-710. [PMID: 36272902 DOI: 10.1016/j.medine.2022.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Acinetobacter baumannii is a Gram-negative, multidrug-resistant (MDR) pathogen that causes nosocomial infections, especially in intensive care units (ICUs) and immunocompromised patients. A. baumannii has developed a broad spectrum of antimicrobial resistance, associated with a higher mortality rate among infected patients compared with other non-baumannii species. In terms of clinical impact, resistant strains are associated with increases in both in-hospital length of stay and mortality. A. baumannii can cause a variety of infections, especially ventilator-associated pneumonia, bacteremia, and skin wound infections, among others. The most common risk factors for the acquisition of MDR A. baumannii are previous antibiotic use, mechanical ventilation, length of ICU and hospital stay, severity of illness, and use of medical devices. Current efforts are focused on addressing all the antimicrobial resistance mechanisms described in A. baumannii, with the objective of identifying the most promising therapeutic scheme.
Collapse
Affiliation(s)
- R Reina
- Cátedra Terapia Intensiva, Facultad de Medicina, Universidad Nacional de La Plata, Argentina, Sociedad Argentina de Terapia Intensiva (SATI), La Plata, Provincia de Buenos Aires, Argentina.
| | - C León-Moya
- Unidad Clínica de Cuidados Intensivos, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - J Garnacho-Montero
- Unidad Clínica de Cuidados Intensivos, Hospital Universitario Virgen Macarena, Sevilla, Spain
| |
Collapse
|
9
|
Tratamiento de infecciones graves por Acinetobacter baumannii. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Főldes A, Székely E, Voidăzan ST, Dobreanu M. Comparison of Six Phenotypic Assays with Reference Methods for Assessing Colistin Resistance in Clinical Isolates of Carbapenemase-Producing Enterobacterales: Challenges and Opportunities. Antibiotics (Basel) 2022; 11:antibiotics11030377. [PMID: 35326840 PMCID: PMC8944616 DOI: 10.3390/antibiotics11030377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The global escalation of severe infections due to carbapenemase-producing Enterobacterales (CPE) isolates has prompted increased usage of parenteral colistin. Considering the reported difficulties in assessing their susceptibility to colistin, the purpose of the study was to perform a comparative evaluation of six phenotypic assays—the colistin broth disc elution (CBDE), Vitek 2 Compact (bioMérieux SA, Marcy l’Etoile, France), the Micronaut MIC-Strip Colistin (Merlin Diagnostika GMBH, Bornheim-Hensel, Germany), the gradient diffusion strip Etest (bioMérieux SA, Marcy l’Etoile, France), ChromID Colistin R Agar (COLR) (bioMérieux SA, Marcy l’Etoile, France), and the Rapid Polymyxin NP Test (ELITechGroup, Signes, France)—versus the reference method of broth microdilution (BMD). All false resistance results were further assessed using population analysis profiling (PAP). Ninety-two nonrepetitive clinical CPE strains collected from two hospitals were evaluated. The BMD confirmed 36 (39.13%) isolates susceptible to colistin. According to the BMD, the Micronaut MIC-Strip Colistin, the CBDE, and the COLR medium exhibited category agreement (CA) of 100%. In comparison with the BMD, the highest very major discrepancy (VMD) was noted for Etest (n = 15), and the only false resistance results were recorded for the Rapid Polymyxin NP Test (n = 3). Only the PAP method and the Rapid Polymyxin NP Test were able to detect heteroresistant isolates (n = 2). Thus, there is an urgent need to further optimize the diagnosis strategies for colistin resistance.
Collapse
Affiliation(s)
- Annamária Főldes
- Department of Microbiology, Laboratory of Medical Analysis, “Dr. Constantin Opriş” County Emergency Hospital, 430031 Baia Mare, Romania
- Doctoral School of Medicine and Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
- Correspondence:
| | - Edit Székely
- Department of Microbiology, Central Clinical Laboratory, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Microbiology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| | - Septimiu Toader Voidăzan
- Department of Epidemiology, “George Emil Palade’’ University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania;
| | - Minodora Dobreanu
- Department of Clinical Biochemistry, Central Clinical Laboratory, County Emergency Clinical Hospital, 540136 Targu Mures, Romania;
- Department of Laboratory Medicine, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540142 Targu Mures, Romania
| |
Collapse
|
11
|
Peyclit L, Baron SA, Hadjadj L, Rolain JM. In Vitro Screening of a 1280 FDA-Approved Drugs Library against Multidrug-Resistant and Extensively Drug-Resistant Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11030291. [PMID: 35326755 PMCID: PMC8944690 DOI: 10.3390/antibiotics11030291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 12/29/2022] Open
Abstract
Alternative strategies against multidrug-resistant (MDR) bacterial infections are suggested to clinicians, such as drug repurposing, which uses rapidly available and marketed drugs. We gathered a collection of MDR bacteria from our hospital and performed a phenotypic high-throughput screening with a 1280 FDA-approved drug library. We used two Gram positive (Enterococcus faecium P5014 and Staphylococcus aureus P1943) and six Gram negative (Acinetobacter baumannii P1887, Klebsiella pneumoniae P9495, Pseudomonas aeruginosa P6540, Burkholderia multivorans P6539, Pandoraea nosoerga P8103, and Escherichia coli DSM105182 as the reference and control strain). The selected MDR strain panel carried resistance genes or displayed phenotypic resistance to last-line therapies such as carbapenems, vancomycin, or colistin. A total of 107 compounds from nine therapeutic classes inhibited >90% of the growth of the selected Gram negative and Gram positive bacteria at a drug concentration set at 10 µmol/L, and 7.5% were anticancer drugs. The common hit was the antiseptic chlorhexidine. The activity of niclosamide, carmofur, and auranofin was found against the selected methicillin-resistant S. aureus. Zidovudine was effective against colistin-resistant E. coli and carbapenem-resistant K. pneumoniae. Trifluridine, an antiviral, was effective against E. faecium. Deferoxamine mesylate inhibited the growth of XDR P. nosoerga. Drug repurposing by an in vitro screening of a drug library is a promising approach to identify effective drugs for specific bacteria.
Collapse
Affiliation(s)
- Lucie Peyclit
- Aix Marseille University, IRD, APHM, MEPHI, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (L.P.); (S.A.B.); (L.H.)
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
| | - Sophie Alexandra Baron
- Aix Marseille University, IRD, APHM, MEPHI, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (L.P.); (S.A.B.); (L.H.)
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
| | - Linda Hadjadj
- Aix Marseille University, IRD, APHM, MEPHI, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (L.P.); (S.A.B.); (L.H.)
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
| | - Jean-Marc Rolain
- Aix Marseille University, IRD, APHM, MEPHI, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France; (L.P.); (S.A.B.); (L.H.)
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
- Correspondence: ; Tel.: +33-4-13-73-24-01
| |
Collapse
|
12
|
Howard-Anderson J, Davis M, Page AM, Bower CW, Smith G, Jacob JT, Andersson DI, Weiss DS, Satola SW. Prevalence of colistin heteroresistance in carbapenem-resistant Pseudomonas aeruginosa and association with clinical outcomes in patients: an observational study. J Antimicrob Chemother 2021; 77:793-798. [PMID: 34918135 DOI: 10.1093/jac/dkab461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/12/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To describe the prevalence of colistin heteroresistance in carbapenem-resistant Pseudomonas aeruginosa (CRPA) and evaluate the association with clinical outcomes. METHODS Colistin heteroresistance was evaluated in CRPA isolates collected from patients without cystic fibrosis in Atlanta, Georgia, USA using two definitions: HR1, growth at 4 and 8 mg/L of colistin at a frequency ≥1 × 10-6 the main population; and HR2, growth at a colistin concentration ≥8× the MIC of the main population at a frequency ≥1 × 10-7. A modified population analysis profile (mPAP) technique was compared with reference PAP for detecting heteroresistance. For adults hospitalized at the time of or within 1 week of CRPA culture, multivariable logistic regression estimated the association between heteroresistance and 90 day mortality. RESULTS Of 143 colistin-susceptible CRPA isolates, 8 (6%) met the HR1 definition and 37 (26%) met the HR2 definition. Compared with the reference PAP, mPAP had a sensitivity and specificity of 50% and 100% for HR1 and 32% and 99% for HR2. Of 82 hospitalized patients, 45 (56%) were male and the median age was 63 years (IQR 49-73). Heteroresistance was not associated with 90 day mortality using HR1 (0% in heteroresistant versus 22% in non-heteroresistant group; P = 0.6) or HR2 (12% in heteroresistant versus 24% in non-heteroresistant group; P = 0.4; adjusted OR 0.8; 95% CI 0.2-3.4). CONCLUSIONS Colistin heteroresistance was identified in up to 26% of patients with CRPA in our sample, although the prevalence varied depending on the definition. We did not observe an apparent association between colistin heteroresistance and 90 day mortality.
Collapse
Affiliation(s)
- Jessica Howard-Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Georgia Emerging Infections Program, Decatur, GA, USA.,Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Michelle Davis
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Georgia Emerging Infections Program, Decatur, GA, USA
| | - Alexander M Page
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Georgia Emerging Infections Program, Decatur, GA, USA
| | - Chris W Bower
- Georgia Emerging Infections Program, Decatur, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA.,Foundation for Atlanta Veterans Education and Research, Decatur, GA, USA
| | - Gillian Smith
- Georgia Emerging Infections Program, Decatur, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA.,Foundation for Atlanta Veterans Education and Research, Decatur, GA, USA
| | - Jesse T Jacob
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Georgia Emerging Infections Program, Decatur, GA, USA.,Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - David S Weiss
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Emory Antibiotic Resistance Center, Atlanta, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Sarah W Satola
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.,Georgia Emerging Infections Program, Decatur, GA, USA.,Emory Antibiotic Resistance Center, Atlanta, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|
13
|
El-Sherbiny GM, Basha AM, Mabrouk MI. Control of extensively drug-resistant Pseudomonas aeruginosa co-harboring metallo-β-lactamase enzymes with oprD gene downregulation. Indian J Med Microbiol 2021; 40:51-56. [PMID: 34802794 DOI: 10.1016/j.ijmmb.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/17/2021] [Accepted: 11/07/2021] [Indexed: 11/05/2022]
Abstract
PURPOSE to study control and treatment of infection with extensive drug-resistant carbapenem-resistant Pseudomonas aeruginosa (XDR-CRPA). METHODS Eleven Pseudomonas aeruginosa (XDR-CRPA) strains used in this study were isolated from a clinical sample, identified, and antibiotics susceptibility recorded in a previous study. Real-time PCR (RT-PCR) was performed to determine the expression level of the OprD gene. Besides, a checkerboard technique was performed to assess the effect of polymyxin-B (POX), colistin (COL), rifampicin (RIF), imipenem (IPM), and meropenem (MEM) during 2 and 3- dimensional antibiotic combinations. Further, the time-kill study was determined for the most potent combination against four representative strains, log10 changes of viable cell counts were expressed as their mean value (±SD) values. RESULTS Molecular analysis by Real-time PCR revealed that the diminished expression level of OprD mRNA was overwhelming to various degrees. The checkerboard method demonstrated that the relevant synergism was achieved in 90.9% of strains for both carbapenem antibiotics during the triple combinations. While an additive effect was noted for all the dual regimen assays. Regarding time-kill experiments, a remarkable bactericidal effect with [99.9% killing rate] was observed toward only one strain whilst a bacteriostatic attitude was proven with ≥95% bacterial eradication against the three remaining strains. CONCLUSIONS These findings underscore the promising implications of these combinations for treatment against XDR-Pseudomonas aeruginosa even they are resistant to carbapenems due to multiple mechanisms of action.
