1
|
Suresh D, Yu TT, Kuppusamy R, Sabir S, Das T, Black DS, Willcox MDP, Kumar N. Novel cationic dihydropyrrol-2-one compounds as antimicrobial agents and quorum sensing inhibitors. Bioorg Med Chem 2025; 122:118137. [PMID: 40058275 DOI: 10.1016/j.bmc.2025.118137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Antimicrobial resistance has grown to become a global crisis consistently participating in the death of millions worldwide and accumulating costs on healthcare. Quorum sensing inhibition is a new alternative antimicrobial strategy that has been gaining attention due to its ability to suppress the resistance of Pseudomonas aeruginosa (PA). This approach shows great potential in overcoming bacterial resistance and could provide a much needed substitute to conventional antibiotics in the future. PA has 3 main quorum sensing systems of which the Las system has been identified to be the most viable therapeutic target. In this study, we report the synthesis of a library of novel broad-spectrum quorum sensing inhibitors from the dihydropyrrol-2-one scaffold to form urea and imidazolium analogues. Molecular docking was performed in parallel to synthesis to aid design. It also confirmed that the molecules comfortably occupy the ligand binding domain in addition to potential key interactions commonly present in LasR inhibitors. As predicted, these compounds displayed low bactericidal effects against P. aeruginosa with most compounds exhibiting MIC of >250 μM, while maintaining moderate activity towards Escherichia coli with the most potent compound having an MIC of 32 μM. The greatest bactericidal effects were present on Staphylococcus aureus with the thiourea based molecule 10c showed the highest antibacterial activity with MIC of 16 µM. Furthermore, several molecules displayed highly potent quorum sensing inhibitory activity with compounds 10g and 9e both demonstrating over 70 % inhibition respectively of the LasR system at 16 µM. These compounds also expressed inhibition of pyocyanin within P. aeruginosa and haemolytic assay indicates a low level of cell lysis and hence low toxicity of the compounds, further demonstrating the potential of these novel compounds.
Collapse
Affiliation(s)
- Dittu Suresh
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Tsz Tin Yu
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rajesh Kuppusamy
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shekh Sabir
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | | | - David StC Black
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark D P Willcox
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Gajic I, Kekic D, Jankovic M, Tomic N, Skoric M, Petrovic M, Mitic Culafic D, Opavski N, Ristivojevic P, Krstic Ristivojevic M, Lukovic B. Nature's Arsenal: Uncovering Antibacterial Agents Against Antimicrobial Resistance. Antibiotics (Basel) 2025; 14:253. [PMID: 40149065 PMCID: PMC11939603 DOI: 10.3390/antibiotics14030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Antimicrobial resistance (AMR) poses a significant public health threat, leading to increased mortality. The World Health Organization has established a priority list highlighting critical multidrug-resistant (MDR) pathogens that demand urgent research on antimicrobial treatments. Considering this and the fact that new antibiotics are only sporadically approved, natural antibacterial agents have seen a resurgence in interest as potential alternatives to conventional antibiotics and chemotherapeutics. Natural antibacterials, derived from microorganisms, higher fungi, plants, animals, natural minerals, and food sources, offer diverse mechanisms of action against MDR pathogens. Here, we present a comprehensive summary of antibacterial agents from natural sources, including a brief history of their application and highlighting key strategies for using microorganisms (microbiopredators, such as bacteriophages), plant extracts and essential oils, minerals (e.g., silver and copper), as well as compounds of animal origin, such as milk or even venoms. The review also addresses the role of prebiotics, probiotics, and antimicrobial peptides, as well as novel formulations such as nanoparticles. The mechanisms of action of these compounds, such as terpenoids, alkaloids, and phenolic compounds, are explored alongside the challenges for their application, e.g., extraction, formulation, and pharmacokinetics. Conclusions: Future research should focus on developing eco-friendly, sustainable antimicrobial agents and validating their safety and efficacy through clinical trials. Clear regulatory frameworks are essential for integrating these agents into clinical practice. Despite challenges, natural sources offer transformative potential for combating AMR and promoting sustainable health solutions.
Collapse
Affiliation(s)
- Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.K.); (M.J.); (M.S.); (N.O.)
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.K.); (M.J.); (M.S.); (N.O.)
| | - Marko Jankovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.K.); (M.J.); (M.S.); (N.O.)
| | - Nina Tomic
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | - Mila Skoric
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.K.); (M.J.); (M.S.); (N.O.)
| | - Milos Petrovic
- University Clinical Hospital Center “Dr. Dragisa Misovic-Dedinje”, Heroja Milana Tepića, 1, 11040 Belgrade, Serbia;
| | | | - Natasa Opavski
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.K.); (M.J.); (M.S.); (N.O.)
| | - Petar Ristivojevic
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Maja Krstic Ristivojevic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Bojana Lukovic
- College of Health Sciences, Academy of Applied Studies Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Zhang ZS, Zhao DS, Zhu D, Guan M, Xiong LT, He Z, Li Y, Shi Y, Xu ZL, Deng X, Cui ZN. Design, Synthesis, and Biological Evaluation of Asymmetrical Disulfides Based on Garlic Extract as Pseudomonas aeruginosa pqs Quorum Sensing Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40014758 DOI: 10.1021/acs.jafc.4c12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Pseudomonas aeruginosa is a widely encountered bacterium linked to the deterioration of food products and represents a notable concern for public health safety. Disulfides serve as significant pharmacologically active scaffolds exhibiting antibacterial, antiviral, and anticancer properties; however, reports on their activity as quorum sensing inhibitors (QSIs) against P. aeruginosa are limited. In our work, asymmetrical disulfides were designed and synthesized, utilizing natural products, such as allicin, ajoene, diallyl disulfide (DADS), hordenine, and cinnamic acid, as lead compounds. By screening for lasB, rhlA, and pqsA promoter activity, two highly effective QSIs were identified. Compounds 7d and 4c show effectiveness in reducing the synthesis of different virulence factors, the creation of biofilms, and movement capabilities. Subsequent validation using the Galleria mellonella larvae model confirmed their robust in vivo efficacy. Moreover, their combination with antibiotics markedly augmented the antibacterial activity. Mechanism studies employed by transcriptome analysis, quantitative reverse transcription-PCR (qRT-PCR), surface plasmon resonance, and molecular docking demonstrate that compound 7d disrupts the quorum sensing system by interacting with PqsR. These findings suggest that our disulfide derivatives hold promise for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Zhao-Sheng Zhang
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| | - Dong-Sheng Zhao
- Department of Pharmacy, Quanzhou Medical College, Quanzhou 362100, China
| | - Di Zhu
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingming Guan
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lan-Tu Xiong
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhe He
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yasheng Li
- Department of Infectious Diseases, Anhui Province Key Laboratory of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yu Shi
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ze-Ling Xu
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Zi-Ning Cui
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Zhou S, Liu B, Zheng D, Chen L, Yang J. VFDB 2025: an integrated resource for exploring anti-virulence compounds. Nucleic Acids Res 2025; 53:D871-D877. [PMID: 39470738 PMCID: PMC11701737 DOI: 10.1093/nar/gkae968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024] Open
Abstract
With the escalating crisis of bacterial multidrug resistance, anti-virulence therapeutic strategies have emerged as a highly promising alternative to conventional antibiotic treatments. Anti-virulence compounds are specifically designed to target virulence factors (VFs), disarming pathogens without affecting bacterial growth and thus reduce the selective pressure for resistance development. However, due to the complexity of bacterial pathogenesis, no anti-virulence small molecules have been approved for clinical use thus far, despite the documentation of hundreds of potential candidates. To provide valuable reference resources for drug design, repurposing, and target selection, the virulence factor database (VFDB, http://www.mgc.ac.cn/VFs/) has systematically collected public data on anti-virulence compounds through extensive literature mining, and further integrated this information with its existing knowledge of bacterial VFs. To date, the VFDB has curated a comprehensive dataset of 902 anti-virulence compounds across 17 superclasses reported by 262 studies worldwide. By cross-linking the current knowledge of bacterial VFs with information on relevant compounds (e.g. classification, chemical structure, molecular targets and mechanisms of action), the VFDB aims to bridge the gap between chemists and microbiologists, providing crucial insights for the development of innovative and effective antibacterial therapies to combat bacterial infections and address antibiotic resistance.