Collapse
Affiliation(s)
- Gamal M El-Sherbiny
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt.
| | - Amr Mohamad Basha
- Department of Microbiology, National Organization for Drug Control and Research, Egyptian Drug Authority, Giza, Egypt
| | - Mona I Mabrouk
- Department of Microbiology, National Organization for Drug Control and Research, Egyptian Drug Authority, Giza, Egypt
| |
Collapse
|
14
|
Memar MY, Adibkia K, Farajnia S, Samadi Kafil H, Khalili Y, Azargun R, Ghotaslou R. In-vitro Effect of Imipenem, Fosfomycin, Colistin, and Gentamicin Combination against Carbapenem-resistant and Biofilm-forming Pseudomonas aeruginosa Isolated from Burn Patients. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:286-296. [PMID: 34567162 PMCID: PMC8457740 DOI: 10.22037/ijpr.2020.111824.13380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate in-vitro antibacterial and antibiofilm effect of colistin, imipenem, gentamicin, and fosfomycin alone and the various combinations against carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa). Eight carbapenem-resistant and biofilm-forming P. aeruginosa isolates from burn patients were collected. The mechanisms of resistance to carbapenem were determined by the phenotypic, PCR, and Real-Time PCR assays. The minimum inhibitory concentration (MIC) of antimicrobial agents was determined by the broth micro dilution. To detect any inhibitory effect of antibiotics against the biofilm, the biofilm inhibitory concentration was determined. To detect synergetic effects of the combinations of antibiotics, the checkerboard assay and the fractional inhibitory concentration (FIC) were used. The highest synergic effect was observed in colistin/fosfomycin and gentamicin/fosfomycin (5 of 8 isolates), and the lowest synergic effect was found in gentamicin/imipenem and colistin/gentamicin (1 of 8 isolates). Colistin/fosfomycin, imipenem/fosfomycin, colistin/imipenem, gentamicin/fosfomycin, and gentamicin/imipenem were shown synergic effect for 3, 2, 2, 2 and 1 isolates, respectively. The combination of antibiotics had different effects on biofilm and planktonic forms of P. aeruginosa. Therefore, a separate determination of inhibitory effects of the antibiotic in the combination is necessary. Fosfomycin/colistin and fosfomycin/gentamicin were more effective against planktonic form and fosfomycin/colistin against biofilm forms.
Collapse
Affiliation(s)
- Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Younes Khalili
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Robab Azargun
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Iran
| |
Collapse
|
15
|
Nebulized Colistin in Ventilator-Associated Pneumonia and Tracheobronchitis: Historical Background, Pharmacokinetics and Perspectives. Microorganisms 2021; 9:microorganisms9061154. [PMID: 34072189 PMCID: PMC8227626 DOI: 10.3390/microorganisms9061154] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Clinical evidence suggests that nebulized colistimethate sodium (CMS) has benefits for treating lower respiratory tract infections caused by multidrug-resistant Gram-negative bacteria (GNB). Colistin is positively charged, while CMS is negatively charged, and both have a high molecular mass and are hydrophilic. These physico-chemical characteristics impair crossing of the alveolo-capillary membrane but enable the disruption of the bacterial wall of GNB and the aggregation of the circulating lipopolysaccharide. Intravenous CMS is rapidly cleared by glomerular filtration and tubular excretion, and 20-25% is spontaneously hydrolyzed to colistin. Urine colistin is substantially reabsorbed by tubular cells and eliminated by biliary excretion. Colistin is a concentration-dependent antibiotic with post-antibiotic and inoculum effects. As CMS conversion to colistin is slower than its renal clearance, intravenous administration can lead to low plasma and lung colistin concentrations that risk treatment failure. Following nebulization of high doses, colistin (200,000 international units/24h) lung tissue concentrations are > five times minimum inhibitory concentration (MIC) of GNB in regions with multiple foci of bronchopneumonia and in the range of MIC breakpoints in regions with confluent pneumonia. Future research should include: (1) experimental studies using lung microdialysis to assess the PK/PD in the interstitial fluid of the lung following nebulization of high doses of colistin; (2) superiority multicenter randomized controlled trials comparing nebulized and intravenous CMS in patients with pandrug-resistant GNB ventilator-associated pneumonia and ventilator-associated tracheobronchitis; (3) non-inferiority multicenter randomized controlled trials comparing nebulized CMS to intravenous new cephalosporines/ß-lactamase inhibitors in patients with extensive drug-resistant GNB ventilator-associated pneumonia and ventilator-associated tracheobronchitis.
Collapse
|
16
|
Dickstein Y, Lellouche J, Schwartz D, Nutman A, Rakovitsky N, Dishon Benattar Y, Altunin S, Bernardo M, Iossa D, Durante-Mangoni E, Antoniadou A, Skiada A, Deliolanis I, Daikos GL, Daitch V, Yahav D, Leibovici L, Rognås V, Friberg LE, Mouton JW, Paul M, Carmeli Y. Colistin Resistance Development Following Colistin-Meropenem Combination Therapy Versus Colistin Monotherapy in Patients With Infections Caused by Carbapenem-Resistant Organisms. Clin Infect Dis 2021; 71:2599-2607. [PMID: 31758195 DOI: 10.1093/cid/ciz1146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We evaluated whether carbapenem-colistin combination therapy reduces the emergence of colistin resistance, compared to colistin monotherapy, when given to patients with infections due to carbapenem-resistant Gram-negative organisms. METHODS This is a pre-planned analysis of a secondary outcome from a randomized, controlled trial comparing colistin monotherapy with colistin-meropenem combination for the treatment of severe infections caused by carbapenem-resistant, colistin-susceptible Gram-negative bacteria. We evaluated rectal swabs taken on Day 7 or later for the presence of new colistin-resistant (ColR) isolates. We evaluated the emergence of any ColR isolate and the emergence of ColR Enterobacteriaceae (ColR-E). RESULTS Data were available for 214 patients for the primary analysis; emergent ColR organisms were detected in 22 (10.3%). No difference was observed between patients randomized to treatment with colistin monotherapy (10/106, 9.4%) versus patients randomized to colistin-meropenem combination therapy (12/108, 11.1%; P = .669). ColR-E organisms were detected in 18/249 (7.2%) patients available for analysis. No difference was observed between the 2 treatment arms (colistin monotherapy 6/128 [4.7%] vs combination therapy 12/121 [9.9%]; P = .111). Enterobacteriaceae, as the index isolate, was found to be associated with development of ColR-E (hazard ratio, 3.875; 95% confidence interval, 1.475-10.184; P = .006). CONCLUSIONS Carbapenem-colistin combination therapy did not reduce the incidence of colistin resistance emergence in patients with infections due to carbapenem-resistant organisms. Further studies are necessary to elucidate the development of colistin resistance and methods for its prevention.
Collapse
Affiliation(s)
- Yaakov Dickstein
- Institute of Infectious Diseases, Rambam Health Care Campus, Haifa, Israel
| | - Jonathan Lellouche
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel Aviv, Israel.,Molecular Epidemiology Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - David Schwartz
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel Aviv, Israel.,Molecular Epidemiology Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Amir Nutman
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Israel
| | - Nadya Rakovitsky
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel Aviv, Israel.,Molecular Epidemiology Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | | | - Sergey Altunin
- Institute of Infectious Diseases, Rambam Health Care Campus, Haifa, Israel
| | - Mariano Bernardo
- University of Campania "L. Vanvitelli," Monaldi Hospital, Naples, Italy
| | - Domenico Iossa
- University of Campania "L. Vanvitelli," Monaldi Hospital, Naples, Italy
| | | | - Anastasia Antoniadou
- Fourth Department of Medicine, Attikon University General Hospital, Athens, Greece.,National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Skiada
- National and Kapodistrian University of Athens, Athens, Greece.,First Department of Medicine, Laikon General Hospital, Athens, Greece
| | - Ioannis Deliolanis
- National and Kapodistrian University of Athens, Athens, Greece.,First Department of Medicine, Laikon General Hospital, Athens, Greece
| | - George L Daikos
- National and Kapodistrian University of Athens, Athens, Greece.,First Department of Medicine, Laikon General Hospital, Athens, Greece
| | - Vered Daitch
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Israel.,Department of Medicine E, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Dafna Yahav
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Israel.,Infectious Diseases Unit, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Leonard Leibovici
- Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Israel.,Department of Medicine E, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Viktor Rognås
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Lena E Friberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Mical Paul
- Institute of Infectious Diseases, Rambam Health Care Campus, Haifa, Israel.,Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yehuda Carmeli
- National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, Tel Aviv, Israel.,Molecular Epidemiology Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Israel
| | | |
Collapse
|
17
|
Scudeller L, Righi E, Chiamenti M, Bragantini D, Menchinelli G, Cattaneo P, Giske CG, Lodise T, Sanguinetti M, Piddock LJV, Franceschi F, Ellis S, Carrara E, Savoldi A, Tacconelli E. Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli. Int J Antimicrob Agents 2021; 57:106344. [PMID: 33857539 DOI: 10.1016/j.ijantimicag.2021.106344] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 01/23/2023]
Abstract
The superiority of combination therapy for carbapenem-resistant Gram-negative bacilli (CR-GNB) infections remains controversial. In vitro models may predict the efficacy of antibiotic regimens against CR-GNB. A systematic review and meta-analysis was performed including pharmacokinetic/pharmacodynamic (PK/PD) and time-kill (TK) studies examining the in vitro efficacy of antibiotic combinations against CR-GNB [PROSPERO registration no. CRD42019128104]. The primary outcome was in vitro synergy based on the effect size (ES): high, ES ≥ 0.75, moderate, 0.35 < ES < 0.75; low, ES ≤ 0.35; and absent, ES = 0). A network meta-analysis assessed the bactericidal effect and re-growth rate (secondary outcomes). An adapted version of the ToxRTool was used for risk-of-bias assessment. Over 180 combination regimens from 136 studies were included. The most frequently analysed classes were polymyxins and carbapenems. Limited data were available for ceftazidime/avibactam, ceftolozane/tazobactam and imipenem/relebactam. High or moderate synergism was shown for polymyxin/rifampicin against Acinetobacter baumannii [ES = 0.91, 95% confidence interval (CI) 0.44-1.00], polymyxin/fosfomycin against Klebsiella pneumoniae (ES = 1.00, 95% CI 0.66-1.00) and imipenem/amikacin against Pseudomonas aeruginosa (ES = 1.00, 95% CI 0.21-1.00). Compared with monotherapy, increased bactericidal activity and lower re-growth rates were reported for colistin/fosfomycin and polymyxin/rifampicin in K. pneumoniae and for imipenem/amikacin or imipenem/tobramycin against P. aeruginosa. High quality was documented for 65% and 53% of PK/PD and TK studies, respectively. Well-designed in vitro studies should be encouraged to guide the selection of combination therapies in clinical trials and to improve the armamentarium against carbapenem-resistant bacteria.
Collapse
Affiliation(s)
- Luigia Scudeller
- Clinical Epidemiology and Biostatistics, IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano Foundation, Milan, Italy
| | - Elda Righi
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Margherita Chiamenti
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Damiano Bragantini
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Giulia Menchinelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paolo Cattaneo
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Christian G Giske
- Clinical Microbiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Thomas Lodise
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laura J V Piddock
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - François Franceschi
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - Sally Ellis
- Global Antibiotic Research & Development Partnership (GARDP), 15 Chemin Louis-Dunant, Geneva, Switzerland
| | - Elena Carrara
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Alessia Savoldi
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy; Division of Infectious Diseases, Department of Internal Medicine I, German Center for Infection Research, University of Tübingen, Otfried Müller Straße 12, 72074 Tübingen, Germany; German Centre for Infection Research (DZIF), Clinical Research Unit for Healthcare Associated Infections, Tübingen, Germany.
| |
Collapse
|
18
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
19
|
Bian X, Liu X, Feng M, Bergen PJ, Li J, Chen Y, Zheng H, Song S, Zhang J. Enhanced bacterial killing with colistin/sulbactam combination against carbapenem-resistant Acinetobacter baumannii. Int J Antimicrob Agents 2020; 57:106271. [PMID: 33352235 DOI: 10.1016/j.ijantimicag.2020.106271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/05/2020] [Accepted: 12/13/2020] [Indexed: 12/26/2022]
Abstract
AIMS Polymyxin-based combination therapy is often used to treat carbapenem-resistant Acinetobacter baumannii (A. baumannii) infections. Although sulbactam is intrinsically active against A. baumannii, few studies have investigated colistin/sulbactam combinations against carbapenem-resistant A. baumannii. METHODS Whole genome sequencing was undertaken on eight carbapenem-resistant (colistin-susceptible) isolates of A. baumannii from Chinese patients. Bacterial killing of colistin and sulbactam, alone and in combination, was examined with checkerboard (all isolates) and static and dynamic time-kill studies (three isolates). In the dynamic studies, antibiotics were administered in various clinically-relevant dosing regimens that mimicked patient pharmacokinetics. RESULTS The eight isolates consisted of ST195, ST191 and ST208 belonging to clonal complex 208, which is the most epidemic clonal type of A. baumannii globally. All isolates possessed Acinetobacter-derived cephalosporinase (ADC-61 or ADC-78) and seven of eight isolates contained the carbapenem-resistance gene blaOXA-23. The colistin/sulbactam combination was synergistic against two of eight isolates in checkerboard studies. In time-kill studies, rapid bacterial killing of ca. 3-6 log10 CFU/mL was observed with colistin monotherapy, followed by steady regrowth. Sulbactam monotherapy was generally ineffective. Substantially enhanced bacterial killing was observed with colistin/sulbactam combinations in both static and dynamic models, especially with the higher sulbactam concentration (2 g) and/or longer sulbactam infusion time (2 hours) in the dynamic model. CONCLUSIONS This study was the first to use a pharmacokinetics/pharmacodynamics model to investigate synergistic activity of colistin/sulbactam combinations against A. baumannii. It showed that clinically-relevant dosing regimens of colistin combined with sulbactam may substantially improve bacterial killing of multidrug-resistant and carbapenem-resistant A. baumannii.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Yuancheng Chen
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
| | - Huajun Zheng
- Chinese National Human Genome Center, Shanghai, China
| | - Sichao Song
- Chinese National Human Genome Center, Shanghai, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
Gómez-Junyent J, Murillo O, Yu HH, Azad MAK, Wickremasinghe H, Rigo-Bonnin R, Benavent E, Ariza J, Li J. In vitro pharmacokinetics/pharmacodynamics of continuous ceftazidime infusion alone and in combination with colistin against Pseudomonas aeruginosa biofilm. Int J Antimicrob Agents 2020; 57:106246. [PMID: 33253904 DOI: 10.1016/j.ijantimicag.2020.106246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/18/2020] [Accepted: 11/14/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The pharmacokinetics/pharmacodynamics of continuous infusion (CI) beta-lactams for Pseudomonas aeruginosa biofilm infections has not been defined. This study evaluated the efficacy of several dosage regimens of CI ceftazidime, with or without colistin, an antibiotic with a potential antibiofilm effect, against biofilm-embedded P. aeruginosa. METHODS Mature biofilms of the reference strain PAO1 and the clinical isolate HUB8 (both ceftazidime- and colistin-susceptible) were investigated over 54h using a dynamic CDC biofilm reactor. CI dosage regimens were ceftazidime monotherapy (4, 10, 20 and 40 mg/L), colistin monotherapy (3.50 mg/L), and combinations of colistin and ceftazidime (4 or 40 mg/L). Efficacy was evaluated by changes in log10colony-forming units (cfu)/mL and confocal microscopy. RESULTS At 54 h, the antibiofilm activity of ceftazidime monotherapies was slightly higher for ceftazidime 20 mg/L (-2.84 log10cfu/mL) and 40 mg/L (-3.05) against PAO1, but no differences were seen against HUB8. Ceftazidime-resistant colonies emerged with 4 mg/L regimens in both strains and with other regimens in PAO1. Colistin monotherapy had significant antibiofilm activity against HUB8 (-3.07), but lower activity against PAO1 (-1.12), and colistin-resistant strains emerged. Combinations of ceftazidime and colistin had higher antibiofilm activity at 54 h compared with each monotherapy, and prevented the emergence of resistance to both antibiotics; higher antibiofilm activity was observed with ceftazidime 40 mg/L plus colistin compared with ceftazidime 4 mg/L plus colistin (-4.19 vs. -3.10 PAO1; -4.71 vs. -3.44 HUB8). CONCLUSIONS This study demonstrated that, with %T>MIC=100%, CI ceftazidime displayed concentration-dependent antibiofilm activity against P. aeruginosa biofilm, particularly in combination with colistin. These results support the use of high-dosage regimens of CI ceftazidime with colistin against biofilm-associated infections with ceftazidime-susceptible P. aeruginosa.
Collapse
Affiliation(s)
- Joan Gómez-Junyent
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia; Department of Infectious Diseases, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Oscar Murillo
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Heidi H Yu
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| | - Mohammad A K Azad
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| | - Hasini Wickremasinghe
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| | - Raul Rigo-Bonnin
- Department of Clinical Laboratory, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Benavent
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Ariza
- Department of Infectious Diseases, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| |
Collapse
|
21
|
Liao W, Lin J, Jia H, Zhou C, Zhang Y, Lin Y, Ye J, Cao J, Zhou T. Resistance and Heteroresistance to Colistin in Escherichia coli Isolates from Wenzhou, China. Infect Drug Resist 2020; 13:3551-3561. [PMID: 33116674 PMCID: PMC7553605 DOI: 10.2147/idr.s273784] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background Colistin is being administered as last-line therapy for patients that have failed to respond to other available antibiotics that are active against Escherichia coli. The underlying mechanisms of colistin resistance and heteroresistance remain largely uncharacterized. The present study investigated the mechanisms of resistance and heteroresistance to colistin in Escherichia coli isolates from Wenzhou, China. Materials and Methods Colistin resistance was detected by the broth microdilution method (BMD). Colistin heteroresistance was determined by population analysis profiles (PAPs). The polymerase chain reaction (PCR) was conducted to detect mcr-1, mcr-2, mcr-3, pmrA, pmrB, phoP, phoQ and mgrB, and quantitative real-time PCR (qRT-PCR) was used to determine the expression levels of mcr-1, pmrC, pmrA and pmrB. Lipid A characterization was conducted by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Results 0.69% (2/291) of Escherichia coli strains were resistant to colistin, whereas the heteroresistance rate reached 1.37% (4/291). mcr-1, the mobile colistin-resistance gene, was present in the two resistant isolates. The substitutions in PmrB were detected in the two heteroresistant isolates. The transcripts levels of the pmrCAB operon were upregulated in two of the heteroresistant isolates. carbonylcyanide m-chlorophenylhydrazone (CCCP) was able to reverse colistin resistance of all isolates tested and exhibited a significantly higher effect on colistin-heteroresistant isolates. MALDI-TOF MS indicated that the additional phosphoethanolamine (PEtn) moieties in lipid A profiles were present both in colistin-resistant and heteroresistant isolates. Conclusion The present study was the first to investigate the differential mechanisms between colistin resistance and heteroresistance. The development of colistin heteroresistance should be addressed in future clinical surveillance.