Collapse
Affiliation(s)
- Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Dandan Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
5
|
Patra S, Saha S, Singh R, Tomar N, Gulati P. Biofilm battleground: Unveiling the hidden challenges, current approaches and future perspectives in combating biofilm associated bacterial infections. Microb Pathog 2025; 198:107155. [PMID: 39586337 DOI: 10.1016/j.micpath.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/09/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
A biofilm is a complex aggregation of microorganisms, either of the same or different species, that adhere to a surface and are encased in an extracellular polymeric substances (EPS) matrix. Quorum sensing (QS) and biofilm formation are closely linked, as QS genes regulate the development, maturation, and breakdown of biofilms. Inhibiting QS can be utilized as an effective approach to combat the impacts of biofilm infection. The impact of biofilms includes chronic infections, industrial biofouling, infrastructure corrosion, and environmental contamination as well. Therefore, a deep understanding of biofilms is crucial for enhancing public health, advancing industrial processes, safeguarding the environment, and deepening our knowledge of microbial life as well. This review aims to offer a comprehensive examination of challenges posed by bacterial biofilms, contemporary approaches and strategies for effectively eliminating biofilms, including the inhibition of quorum sensing pathways, while also focusing on emerging technologies and techniques for biofilm treatment. In addition, future research is projected to target the challenges associated with the bacterial biofilms, striving to develop new approaches and improve existing strategies for their effective control and eradication.
Collapse
Affiliation(s)
- Sandeep Patra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sumana Saha
- Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Randhir Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nandini Tomar
- Department of Biotechnology, South Asian University, New Delhi, India
| | - Pallavi Gulati
- Ram Lal Anand College, University of Delhi, New Delhi, India.
| |
Collapse
|
6
|
Vadakkan K, Sathishkumar K, Mapranathukaran VO, Ngangbam AK, Nongmaithem BD, Hemapriya J, Nair JB. Critical review on plant-derived quorum sensing signaling inhibitors in pseudomonas aeruginosa. Bioorg Chem 2024; 151:107649. [PMID: 39029321 DOI: 10.1016/j.bioorg.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Pseudomonas aeruginosa, a biofilm-forming organism with complex quorum mechanisms (Las, Rhl, PQS, and IQS), poses an imminent danger to the healthcare sector and renders current treatment options for chemotherapy ineffectual. The pathogen's diverse pathogenicity, antibiotic resistance, and biofilms make it difficult to eradicate it effectively. Quorum sensing, a complex system reliant on cell density, controls P. aeruginosa's pathogenesis. Quorum-sensing genes are key components of P. aeruginosa's pathogenic arsenal, and their expression determines how severe the spread of infection becomes. Over the past ten years, there has been a noticeable increase in the quest for and development of new antimicrobial medications. Quorum sensing may be an effective treatment for infections triggered by bacteria. Introducing quorum-sensing inhibitors as an anti-virulent strategy might be an intriguing therapeutic method that can be effectively employed along with current medications. Amongst the several speculated processes, a unique anti-virulence strategy using anti-quorum sensing and antibiofilm medications for targeting pseudomonal infestations seems to be at the forefront. Due to their noteworthy quorum quenching capabilities, biologically active phytochemicals have become more well-known in the realm of science in this context. Recent research showed how different phytochemical quorum quenching actions affect P. aeruginosa's QS-dependent pathogenicity. This review focuses on the most current data supporting the implementation of plant bio-actives to treat P.aeruginosa-associated diseases, as well as the benefits and future recommendationsof employing them in anti-virulence therapies as a supplementary drug development approach towards conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | - Janarthanam Hemapriya
- Department of Microbiology, DKM College for Women, Vellore, Tamil Nadu 632001, India
| | - Jyotsna B Nair
- Department of Biotechnology, JDT Islam College of Arts and Science, Vellimadukunnu, Kozhikode, Kerala 673012, India
| |
Collapse
|
7
|
Refaey MS, Abosalem EF, Yasser El-Basyouni R, Elsheriri SE, Elbehary SH, Fayed MAA. Exploring the therapeutic potential of medicinal plants and their active principles in dental care: A comprehensive review. Heliyon 2024; 10:e37641. [PMID: 39318809 PMCID: PMC11420497 DOI: 10.1016/j.heliyon.2024.e37641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Since the human population realized how important it was to maintain overall health and the weight of disease, they have been looking for therapeutic qualities in natural environments. The use of plants having medicinal qualities for the treatment and prevention of illnesses that may have an impact on general health is known as herbal medicine. There has been a noticeable increase in interest lately in the combination of synthetic contemporary medications and traditional herbal remedies. About 80 % of people rely on it for healthcare, particularly in developing nations. One important aspect of overall health is said to be oral healthcare. The World Health Organization views oral health as a crucial component of overall health and well-being. Because they are more readily available, less expensive, and have fewer adverse effects than pharmaceutical treatments, using natural medicines to treat pathologic oro-dental disorders can make sense. The current evaluation of the literature sought to investigate the range and scope of the use of herbal products and their secondary metabolites in maintaining oral health, encompassing several oral healthcare domains such as halitosis, gingivitis, periodontitis, and other oral disorders. Therefore, there are many herbs discussed in this work and their mechanism in the treatment and improvement of many oral ailments. Besides, compounds that are useful in oral treatment with their natural sources and the cases where they can be used. To prevent any possible side effects or drug interactions, a doctor's consultation is necessary before using dental medicine. Although herbal therapy is safe and with minimum side effects, it is also strongly advised to do a more thorough preclinical and clinical evaluation before using herbal medicines officially.
Collapse
Affiliation(s)
- Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Esraa Fawzy Abosalem
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Rana Yasser El-Basyouni
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Shymaa E Elsheriri
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Sara Hassan Elbehary
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
8
|
Zhang ZS, He Z, Shi Y, Guan M, Zhao DS, Zhu D, Xiong LT, Li Y, Deng X, Cui ZN. Structure-Based Discovery of Symmetric Disulfides from Garlic Extract as Pseudomonas aeruginosa Quorum Sensing Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20299-20307. [PMID: 39231265 DOI: 10.1021/acs.jafc.4c04404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Microorganisms are the most common cause of food spoilage. Pseudomonas aeruginosa is a common foodborne pathogen that causes food spoilage and poses a serious threat to food safety. As a crucial target in antitoxicity strategies, the quorum sensing (QS) system shows promising potential for further development. The garlic extract diallyl disulfide exhibits inhibitory activity against the QS system of P. aeruginosa, with disulfide bonds serving as the active component. However, the biological activity of other symmetric disulfides has not been investigated in this capacity. The study synthesized 39 disulfide bond-containing analogs and evaluated their activity as quorum sensing inhibitors (QSIs). The results showed that p-hydroxyphenyl substitution can replace the allyl groups while maintaining strong biological activity. The virulence factors production was reduced by compound 2i, with the strongest inhibitory effect being observed on elastase production. Synergistic inhibition was observed in the presence of antibiotics like ciprofloxacin and tobramycin. 2i successfully inhibited P. aeruginosa infection in the Galleria mellonella larvae model. Primary mechanism studies using transcriptome, surface plasmon resonance and molecular docking suggested that 2i inhibits the QS system by targeting the LasR protein. Thus, compound 2i could be used in developing QSIs for the control of P. aeruginosa infections.