Collapse
Affiliation(s)
- Wenli Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jie Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Huaiyu Jia
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Ying Zhang
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Yishuai Lin
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianzhong Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianming Cao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
22
|
Mataraci Kara E, Yilmaz M, İstanbullu Tosun A, Özbek Çelik B. Synergistic activities of ceftazidime-avibactam in combination with different antibiotics against colistin-nonsusceptible clinical strains of Pseudomonas aeruginosa. Infect Dis (Lond) 2020; 52:616-624. [PMID: 32427010 DOI: 10.1080/23744235.2020.1767803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background: This study aims to analyse the effect of ceftazidime-avibactam plus various antibiotics against multidrug-resistant (MDR) Pseudomonas aeruginosa isolated from Intensive Care Units.Methods: 40 non-duplicate P. aeruginosa isolates were screened for their MICs of ceftazidime, ceftazidime-avibactam, colistin, levofloxacin, doripenem and tobramycin. MICs were determined by the broth microdilution method. The in vitro bactericidal activities of ceftazidime-avibactam compared to studied antibiotics were also determined by time-kill curve assays both at 1xMIC and at 4xMIC against carbapenemase-producing or -not producing six colistin-nonsusceptible MDR clinical strains of P. aeruginosa. Additionally, synergistic interactions were investigated by the time-kill curve assay.Results: The MIC90 values for ceftazidime, ceftazidime-avibactam, colistin, levofloxacin, doripenem and tobramycin against MDR P. aeruginosa isolates were found to be >256, 64, 8, 64, 128, and >256 mg/L, respectively. The minimum bactericidal concentration90 values for those antibiotics were also >256, 64, 16, 128, 256, and >256 mg/L, respectively. While doripenem, tobramycin and levofloxacin were bactericidal (>3 log10 killing) against the 2/6, 3/6 and 1/6 P. aeruginosa isolates at 4xMIC concentrations, respectively, levofloxacin and tobramycin were bactericidal against only one isolate (1/6) at 1xMIC concentrations at 24 h. The synergistic interactions of these antimicrobial agents were also achieved with ceftazidime/avibactam + colistin (4/6), ceftazidime/avibactam + tobramycin (3/6), and ceftazidime/avibactam + levofloxacin (3/6) combinations. No antagonism was observed against studied P. aeruginosa strains.Conclusions: The findings of this study suggest that ceftazidime/avibactam with colistin, or tobramycin, were effective against colistin-nonsusceptible strains. This combination therapy could be an alternative antibiotic therapy for resistant P. aeruginosa strains.
Collapse
Affiliation(s)
- Emel Mataraci Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Mesut Yilmaz
- Department of Infectious Diseases and Clinical Microbiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ayşe İstanbullu Tosun
- Department of Medical Microbiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Berna Özbek Çelik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
23
|
Resistance and Heteroresistance to Colistin in Pseudomonas aeruginosa Isolates from Wenzhou, China. Antimicrob Agents Chemother 2019; 63:AAC.00556-19. [PMID: 31383654 DOI: 10.1128/aac.00556-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/28/2019] [Indexed: 01/26/2023] Open
Abstract
The goal was to investigate the mechanisms of colistin resistance and heteroresistance in Pseudomonas aeruginosa clinical isolates. Colistin resistance was determined by the broth microdilution method. Colistin heteroresistance was evaluated by population analysis profiling. Time-kill assays were also conducted. PCR sequencing was performed to detect the resistance genes among (hetero)resistant isolates, and quantitative real-time PCR assays were performed to determine their expression levels. Pulsed-field gel electrophoresis and multilocus sequence typing were performed. Lipid A characteristics were determined via matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS). Two resistant isolates and 9 heteroresistant isolates were selected in this study. Substitutions in PmrB were detected in 2 resistant isolates. Among heteroresistant isolates, 8 of 9 heteroresistant isolates had nonsynonymous PmrB substitutions, and 2 isolates, including 1 with a PmrB substitution, had PhoQ alterations. Correspondingly, the expression levels of pmrA or phoP were upregulated in PmrB- or PhoQ-substituted isolates. One isolate also found alterations in ParRS and CprRS. The transcript levels of the pmrH gene were observed to increase across all investigated isolates. MALDI-TOF MS showed additional 4-amino-4-deoxy-l-arabinose (l-Ara4N) moieties in lipid A profiles in (hetero)resistant isolates. In conclusion, both colistin resistance and heteroresistance in P. aeruginosa in this study mainly involved alterations of the PmrAB regulatory system. There were strong associations between mutations in specific genetic loci for lipid A synthesis and regulation of modifications to lipid A. The transition of colistin heteroresistance to resistance should be addressed in future clinical surveillance.
Collapse
|
24
|
Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev 2019; 32:32/4/e00031-19. [PMID: 31462403 PMCID: PMC6730496 DOI: 10.1128/cmr.00031-19] [Citation(s) in RCA: 491] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In recent years, the worldwide spread of the so-called high-risk clones of multidrug-resistant or extensively drug-resistant (MDR/XDR) Pseudomonas aeruginosa has become a public health threat. This article reviews their mechanisms of resistance, epidemiology, and clinical impact and current and upcoming therapeutic options. In vitro and in vivo treatment studies and pharmacokinetic and pharmacodynamic (PK/PD) models are discussed. Polymyxins are reviewed as an important therapeutic option, outlining dosage, pharmacokinetics and pharmacodynamics, and their clinical efficacy against MDR/XDR P. aeruginosa infections. Their narrow therapeutic window and potential for combination therapy are also discussed. Other "old" antimicrobials, such as certain β-lactams, aminoglycosides, and fosfomycin, are reviewed here. New antipseudomonals, as well as those in the pipeline, are also reviewed. Ceftolozane-tazobactam has clinical activity against a significant percentage of MDR/XDR P. aeruginosa strains, and its microbiological and clinical data, as well as recommendations for improving its use against these bacteria, are described, as are those for ceftazidime-avibactam, which has better activity against MDR/XDR P. aeruginosa, especially strains with certain specific mechanisms of resistance. A section is devoted to reviewing upcoming active drugs such as imipenem-relebactam, cefepime-zidebactam, cefiderocol, and murepavadin. Finally, other therapeutic strategies, such as use of vaccines, antibodies, bacteriocins, anti-quorum sensing, and bacteriophages, are described as future options.
Collapse
Affiliation(s)
- Juan P Horcajada
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Milagro Montero
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Antonio Oliver
- Service of Microbiology, Hospital Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Luisa Sorlí
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Sònia Luque
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Silvia Gómez-Zorrilla
- Service of Infectious Diseases, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Pompeu Fabra, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Madrid, Spain
| | - Natividad Benito
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santiago Grau
- Service of Pharmacy, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Lee W, Cai Y, Lim TP, Teo J, Chua SC, Kwa ALH. In vitro Pharmacodynamics and PK/PD in Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:105-116. [PMID: 31364074 DOI: 10.1007/978-3-030-16373-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
In the last decade, considerable advancements have been made to identify the pharmacokinetic/pharmacodynamic (PK/PD) index that defines the antimicrobial activity of polymyxins. Dose-fractionation studies performed in hollow-fiber models found that altering the dosing schedule had little impact on the killing or suppression of resistance emergence, alluding to AUC/MIC as the pharmacodynamic index that best describes polymyxin's activity. For in vivo efficacy, the PK/PD index that was the most predictive of the antibacterial effect of colistin against P. aeruginosa and A. baumannii was ƒAUC/MIC.
Collapse
Affiliation(s)
- Winnie Lee
- Singapore General Hospital, Singapore, Singapore
| | - Yiying Cai
- Singapore General Hospital, Singapore, Singapore
| | - Tze-Peng Lim
- Singapore General Hospital, Singapore, Singapore
| | - Jocelyn Teo
- Singapore General Hospital, Singapore, Singapore
| | - Sonja Courtney Chua
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Andrea Lay-Hoon Kwa
- Singapore General Hospital, Singapore, Singapore. .,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore. .,Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.
| |
Collapse
|
26
|
Brennan-Krohn T, Kirby JE. When One Drug Is Not Enough: Context, Methodology, and Future Prospects in Antibacterial Synergy Testing. Clin Lab Med 2019; 39:345-358. [PMID: 31383261 PMCID: PMC6686866 DOI: 10.1016/j.cll.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibacterial combinations have long been used to accomplish a variety of therapeutic goals, including prevention of resistance and enhanced antimicrobial activity. In vitro synergy testing methods, including the checkerboard array, the time-kill study, diffusion assays, and pharmacokinetic/pharmacodynamic models, are used commonly in the research setting, but are not routinely performed in the clinical microbiology laboratory because of test complexity and uncertainty about their predictive value for patient outcomes. Optimized synergy testing techniques and better data on the relationship between in vitro results and clinical outcomes are needed to guide the rational use of antimicrobial combinations in the multidrug resistance era.
Collapse
Affiliation(s)
- Thea Brennan-Krohn
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle - CLS0624, Boston, MA 02115, USA; Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - James E Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue - YA309, Boston, MA 02215, USA.
| |
Collapse
|
27
|
In Vitro Activity of Imipenem-Relebactam Alone or in Combination with Amikacin or Colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.00997-19. [PMID: 31262769 DOI: 10.1128/aac.00997-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
Relebactam is a novel class A/C β-lactamase inhibitor that restores imipenem in vitro activity against multidrug-resistant and carbapenem-nonsusceptible Pseudomonas aeruginosa Time-kill analyses were performed to evaluate the potential role of imipenem-relebactam in combination with amikacin or colistin against P. aeruginosa Ten clinical P. aeruginosa isolates (9 imipenem nonsusceptible) with imipenem-relebactam MICs ranging from 1/4 to 8/4 μg/ml were included. The isolates had varied susceptibilities to imipenem (1 to 32 μg/ml), amikacin (4 to 128 μg/ml), and colistin (0.5 to 1 μg/ml). Duplicate 24-h time-kill studies were conducted using the average steady-state concentrations (Cssavg) observed after the administration of imipenem-relebactam at 500 mg/250 mg every 6 hours (q6h) alone and in combination with the Cssavg of 25 mg/kg of body weight/day amikacin and 360 mg/day colistin in humans. Imipenem-relebactam alone resulted in 24-h bacterial densities of -2.93 ± 0.38, -1.67 ± 0.29, +0.38 ± 0.96, and +0.15 ± 0.65 log10 CFU/ml at imipenem-relebactam MICs of 1/4, 2/4, 4/4, and 8/4 μg/ml, respectively. No synergy was demonstrated against the single imipenem-susceptible isolate. Against the imipenem-nonsusceptible isolates (n = 9), imipenem-relebactam combined with amikacin resulted in synergy (-2.61 ± 1.50 log10 CFU/ml) against all amikacin-susceptible isolates and in two of three amikacin-intermediate (i.e., MIC, 32 μg/ml) isolates (-2.06 ± 0.19 log10 CFU/ml). Synergy with amikacin was not observed when the amikacin MIC was >32 μg/ml. Imipenem-relebactam combined with colistin demonstrated synergy in eight out of the nine imipenem-resistant isolates (-3.17 ± 1.00 log10 CFU/ml). Against these 10 P. aeruginosa isolates, imipenem-relebactam combined with either amikacin or colistin resulted in synergistic activity against the majority of strains. Further studies evaluating combination therapy with imipenem-relebactam are warranted.
Collapse
|
28
|
Montero MM, Domene Ochoa S, López-Causapé C, VanScoy B, Luque S, Sorlí L, Campillo N, Padilla E, Prim N, Segura C, Pomar V, Rivera A, Grau S, Ambrose PG, Oliver A, Horcajada JP. Colistin plus meropenem combination is synergistic in vitro against extensively drug-resistant Pseudomonas aeruginosa, including high-risk clones. J Glob Antimicrob Resist 2019; 18:37-44. [PMID: 31154007 DOI: 10.1016/j.jgar.2019.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Extensively drug-resistant (XDR) Pseudomonas aeruginosa (P. aeruginosa) and particularly P. aeruginosa high-risk clones, are of growing concern because treatment options are limited. For years, colistin monotherapy has been the only available treatment, but is well known that is not an optimal treatment. A combination of colistin with another antibiotic could be a possible therapeutic option. OBJECTIVES This study aimed to investigate effective antibiotic combinations against 20 XDR P. aeruginosa isolates obtained in a Spanish multicentre study (2015). METHODS Forty-five checkerboards with six antipseudomonal antibiotics (amikacin, aztreonam, ceftazidime, meropenem, colistin, and ceftolozane/tazobactam) were performed to determine whether combinations were synergic or additive by fractional inhibitory concentration indices. On average, 15 different regimens were evaluated in duplicate against the three most prevalent high-risk clones (ST175, ST235, ST111) by time-kill analyses over 24h. The combination showing synergism in the three high-risk clones was validated in all studied XDR isolates. RESULTS In time-kill curves, the untreated control failed, as did each study regimen when administered alone. Two combinations were synergistic in the three high-risk clones that were initially studied: amikacin plus ceftazidime and colistin plus meropenem, with the second being the most effective combination. The efficacy of colistin plus meropenem was then tested in all 20 isolates. A synergistic bacterial density reduction for the duration of the study occurred in 80% of the entire XDR collection. CONCLUSIONS These data suggest that colistin plus meropenem may be a useful combination for the treatment of infections due to XDR P. aeruginosa, including high-risk clones, which warrants evaluation in a clinical trial.
Collapse
Affiliation(s)
- María M Montero
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra Barcelona, Spain.
| | - Sandra Domene Ochoa
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra Barcelona, Spain
| | - Carla López-Causapé
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, IdISBa, Palma de Mallorca, Spain
| | - Brian VanScoy
- Institute for Clinical Pharmacodynamics, Schenectady, NY, USA
| | - Sonia Luque
- Pharmacy Service, Hospital del Mar, Barcelona, Spain
| | - Luisa Sorlí
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra Barcelona, Spain
| | | | | | - Núria Prim
- Laboratori de Referència de Catalunya, Barcelona, Spain
| | | | - Virginia Pomar
- Infectious Diseases Unit, Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alba Rivera
- Infectious Diseases Unit, Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Clinical Microbiology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Santiago Grau
- Pharmacy Service, Hospital del Mar, Barcelona, Spain
| | - Paul G Ambrose
- Institute for Clinical Pharmacodynamics, Schenectady, NY, USA
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, IdISBa, Palma de Mallorca, Spain
| | - Juan P Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra Barcelona, Spain.
| |
Collapse
|
29
|
Phee LM, Kloprogge F, Morris R, Barrett J, Wareham DW, Standing JF. Pharmacokinetic-pharmacodynamic modelling to investigate in vitro synergy between colistin and fusidic acid against MDR Acinetobacter baumannii. J Antimicrob Chemother 2019; 74:961-969. [PMID: 30624656 PMCID: PMC6419616 DOI: 10.1093/jac/dky524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/15/2018] [Accepted: 11/16/2018] [Indexed: 12/02/2022] Open
Abstract
Objectives The potential for synergy between colistin and fusidic acid in the treatment of MDR Acinetobacter baumannii has recently been shown. The aim of this study was to perform an extensive in vitro characterization of this effect using pharmacokinetic-pharmacodynamic modelling (PKPD) of time–kill experiments in order to estimate clinical efficacy. Methods For six clinical strains, 312 individual time–kill experiments were performed including 113 unique pathogen–antimicrobial combinations. A wide range of concentrations (0.25–8192 mg/L for colistin and 1–8192 mg/L for fusidic acid) were explored, alone and in combination. PKPD modelling sought to quantify synergistic effects. Results A PKPD model confirmed synergy in that colistin EC50 was found to decrease by 83% in the presence of fusidic acid, and fusidic acid maximum increase in killing rate (Emax) also increased 58% in the presence of colistin. Simulations indicated, however, that at clinically achievable free concentrations, the combination may be bacteriostatic in colistin-susceptible strains, but growth inhibition probability was <20% in a colistin-resistant strain. Conclusions Fusidic acid may be a useful agent to add to colistin in a multidrug combination for MDR Acinetobacter baumannii.
Collapse
Affiliation(s)
- Lynette M Phee
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK.,Royal Free London NHS Foundation Trust, London, UK
| | - Frank Kloprogge
- Great Ormond Street Institute of Child Health, University College London, London, UK.,UCL Institute for Global Health, University College London, London, UK
| | - Rebecca Morris
- Medicines Research Centre, GlaxoSmithKline, Stevenage, UK
| | - John Barrett
- Medicines Research Centre, GlaxoSmithKline, Stevenage, UK
| | - David W Wareham
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK.,Barts Health NHS Trust, London, UK
| | - Joseph F Standing
- Great Ormond Street Institute of Child Health, University College London, London, UK.,Great Ormond Street Hospital for Children NHS Trust, London, UK
| |
Collapse
|
30
|
Heffernan AJ, Sime FB, Lipman J, Roberts JA. Individualising Therapy to Minimize Bacterial Multidrug Resistance. Drugs 2019; 78:621-641. [PMID: 29569104 DOI: 10.1007/s40265-018-0891-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The scourge of antibiotic resistance threatens modern healthcare delivery. A contributing factor to this significant issue may be antibiotic dosing, whereby standard antibiotic regimens are unable to suppress the emergence of antibiotic resistance. This article aims to review the role of pharmacokinetic and pharmacodynamic (PK/PD) measures for optimising antibiotic therapy to minimise resistance emergence. It also seeks to describe the utility of combination antibiotic therapy for suppression of resistance and summarise the role of biomarkers in individualising antibiotic therapy. Scientific journals indexed in PubMed and Web of Science were searched to identify relevant articles and summarise existing evidence. Studies suggest that optimising antibiotic dosing to attain defined PK/PD ratios may limit the emergence of resistance. A maximum aminoglycoside concentration to minimum inhibitory concentration (MIC) ratio of > 20, a fluoroquinolone area under the concentration-time curve to MIC ratio of > 285 and a β-lactam trough concentration of > 6 × MIC are likely required for resistance suppression. In vitro studies demonstrate a clear advantage for some antibiotic combinations. However, clinical evidence is limited, suggesting that the use of combination regimens should be assessed on an individual patient basis. Biomarkers, such as procalcitonin, may help to individualise and reduce the duration of antibiotic treatment, which may minimise antibiotic resistance emergence during therapy. Future studies should translate laboratory-based studies into clinical trials and validate the appropriate clinical PK/PD predictors required for resistance suppression in vivo. Other adjunct strategies, such as biomarker-guided therapy or the use of antibiotic combinations require further investigation.
Collapse
Affiliation(s)
- A J Heffernan
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - F B Sime
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Building 71/918, Herston Rd, Herston, Queensland, 4029, Australia
| | - J Lipman
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Building 71/918, Herston Rd, Herston, Queensland, 4029, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - J A Roberts
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia.
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Building 71/918, Herston Rd, Herston, Queensland, 4029, Australia.
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
- Pharmacy Department, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
31
|
Dose-Dependent Synergistic Interactions of Colistin with Rifampin, Meropenem, and Tigecycline against Carbapenem-Resistant Klebsiella pneumoniae Biofilms. Antimicrob Agents Chemother 2019; 63:AAC.02357-18. [PMID: 30642942 DOI: 10.1128/aac.02357-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/02/2019] [Indexed: 01/13/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) can cause biofilm-related bloodstream infections associated with significant morbidity and mortality worldwide. We investigated the bactericidal activities of colistin (CST), rifampin (RIF), meropenem (MEM), gentamicin (GEN), and tigecycline (TGC) alone and that of CST in combination with RIF, MEM, GEN, or TGC against CR-Kp mature biofilms. Twenty CR-Kp blood isolates were derived from an equal number of bloodstream infections in adult patients. Biofilm formation was assessed by staining with 0.4% crystal violet and measuring the optical density spectrophotometrically at 545 nm. Biofilm damage was measured as the percent reduction of metabolic activity by an XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt] assay. The MIC50 for biofilms was determined as the minimum concentration that caused ≥50% bacterial damage compared to that for untreated controls. Antibacterial drug interactions were analyzed by the Bliss independence model. Four of the 20 CR-Kp isolates were biofilm producers. Biofilm MIC50s of CST, RIF, MEM, GEN, and TGC for these isolates were 64, 8, >256, 128, and 8 mg/liter, respectively. Synergistic interactions were observed at 32 to 64 mg/liter of CST combined with 0.25 to 4 mg/liter of RIF, at 32 mg/liter of CST combined with 0.007 to 0.25 mg/liter of MEM, and at 16 to 32 mg/liter of CST combined with 16 to 64 mg/liter of TGC. The synergy was highest for CST plus RIF, with a mean ΔE ± standard error (SE) of 49.87% ± 9.22%, compared to 29.52% ± 4.97% for CST plus MEM (P < 0.001) and 32.44% ± 6.49% for CST plus TGC (P < 0.001). Indifferent results were exhibited by CST plus GEN. None of the combinations exhibited antagonism. These drug interaction findings, especially those for CST with RIF, may be of importance in the treatment of biofilm-related CR-Kp infections.