Collapse
Affiliation(s)
- Zhao-Sheng Zhang
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhe He
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yu Shi
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Mingming Guan
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Dong-Sheng Zhao
- Department of Pharmacy, Quanzhou Medical College, Quanzhou 362100, China
| | - Di Zhu
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lan-Tu Xiong
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yasheng Li
- Department of Infectious Diseases, Anhui Province Key Laboratory of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Zi-Ning Cui
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Hetta HF, Ramadan YN, Rashed ZI, Alharbi AA, Alsharef S, Alkindy TT, Alkhamali A, Albalawi AS, Battah B, Donadu MG. Quorum Sensing Inhibitors: An Alternative Strategy to Win the Battle against Multidrug-Resistant (MDR) Bacteria. Molecules 2024; 29:3466. [PMID: 39124871 PMCID: PMC11313800 DOI: 10.3390/molecules29153466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Antibiotic resistance is a major problem and a major global health concern. In total, there are 16 million deaths yearly from infectious diseases, and at least 65% of infectious diseases are caused by microbial communities that proliferate through the formation of biofilms. Antibiotic overuse has resulted in the evolution of multidrug-resistant (MDR) microbial strains. As a result, there is now much more interest in non-antibiotic therapies for bacterial infections. Among these revolutionary, non-traditional medications is quorum sensing inhibitors (QSIs). Bacterial cell-to-cell communication is known as quorum sensing (QS), and it is mediated by tiny diffusible signaling molecules known as autoinducers (AIs). QS is dependent on the density of the bacterial population. QS is used by Gram-negative and Gram-positive bacteria to control a wide range of processes; in both scenarios, QS entails the synthesis, identification, and reaction to signaling chemicals, also known as auto-inducers. Since the usual processes regulated by QS are the expression of virulence factors and the creation of biofilms, QS is being investigated as an alternative solution to antibiotic resistance. Consequently, the use of QS-inhibiting agents, such as QSIs and quorum quenching (QQ) enzymes, to interfere with QS seems like a good strategy to prevent bacterial infections. This review sheds light on QS inhibition strategy and mechanisms and discusses how using this approach can aid in winning the battle against resistant bacteria.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Ahmad A. Alharbi
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Shomokh Alsharef
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Tala T. Alkindy
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Alanoud Alkhamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Abdullah S. Albalawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Antioch Syrian Private University, Maaret Siadnaya 22734, Syria
| | - Matthew G. Donadu
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026 Olbia, Italy;
- Department of Medicine, Surgery and Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
10
|
Abass S, Parveen R, Irfan M, Malik Z, Husain SA, Ahmad S. Mechanism of antibacterial phytoconstituents: an updated review. Arch Microbiol 2024; 206:325. [PMID: 38913205 DOI: 10.1007/s00203-024-04035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024]
Abstract
The increase of multiple drug resistance bacteria significantly diminishes the effectiveness of antibiotic armory and subsequently exaggerates the level of therapeutic failure. Phytoconstituents are exceptional substitutes for resistance-modifying vehicles. The plants appear to be a deep well for the discovery of novel antibacterial compounds. This is owing to the numerous enticing characteristics of plants, they are easily accessible and inexpensive, extracts or chemicals derived from plants typically have significant levels of action against infections, and they rarely cause serious adverse effects. The enormous selection of phytochemicals offers very distinct chemical structures that may provide both novel mechanisms of antimicrobial activity and deliver us with different targets in the interior of the bacterial cell. They can directly affect bacteria or act together with the crucial events of pathogenicity, in this manner decreasing the aptitude of bacteria to create resistance. Abundant phytoconstituents demonstrate various mechanisms of action toward multi drug resistance bacteria. Overall, this comprehensive review will provide insights into the potential of phytoconstituents as alternative treatments for bacterial infections, particularly those caused by multi drug resistance strains. By examining the current state of research in this area, the review will shed light on potential future directions for the development of new antimicrobial therapies.