Collapse
|
32
|
History, Chemistry and Antibacterial Spectrum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:15-36. [DOI: 10.1007/978-3-030-16373-0_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Lora-Tamayo J, Murillo O, Ariza J. Clinical Use of Colistin in Biofilm-Associated Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:181-195. [PMID: 31364079 DOI: 10.1007/978-3-030-16373-0_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biofilm is an adaptive bacterial strategy whereby microorganisms become encased in a complex glycoproteic matrix. The low concentration of oxygen and nutrients in this environment leads to heterogeneous phenotypic changes in the bacteria, with antimicrobial tolerance being of paramount importance. As with other antibiotics, the activity of colistin is impaired by biofilm-embedded bacteria. Therefore, the recommendation for administering high doses in combination with a second drug, indicated for planktonic infections, remains valid in this setting. Notably, colistin has activity against metabolically inactive biofilm-embedded cells located in the inner layers of the biofilm structure. This is opposite and complementary to the activity of other antimicrobials that are able to kill metabolically active cells in the outer layers of the biofilm. Several experimental models have shown a higher activity of colistin when used in combination with other agents, and have reported that this can avoid the emergence of colistin-resistant subpopulations. Most experience of colistin in biofilm-associated infections comes from patients with cystic fibrosis, where the use of nebulized colistin allows high concentrations to reach the site of the infection. However, limited clinical experience is available in other scenarios, such as osteoarticular infections or device-related central nervous system infections caused by multi-drug resistant microorganisms. In the latter scenario, the use of intraventricular or intrathecal colistin also permits high local concentrations and good clinical results. Overall, the efficacy of intravenous colistin seems to be poor, but its association with a second antimicrobial significantly increases the response rate. Given its activity against inner bioflm-embedded cells, its possible role in combination with other antibiotics, beyond last-line therapy situations, should be further explored.
Collapse
Affiliation(s)
- Jaime Lora-Tamayo
- Department of Internal Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Oscar Murillo
- Department of Infectious Diseases, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Javier Ariza
- Department of Infectious Diseases, Hospital Universitario de Bellvitge, Barcelona, Spain
| |
Collapse
|
34
|
Bergen PJ, Smith NM, Bedard TB, Bulman ZP, Cha R, Tsuji BT. Rational Combinations of Polymyxins with Other Antibiotics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:251-288. [PMID: 31364082 DOI: 10.1007/978-3-030-16373-0_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Combinations of antimicrobial agents are often used in the management of infectious diseases. Antimicrobial agents used as part of combination therapy are often selected empirically. As regrowth and the emergence of polymyxin (either colistin or polymyxin B) resistance has been observed with polymyxin monotherapy, polymyxin combination therapy has been suggested as a possible means by which to increase antimicrobial activity and reduce the development of resistance. This chapter provides an overview of preclinical and clinical investigations of CMS/colistin and polymyxin B combination therapy. In vitro data and animal model data suggests a potential clinical benefit with many drug combinations containing clinically achievable concentrations of polymyxins, even when resistance to one or more of the drugs in combination is present and including antibiotics normally inactive against Gram-negative organisms. The growing body of data on the emergence of polymyxin resistance with monotherapy lends theoretical support to a benefit with combination therapy. Benefits include enhanced bacterial killing and a suppression of polymyxin resistant subpopulations. However, the complexity of the critically ill patient population, and high rates of treatment failure and death irrespective of infection-related outcome make demonstrating a potential benefit for polymyxin combinations extremely challenging. Polymyxin combination therapy in the clinic remains a heavily debated and controversial topic. When combinations are selected, optimizing the dosage regimens for the polymyxin and the combinatorial agent is critical to ensure that the benefits outweigh the risk of the development of toxicity. Importantly, patient characteristics, pharmacokinetics, the site of infection, pathogen and resistance mechanism must be taken into account to define optimal and rational polymyxin combination regimens in the clinic.
Collapse
Affiliation(s)
- Phillip J Bergen
- Centre for Medicine Use and Safety, Monash University, Parkville Campus, Melbourne, VIC, Australia.
| | - Nicholas M Smith
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Tyler B Bedard
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Zackery P Bulman
- University of Illinois Chicago, College of Pharmacy, Chicago, IL, USA
| | - Raymond Cha
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| |
Collapse
|
35
|
In vitro antimicrobial activity of imipenem plus amikacin or polymyxin B against carbapenem-resistant Pseudomonas aeruginosa isolates. Diagn Microbiol Infect Dis 2018; 92:152-154. [DOI: 10.1016/j.diagmicrobio.2018.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/17/2018] [Accepted: 05/04/2018] [Indexed: 11/21/2022]
|
36
|
Co-Delivery of Ciprofloxacin and Colistin in Liposomal Formulations with Enhanced In Vitro Antimicrobial Activities against Multidrug Resistant Pseudomonas aeruginosa. Pharm Res 2018; 35:187. [PMID: 30094660 DOI: 10.1007/s11095-018-2464-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE This study aims to develop liposomal formulations containing synergistic antibiotics of colistin and ciprofloxacin for the treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa. METHODS Colistin (Col) and ciprofloxacin (Cip) were co-encapsulated in anionic liposomes by ammonium sulfate gradient. Particle size, encapsulation efficiency, in vitro drug release and in vitro antibiotic activities were evaluated. RESULTS The optimized liposomal formulation has uniform sizes of approximately 100 nm, with encapsulation efficiency of 67.0% (for colistin) and 85.2% (for ciprofloxacin). Incorporation of anionic lipid (DMPG) markedly increased encapsulation efficiency of colistin (from 5.4 to 67.0%); however, the encapsulation efficiency of ciprofloxacin was independent of DMPG ratio. Incorporation of colistin significantly accelerated the release of ciprofloxacin from the DMPG anionic liposomes. In vitro release of ciprofloxacin and colistin in the bovine serum for 2 h were above 70 and 50%. The cytotoxicity study using A549 cells showed the liposomal formulation is as non-toxic as the drug solutions. Liposomal formulations of combinations had enhanced in vitro antimicrobial activities against multidrug resistant P. aeruginosa than the monotherapies. CONCLUSIONS Liposomal formulations of two synergistic antibiotics was promising against multidrug resistant P. aeruginosa infections.
Collapse
|
37
|
Ramos PIP, Fernández Do Porto D, Lanzarotti E, Sosa EJ, Burguener G, Pardo AM, Klein CC, Sagot MF, de Vasconcelos ATR, Gales AC, Marti M, Turjanski AG, Nicolás MF. An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets. Sci Rep 2018; 8:10755. [PMID: 30018343 PMCID: PMC6050338 DOI: 10.1038/s41598-018-28916-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
Klebsiella pneumoniae (Kp) is a globally disseminated opportunistic pathogen that can cause life-threatening infections. It has been found as the culprit of many infection outbreaks in hospital environments, being particularly aggressive towards newborns and adults under intensive care. Many Kp strains produce extended-spectrum β-lactamases, enzymes that promote resistance against antibiotics used to fight these infections. The presence of other resistance determinants leading to multidrug-resistance also limit therapeutic options, and the use of 'last-resort' drugs, such as polymyxins, is not uncommon. The global emergence and spread of resistant strains underline the need for novel antimicrobials against Kp and related bacterial pathogens. To tackle this great challenge, we generated multiple layers of 'omics' data related to Kp and prioritized proteins that could serve as attractive targets for antimicrobial development. Genomics, transcriptomics, structuromic and metabolic information were integrated in order to prioritize candidate targets, and this data compendium is freely available as a web server. Twenty-nine proteins with desirable characteristics from a drug development perspective were shortlisted, which participate in important processes such as lipid synthesis, cofactor production, and core metabolism. Collectively, our results point towards novel targets for the control of Kp and related bacterial pathogens.
Collapse
Affiliation(s)
- Pablo Ivan Pereira Ramos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil
| | - Darío Fernández Do Porto
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Esteban Lanzarotti
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Ezequiel J Sosa
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Germán Burguener
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustín M Pardo
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Cecilia C Klein
- Inria Grenoble Rhône-Alpes, Grenoble, France
- Université Claude Bernard Lyon 1, Lyon, France
- Centre for Genomic Regulation (CRG), Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marie-France Sagot
- Inria Grenoble Rhône-Alpes, Grenoble, France
- Université Claude Bernard Lyon 1, Lyon, France
| | | | - Ana Cristina Gales
- Laboratório Alerta. Division of Infectious Diseases, Department of Internal Medicine. Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo Marti
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina
| | - Adrián G Turjanski
- Plataforma de Bioinformática Argentina (BIA), Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Pabellón 2, C1428EHA, Ciudad de Buenos Aires, Argentina.
| | - Marisa F Nicolás
- Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro, Brazil.
| |
Collapse
|
38
|
Polymyxin B in Combination with Enrofloxacin Exerts Synergistic Killing against Extensively Drug-Resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:AAC.00028-18. [PMID: 29632010 DOI: 10.1128/aac.00028-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/02/2018] [Indexed: 11/20/2022] Open
Abstract
Polymyxins are increasingly used as a last-resort class of antibiotics against extensively drug-resistant (XDR) Gram-negative bacteria. However, resistance to polymyxins can emerge with monotherapy. As nephrotoxicity is the major dose-limiting factor for polymyxin monotherapy, dose escalation to suppress the emergence of polymyxin resistance is not a viable option. Therefore, novel approaches are needed to preserve this last-line class of antibiotics. This study aimed to investigate the antimicrobial synergy of polymyxin B combined with enrofloxacin against Pseudomonas aeruginosa Static time-kill studies were conducted over 24 h with polymyxin B (1 to 4 mg/liter) and enrofloxacin (1 to 4 mg/liter) alone or in combination. Additionally, in vitro one-compartment model (IVM) and hollow-fiber infection model (HFIM) experiments were performed against P. aeruginosa 12196. Polymyxin B and enrofloxacin in monotherapy were ineffective against all of the P. aeruginosa isolates examined, whereas polymyxin B-enrofloxacin in combination was synergistic against P. aeruginosa, with ≥2 to 4 log10 kill at 24 h in the static time-kill studies. In both IVM and HFIM, the combination was synergistic, and the bacterial counting values were below the limit of quantification on day 5 in the HFIM. A population analysis profile indicated that the combination inhibited the emergence of polymyxin resistance in P. aeruginosa 12196. The mechanism-based modeling suggests that the synergistic killing is a result of the combination of mechanistic and subpopulation synergy. Overall, this is the first preclinical study to demonstrate that the polymyxin-enrofloxacin combination is of considerable utility for the treatment of XDR P. aeruginosa infections and warrants future clinical evaluations.