Collapse
Affiliation(s)
- Sageer Abass
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Rabea Parveen
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Irfan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Zoya Malik
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine (Pharmacognosy and Pharmacology), Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
11
|
Kiramira D, Uphaus T, Othman A, Heermann R, Deschner J, Müller-Heupt LK. Stroke Caused by Vasculitis Induced by Periodontitis-Associated Oral Bacteria after Wisdom Teeth Extraction. Brain Sci 2024; 14:550. [PMID: 38928550 PMCID: PMC11201652 DOI: 10.3390/brainsci14060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Invasive dental procedures, such as wisdom teeth removal, have been identified as potential triggers for vascular events due to the entry of oral bacteria into the bloodstream, leading to acute vascular inflammation and endothelial dysfunction. This study presents the case of a 27-year-old healthy male who developed ischemic stroke resulting from bacteremia after undergoing wisdom teeth extraction. Initially, the patient experienced fever and malaise, which were followed by right-sided hemiplegia. Diagnostic imaging, including a CT scan, identified a subacute infarction in the posterior crus of the left internal capsule, and MRI findings indicated inflammatory changes in the masticatory muscles. Further investigations involving biopsies of the masticatory muscles, along with blood and cerebrospinal fluid samples, confirmed bacterial meningitis with associated vasculitis. Notably, oral bacteria linked to periodontitis, including Porphyromonas gingivalis, Fusobacterium nucleatum, Tannerella forsythia, and Parvimonas micra, were found in the biopsies and microbiological analyses. To the best of our knowledge, this is the first reported case showing that bacteremia following dental procedures can lead to such severe neurological outcomes. This case underscores the importance of recognizing bacteremia-induced vasculitis in patients presenting with neurological symptoms post-dental procedures, emphasizing the broader implications of oral infections in such pathologies.
Collapse
Affiliation(s)
- David Kiramira
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Timo Uphaus
- Department of Neurology and Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Ralf Heermann
- Institute of Molecular Physiology, Microbiology and Biotechnology, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Institute for Biotechnology and Drug Research gGmbH (ibwf), 55128 Mainz, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Lena Katharina Müller-Heupt
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
12
|
Fik-Jaskółka M, Mittova V, Motsonelidze C, Vakhania M, Vicidomini C, Roviello GN. Antimicrobial Metabolites of Caucasian Medicinal Plants as Alternatives to Antibiotics. Antibiotics (Basel) 2024; 13:487. [PMID: 38927153 PMCID: PMC11200912 DOI: 10.3390/antibiotics13060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This review explores the potential of antimicrobial metabolites derived from Caucasian medicinal plants as alternatives to conventional antibiotics. With the rise of antibiotic resistance posing a global health threat, there is a pressing need to investigate alternative sources of antimicrobial agents. Caucasian medicinal plants have traditionally been used for their therapeutic properties, and recent research has highlighted their potential as sources of antimicrobial compounds. Representatives of 15 families of Caucasian medicinal plant extracts (24 species) have been explored for their efficacy against these pathogens. The effect of these plants on Gram-positive and Gram-negative bacteria and fungi is discussed in this paper. By harnessing the bioactive metabolites present in these plants, this study aims to contribute to the development of new antimicrobial treatments that can effectively combat bacterial infections while minimizing the risk of resistance emergence. Herein we discuss the following classes of bioactive compounds exhibiting antimicrobial activity: phenolic compounds, flavonoids, tannins, terpenes, saponins, alkaloids, and sulfur-containing compounds of Allium species. The review discusses the pharmacological properties of selected Caucasian medicinal plants, the extraction and characterization of these antimicrobial metabolites, the mechanisms of action of antibacterial and antifungal plant compounds, and their potential applications in clinical settings. Additionally, challenges and future directions in the research of antimicrobial metabolites from Caucasian medicinal plants are addressed.
Collapse
Affiliation(s)
- Marta Fik-Jaskółka
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Valentina Mittova
- Teaching University Geomedi, 4 King Solomon II Str., Tbilisi 0114, Georgia; (V.M.)
| | | | - Malkhaz Vakhania
- Teaching University Geomedi, 4 King Solomon II Str., Tbilisi 0114, Georgia; (V.M.)
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
13
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
14
|
Elfaky MA. Unveiling the hidden language of bacteria: anti-quorum sensing strategies for gram-negative bacteria infection control. Arch Microbiol 2024; 206:124. [PMID: 38409503 DOI: 10.1007/s00203-024-03900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024]
Abstract
Quorum sensing (QS) is a communication mechanism employed by many bacteria to regulate gene expression in a population density-dependent manner. It plays a crucial role in coordinating various bacterial behaviors, including biofilm formation, virulence factor production, and antibiotic resistance. However, the dysregulation of QS can lead to detrimental effects, making it an attractive target for developing novel therapeutic strategies. Anti-QS approaches aim to interfere with QS signaling pathways, inhibiting the communication between bacteria, and disrupting their coordinated activities. Various strategies have been explored to achieve this goal. Advances in understanding QS mechanisms and the discovery of new targets have paved the way for the development of innovative anti-QS approaches. Combining multiple anti-QS strategies or utilizing them in combination with traditional antibiotics holds great promise for combating bacterial infections and addressing the challenges posed by antibiotic resistance. Anti-QS approaches offer a diverse range of strategies including natural compounds, antibody-mediated quorum quenching (QQ), computer-aided drug design for QQ, repurposing of Drugs approved by FDA as anti-QS agents and modulating quorum-sensing molecules which were discussed in detail in this review. This review, comprehensively and for the first time, sheds light on the significance of diverse anti-QS strategies in solving antimicrobial resistance problem in Gram-negative microbial infection.
Collapse
Affiliation(s)
- Mahmoud A Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
15
|
Kristensen R, Andersen JB, Rybtke M, Jansen CU, Fritz BG, Kiilerich RO, Uhd J, Bjarnsholt T, Qvortrup K, Tolker-Nielsen T, Givskov M, Jakobsen TH. Inhibition of Pseudomonas aeruginosa quorum sensing by chemical induction of the MexEF-oprN efflux pump. Antimicrob Agents Chemother 2024; 68:e0138723. [PMID: 38189278 PMCID: PMC10848761 DOI: 10.1128/aac.01387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 01/09/2024] Open
Abstract
The cell-to-cell communication system quorum sensing (QS), used by various pathogenic bacteria to synchronize gene expression and increase host invasion potentials, is studied as a potential target for persistent infection control. To search for novel molecules targeting the QS system in the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, a chemical library consisting of 3,280 small compounds from LifeArc was screened. A series of 10 conjugated phenones that have not previously been reported to target bacteria were identified as inhibitors of QS in P. aeruginosa. Two lead compounds (ethylthio enynone and propylthio enynone) were re-synthesized for verification of activity and further elucidation of the mode of action. The isomeric pure Z-ethylthio enynone was used for RNA sequencing, revealing a strong inhibitor of QS-regulated genes, and the QS-regulated virulence factors rhamnolipid and pyocyanin were significantly decreased by treatment with the compounds. A transposon mutagenesis screen performed in a newly constructed lasB-gfp monitor strain identified the target of Z-ethylthio enynone in P. aeruginosa to be the MexEF-OprN efflux pump, which was further established using defined mex knockout mutants. Our data indicate that the QS inhibitory capabilities of Z-ethylthio enynone were caused by the drainage of intracellular signal molecules as a response to chemical-induced stimulation of the MexEF-oprN efflux pump, thereby inhibiting the autogenerated positive feedback and its enhanced signal-molecule synthesis.
Collapse
Affiliation(s)
- Rasmus Kristensen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bo Andersen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Morten Rybtke
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | | | - Blaine Gabriel Fritz
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Overgaard Kiilerich
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Uhd
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Tim Tolker-Nielsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Michael Givskov
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Tim Holm Jakobsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Elkhalifa ME, Ashraf M, Ahmed A, Usman A, Hamdoon AA, Elawad MA, Almalki MG, Mosa OF, Niyazov LN, Ayaz M. Polyphenols and their nanoformulations as potential antibiofilm agents against multidrug-resistant pathogens. Future Microbiol 2024; 19:255-279. [PMID: 38305223 DOI: 10.2217/fmb-2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 02/03/2024] Open
Abstract
The emergence of multidrug-resistant (MDR) pathogens is a major problem in the therapeutic management of infectious diseases. Among the bacterial resistance mechanisms is the development of an enveloped protein and polysaccharide-hydrated matrix called a biofilm. Polyphenolics have demonstrated beneficial antibacterial effects. Phenolic compounds mediate their antibiofilm effects via disruption of the bacterial membrane, deprivation of substrate, protein binding, binding to adhesion complex, viral fusion blockage and interactions with eukaryotic DNA. However, these compounds have limitations of chemical instability, low bioavailability, poor water solubility and short half-lives. Nanoformulations offer a promising solution to overcome these challenges by enhancing their antibacterial potential. This review summarizes the antibiofilm role of polyphenolics, their underlying mechanisms and their potential role as resistance-modifying agents.