Collapse
|
39
|
Plasmid-mediated colistin resistance in animals: current status and future directions. Anim Health Res Rev 2018; 18:136-152. [DOI: 10.1017/s1466252317000111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractColistin, a peptide antibiotic belonging to the polymyxin family, is one of the last effective drugs for the treatment of multidrug resistant Gram-negative infections. Recent discovery of a novel mobile colistin resistance gene,mcr-1, from people and food animals has caused a significant public health concern and drawn worldwide attention. Extensive usage of colistin in food animals has been proposed as a major driving force for the emergence and transmission ofmcr-1; thus, there is a worldwide trend to limit colistin usage in animal production. However, despite lack of colistin usage in food animals in the USA,mcr-1-positiveEscherichia coliisolates were still isolated from swine. In this paper, we provided an overview of colistin usage and epidemiology ofmcr-1in food animals, and summarized the current status of mechanistic and evolutionary studies of the plasmid-mediated colistin resistance. Based on published information, we further discussed several non-colistin usage risk factors that may contribute to the persistence, transmission, and emergence of colistin resistance in an animal production system. Filling the knowledge gaps identified in this review is critical for risk assessment and risk management of colistin resistance, which will facilitate proactive and effective strategies to mitigate colistin resistance in future animal production systems.
Collapse
|
40
|
Abdul Momin MHF, Bean DC, Hendriksen RS, Haenni M, Phee LM, Wareham DW. CHROMagar COL-APSE: a selective bacterial culture medium for the isolation and differentiation of colistin-resistant Gram-negative pathogens. J Med Microbiol 2017; 66:1554-1561. [DOI: 10.1099/jmm.0.000602] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Muhd Haziq F. Abdul Momin
- Antimicrobial Research Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David C. Bean
- School of Applied and Biomedical Sciences, Federation University Australia, Ballarat, Australia
| | - Rene S. Hendriksen
- Technical University of Denmark, National Food Institute, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, European Union Reference Laboratory for Antimicrobial Resistance (EURL-AMR), Kgs Lyngby, Denmark DK-2800, Denmark
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Université Lyon-ANSES Site de Lyon, Lyon, France
| | - Lynette M. Phee
- Antimicrobial Research Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Division of Infection, Barts Health NHS Trust, London, UK
| | - David W. Wareham
- Antimicrobial Research Group, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Division of Infection, Barts Health NHS Trust, London, UK
| |
Collapse
|
41
|
Ghorbani H, Memar MY, Sefidan FY, Yekani M, Ghotaslou R. In vitro synergy of antibiotic combinations against planktonic and biofilm Pseudomonas aeruginosa. GMS HYGIENE AND INFECTION CONTROL 2017; 12:Doc17. [PMID: 29094001 PMCID: PMC5647455 DOI: 10.3205/dgkh000302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aim: The combination of different antimicrobial agents and subsequent synergetic effects may be beneficial in treatment of P. aeruginosa infections. The aim of the present study was to determine antibiotic susceptibility patterns of clinical isolates of P. aeruginosa and the effect of different antibiotic combinations against the multidrug-resistant (MDR), biofilm-producing bacterium P. aeruginosa. Methods: Thirty-six P. aeruginosa clinical isolates were evaluated. The disk diffusion method was performed to determine antibiotic susceptibility patterns according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. The minimum inhibitory concentration of antimicrobial agents for the test organisms was determined by the broth microdilution method. To determine synergetic effects of the combinations of agents, the checkerboard assay and the fractional inhibitory concentration were used. The biofilm inhibitory concentration was determined to detect any inhibitory effect of antibiotics against the biofilm. Results: High levels of resistance were detected against most antibiotics, except colistin and polymyxin. According to the disk diffusion method, 58.3% of isolates were MDR. A synergetic effect between amikacin/ceftazidime, tobramycin/colistin and ceftazidime/colistin was found in 55.6%, 58.3% and 52.8% of isolates, respectively. A significant synergetic effect against biofilm-producing isolates was observed for the combination of tobramycin (0.5–1 µg/ml) and clarithromycin (256–512 µg/ml). Conclusion: Combinations of antibiotics have a different activity on the biofilm and planktonic forms of P. aeruginosa. Consequently, separate detection of antibacterial and antibiofilm effects of the antibiotic combinations may be useful in guiding the antibiotic therapy.
Collapse
Affiliation(s)
- Hossein Ghorbani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yousef Memar
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Yeganeh Sefidan
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Hussein MH, Schneider EK, Elliott AG, Han M, Reyes-Ortega F, Morris F, Blaskovich MAT, Jasim R, Currie B, Mayo M, Baker M, Cooper MA, Li J, Velkov T. From Breast Cancer to Antimicrobial: Combating Extremely Resistant Gram-Negative “Superbugs” Using Novel Combinations of Polymyxin B with Selective Estrogen Receptor Modulators. Microb Drug Resist 2017; 23:640-650. [DOI: 10.1089/mdr.2016.0196] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maytham H. Hussein
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Elena K. Schneider
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Alysha G. Elliott
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Meiling Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Felisa Reyes-Ortega
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Faye Morris
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Mark A. T. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Raad Jasim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Bart Currie
- Menzies School of Health Research, Casuarina, Australia
| | - Mark Mayo
- Menzies School of Health Research, Casuarina, Australia
| | - Mark Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jian Li
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Parkville, Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| |
Collapse
|
43
|
Tängdén T, Ramos Martín V, Felton TW, Nielsen EI, Marchand S, Brüggemann RJ, Bulitta JB, Bassetti M, Theuretzbacher U, Tsuji BT, Wareham DW, Friberg LE, De Waele JJ, Tam VH, Roberts JA. The role of infection models and PK/PD modelling for optimising care of critically ill patients with severe infections. Intensive Care Med 2017; 43:1021-1032. [PMID: 28409203 DOI: 10.1007/s00134-017-4780-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/18/2017] [Indexed: 01/14/2023]
Abstract
Critically ill patients with severe infections are at high risk of suboptimal antimicrobial dosing. The pharmacokinetics (PK) and pharmacodynamics (PD) of antimicrobials in these patients differ significantly from the patient groups from whose data the conventional dosing regimens were developed. Use of such regimens often results in inadequate antimicrobial concentrations at the site of infection and is associated with poor patient outcomes. In this article, we describe the potential of in vitro and in vivo infection models, clinical pharmacokinetic data and pharmacokinetic/pharmacodynamic models to guide the design of more effective antimicrobial dosing regimens. Individualised dosing, based on population PK models and patient factors (e.g. renal function and weight) known to influence antimicrobial PK, increases the probability of achieving therapeutic drug exposures while at the same time avoiding toxic concentrations. When therapeutic drug monitoring (TDM) is applied, early dose adaptation to the needs of the individual patient is possible. TDM is likely to be of particular importance for infected critically ill patients, where profound PK changes are present and prompt appropriate antibiotic therapy is crucial. In the light of the continued high mortality rates in critically ill patients with severe infections, a paradigm shift to refined dosing strategies for antimicrobials is warranted to enhance the probability of achieving drug concentrations that increase the likelihood of clinical success.
Collapse
Affiliation(s)
- T Tängdén
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - V Ramos Martín
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - T W Felton
- Intensive Care Unit, University Hospital of South Manchester, Manchester, UK
| | - E I Nielsen
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - S Marchand
- Inserm U1070, Pole Biologie Santé, Poitiers, France.,UFR Médecine-Pharmacie, Université de Poitiers, Poitiers, France
| | - R J Brüggemann
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J B Bulitta
- Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, USA
| | - M Bassetti
- Infectious Diseases Division, Santa Maria della Misericordia University Hospital and University of Udine, Udine, Italy
| | | | - B T Tsuji
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, USA
| | - D W Wareham
- Antimicrobial Research Group, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - L E Friberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - J J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - V H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, USA
| | - Jason A Roberts
- Burns, Trauma and Critical Care Research Centre and Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Brisbane, Australia. .,Departments of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Level 3, Ned Hanlon Building, Herston, Brisbane, QLD, 4029, Australia.
| | | |
Collapse
|
44
|
Synergy against extensively drug-resistant Acinetobacter baumannii in vitro by two old antibiotics: colistin and chloramphenicol. Int J Antimicrob Agents 2017; 49:321-326. [DOI: 10.1016/j.ijantimicag.2016.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 11/17/2022]
|
45
|
Kaye KS, Gales AC, Dubourg G. Old antibiotics for multidrug-resistant pathogens: from in vitro activity to clinical outcomes. Int J Antimicrob Agents 2017; 49:542-548. [PMID: 28130072 DOI: 10.1016/j.ijantimicag.2016.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 01/07/2023]
Abstract
Antimicrobial resistance is a major and emerging threat worldwide. New antimicrobials have been unable to meet the resistance challenge, and treatment options are limited for a growing number of resistant pathogens. More and more clinicians are relying on older antimicrobials for the treatment of multidrug-resistant (MDR) bacteria. Some older antimicrobials have maintained excellent in vitro activity against highly resistant pathogens. In some instances, use of older agents is limited by unfavourable pharmacokinetic/pharmacodynamic characteristics and/or toxicities. In general, clinical data pertaining to the use of older agents for the treatment of MDR pathogens are scarce. Research efforts should be focused on the evaluation of older agents for the treatment of MDR pathogens as well as evaluating how these agents perform in complex patient populations with various and multiple co-morbid conditions.
Collapse
Affiliation(s)
- Keith S Kaye
- University of Michigan Health System, Department of Medicine, Division of Infectious Diseases, Ann Arbor, MI, USA
| | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Grégory Dubourg
- Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, University, Hospital Centre Timone, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique-Hôpitaux de Marseille, Marseille, France; Université Aix-Marseille, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM 63 CNRS 7278 IRD 198 INSERM U1095, Facultés de Médecine et de Pharmacie, Marseille, France.
| |
Collapse
|
46
|
Zhang X, Guo F, Shao H, Zheng X. Clinical translation of polymyxin-based combination therapy: Facts, challenges and future opportunities. J Infect 2016; 74:118-130. [PMID: 27998750 DOI: 10.1016/j.jinf.2016.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/18/2016] [Accepted: 11/27/2016] [Indexed: 10/20/2022]
Abstract
The emergence and spread of multidrug resistant Gram-negative bacteria has led to a resurgence in the clinical use of polymyxin antibiotics. However, the prevalence of polymyxin resistance is on the rise at an alarming rate, motivating the idea of combination therapy to sustain the revival of these "old" antibiotics. Although ample evidence in favor of combination therapy has emerged, it seems impracticable and confusing to find a promising combination from the diverse reports or gain adequate information on the efficacy and safety profile. With a stagnating discovery pipeline of novel antimicrobials, there is a clear need to fill the knowledge gaps in translating these basic research data to beneficial clinical practice. In this review, we examined the factors and ambiguities that stand as major hurdles in bringing polymyxin combination therapy to bedside care, highlighting the importance and urgency of incorporating translational research insights into areas of difficulty. We also discussed future research priorities that are essential to gather the necessary evidence and insights for promoting the best possible use of polymyxins in combination therapy.
Collapse
Affiliation(s)
- Xueli Zhang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Fengmei Guo
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hua Shao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
47
|
Synergistic combinations of polymyxins. Int J Antimicrob Agents 2016; 48:607-613. [PMID: 27865626 DOI: 10.1016/j.ijantimicag.2016.09.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/15/2016] [Accepted: 09/15/2016] [Indexed: 01/19/2023]
Abstract
The proliferation of extensively drug-resistant Gram-negative pathogens has necessitated the therapeutic use of colistin and polymyxin B. However, treatment failures with polymyxin monotherapies and the emergence of polymyxin resistance have catalysed the search for polymyxin combinations that synergistically kill polymyxin-susceptible and -resistant organisms. This mini-review examines recent (2011-2016) in vitro and in vivo studies that have attempted to identify synergistic polymyxin combinations against Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Clinical evidence for the use of combination regimens is also discussed.
Collapse
|
48
|
Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: are we there yet? Int J Antimicrob Agents 2016; 48:592-597. [PMID: 27793510 DOI: 10.1016/j.ijantimicag.2016.09.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/30/2016] [Accepted: 09/03/2016] [Indexed: 12/17/2022]
Abstract
The polymyxin antibiotics [colistin and polymyxin B (PMB)] are increasingly used as a last-line option for the treatment of infections caused by extensively drug-resistant Gram-negative bacteria. Despite having similar structures and antibacterial activity in vitro, the two clinically available polymyxins have very different pharmacological properties, as colistin (polymyxin E) is intravenously administered to patients in the form of an inactive prodrug colistin methanesulphonate (sodium). This review will discuss recent progress in the pharmacokinetics/pharmacodynamics and toxicity of colistin and PMB, the factors that affect their pharmacological profiles, and the challenges for the effective use of both polymyxins. Strategies are proposed for optimising their clinical utility based upon the recent pharmacological studies in vitro, in animals and patients. In the 'Bad Bugs, No Drugs' era, polymyxins are a critically important component of the antibiotic armamentarium against difficult-to-treat Gram-negative 'superbugs'. Rational approaches to the use of polymyxins must be pursued to increase their effectiveness and to minimise resistance and toxicity.
Collapse
|
49
|
Rao GG, Ly NS, Bulitta JB, Soon RL, San Roman MD, Holden PN, Landersdorfer CB, Nation RL, Li J, Forrest A, Tsuji BT. Polymyxin B in combination with doripenem against heteroresistant Acinetobacter baumannii: pharmacodynamics of new dosing strategies. J Antimicrob Chemother 2016; 71:3148-3156. [PMID: 27494922 DOI: 10.1093/jac/dkw293] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 06/14/2016] [Accepted: 06/19/2016] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Polymyxin B is being increasingly utilized as a last resort against resistant Gram-negative bacteria. We examined the pharmacodynamics of novel dosing strategies for polymyxin B combinations to maximize efficacy and minimize the emergence of resistance and drug exposure against Acinetobacter baumannii. METHODS The pharmacodynamics of polymyxin B together with doripenem were evaluated in time-kill experiments over 48 h against 108 cfu/mL of two polymyxin-heteroresistant A. baumannii isolates (ATCC 19606 and N16870). Pharmacokinetic/pharmacodynamic relationships were mathematically modelled using S-ADAPT. A hollow-fibre infection model (HFIM) was also used to simulate clinically relevant polymyxin B dosing strategies (traditional, augmented 'front-loaded' and 'burst' regimens), together with doripenem, against an initial inoculum of 109 cfu/mL of ATCC 19606. RESULTS In static time-kill studies, polymyxin B concentrations >4 mg/L in combination with doripenem 25 mg/L resulted in rapid bactericidal activity against both strains with undetectable bacterial counts by 24 h. The mathematical model described the rapid, concentration-dependent killing as subpopulation and mechanistic synergy. In the HFIM, the traditional polymyxin B combination regimen was synergistic, with a >7.5 log10 reduction by 48 h. The polymyxin B 'front-loaded' combination resulted in more rapid and extensive initial killing (>8 log10) within 24 h, which was sustained over 10 days. With only 25% of the cumulative drug exposure, the polymyxin B 'burst' combination demonstrated antibacterial activity similar to traditional and 'front-loaded' combination strategies. The polymyxin B 'front-loaded' and 'burst' combination regimens suppressed the emergence of resistance. CONCLUSIONS Early aggressive dosing regimens for polymyxin combinations demonstrate promise for treatment of heteroresistant A. baumannii infections.
Collapse
Affiliation(s)
- Gauri G Rao
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.,The New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Neang S Ly
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.,The New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Jürgen B Bulitta
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.,Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Rachel L Soon
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.,The New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Marie D San Roman
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.,The New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Patricia N Holden
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.,The New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Alan Forrest
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA.,Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, NC, USA
| | - Brian T Tsuji
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA .,The New York State Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
50
|
Transcriptomic Analysis of the Activity of a Novel Polymyxin against Staphylococcus aureus. mSphere 2016; 1:mSphere00119-16. [PMID: 27471750 PMCID: PMC4963539 DOI: 10.1128/msphere.00119-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022] Open
Abstract
S. aureus is currently one of the most pervasive multidrug-resistant pathogens and commonly causes nosocomial infections. Clinicians are faced with a dwindling armamentarium to treat infections caused by S. aureus, as resistance develops to current antibiotics. This accentuates the urgent need for antimicrobial drug discovery. In the present study, we characterized the global gene expression profile of S. aureus treated with FADDI-019, a novel synthetic polymyxin analogue. In contrast to the concentration-dependent killing and rapid regrowth in Gram-negative bacteria treated with polymyxin B and colistin, FADDI-019 killed S. aureus progressively without regrowth at 24 h. Notably, FADDI-019 activated several vancomycin resistance genes and significantly downregulated the expression of a number of virulence determinants and enterotoxin genes. A synergistic combination with sulfamethoxazole was predicted by pathway analysis and demonstrated experimentally. This is the first study revealing the transcriptomics of S. aureus treated with a novel synthetic polymyxin analog. Polymyxin B and colistin are exclusively active against Gram-negative pathogens and have been used in the clinic as a last-line therapy. In this study, we investigated the antimicrobial activity of a novel polymyxin, FADDI-019, against Staphylococcus aureus. MIC and time-kill assays were employed to measure the activity of FADDI-019 against S. aureus ATCC 700699. Cell morphology was examined with scanning electron microscopy (SEM), and cell membrane polarity was measured using flow cytometry. Transcriptome changes caused by FADDI-019 treatment were investigated using transcriptome sequencing (RNA-Seq). Pathway analysis was conducted to examine the mechanism of the antibacterial activity of FADDI-019 and to rationally design a synergistic combination. Polymyxin B and colistin were not active against S. aureus strains with MICs of >128 mg/liter; however, FADDI-019 had a MIC of 16 mg/liter. Time-kill assays revealed that no S. aureus regrowth was observed after 24 h at 2× to 4× MIC of FADDI-019. Scanning electron microscopy (SEM) and flow cytometry results indicated that FADDI-019 treatment had no effect on cell morphology but caused membrane depolarization. The vancomycin resistance genes vraRS, as well as the VraRS regulon, were activated by FADDI-019. Virulence determinants controlled by SaeRS and the expression of enterotoxin genes yent2, sei, sem, and seo were significantly downregulated by FADDI-019. Pathway analysis of transcriptomic data was predictive of a synergistic combination comprising FADDI-019 and sulfamethoxazole. Our study is the first to examine the mechanism of the killing of a novel polymyxin against S. aureus. We also show the potential of transcriptomic and pathway analysis as tools to design synergistic antibiotic combinations. IMPORTANCES. aureus is currently one of the most pervasive multidrug-resistant pathogens and commonly causes nosocomial infections. Clinicians are faced with a dwindling armamentarium to treat infections caused by S. aureus, as resistance develops to current antibiotics. This accentuates the urgent need for antimicrobial drug discovery. In the present study, we characterized the global gene expression profile of S. aureus treated with FADDI-019, a novel synthetic polymyxin analogue. In contrast to the concentration-dependent killing and rapid regrowth in Gram-negative bacteria treated with polymyxin B and colistin, FADDI-019 killed S. aureus progressively without regrowth at 24 h. Notably, FADDI-019 activated several vancomycin resistance genes and significantly downregulated the expression of a number of virulence determinants and enterotoxin genes. A synergistic combination with sulfamethoxazole was predicted by pathway analysis and demonstrated experimentally. This is the first study revealing the transcriptomics of S. aureus treated with a novel synthetic polymyxin analog.
Collapse
|