Collapse
Affiliation(s)
- Modawy Em Elkhalifa
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Muhammad Ashraf
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| | - Alshebli Ahmed
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Assad Usman
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| | - Alashary Ae Hamdoon
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Mohammed A Elawad
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
- Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan
| | - Meshari G Almalki
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
| | - Osama F Mosa
- Public Health Department, Health Sciences College at Al-Leith, Umm Al-Qura University, Al leith, KSA
| | - Laziz N Niyazov
- Medical Chemistry Department, Bukhara State Medical Institute Named After Abu Ali Ibn Sino, Bukhara, Uzbekistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), KP, 18800, Pakistan
| |
Collapse
|
17
|
Lu L, Wang J, Wang C, Zhu J, Wang H, Liao L, Zhao Y, Wang X, Yang C, He Z, Li M. Plant-derived virulence arresting drugs as novel antimicrobial agents: Discovery, perspective, and challenges in clinical use. Phytother Res 2024; 38:727-754. [PMID: 38014754 DOI: 10.1002/ptr.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/23/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Antimicrobial resistance (AMR) emerges as a severe crisis to public health and requires global action. The occurrence of bacterial pathogens with multi-drug resistance appeals to exploring alternative therapeutic strategies. Antivirulence treatment has been a positive substitute in seeking to circumvent AMR, which aims to target virulence factors directly to combat bacterial infections. Accumulated evidence suggests that plant-derived natural products, which have been utilized to treat infectious diseases for centuries, can be abundant sources for screening potential virulence-arresting drugs (VADs) to develop advanced therapeutics for infectious diseases. This review sums up some virulence factors and their actions in various species of bacteria, as well as recent advances pertaining to plant-derived natural products as VAD candidates. Furthermore, we also discuss natural VAD-related clinical trials and patents, the perspective of VAD-based advanced therapeutics for infectious diseases and critical challenges hampering clinical use of VADs, and genomics-guided identification for VAD therapeutic. These newly discovered natural VADs will be encouraging and optimistic candidates that may sustainably combat AMR.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Chongrui Wang
- Faculty of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Hongping Wang
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, Sichuan, P.R. China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Yuting Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, P.R. China
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Zhengyou He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| |
Collapse
|
18
|
Mao S, Li Q, Yang Z, Li Y, Ye X, Wang H. Design, synthesis, and biological evaluation of benzoheterocyclic sulfoxide derivatives as quorum sensing inhibitors in Pseudomonas aeruginosa. J Enzyme Inhib Med Chem 2023; 38:2175820. [PMID: 36748317 PMCID: PMC9930800 DOI: 10.1080/14756366.2023.2175820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Six series of benzoheterocyclic sulfoxide derivatives were designed and synthesised as Pseudomonas aeruginosa (P. aeruginosa) quorum sensing inhibitors in this paper. We experimentally demonstrated that 6b significantly inhibited the formation of P. aeruginosa PAO1 biofilm without affecting the growth. Further mechanistic studies showed that 6b affected the luminescence of quorum sensing reported strain PAO1-lasB-gfp and the production of P. aeruginosa PAO1 elastase virulence factor which was regulated by las system. These experimental results indicate that 6b acts as a quorum sensing inhibitor mainly through the las system. Furthermore, silico molecular docking studies demonstrated that 6b and the P. aeruginosa quorum sensing receptor LasR were molecularly bound via hydrogen bonding interactions. Preliminary structure-activity relationship and docking studies illustrated that 6b shows great promise as anti-biofilm compounds for further studies in order to solve the problem of microbial resistance in future.
Collapse
Affiliation(s)
- Shen Mao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Qiaoqiang Li
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhikun Yang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yasheng Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University & Anhui Center for Surveillance of Bacterial Resistance, Hefei, P. R. China
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China,Xinyi Ye College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China,CONTACT Hong Wang
| |
Collapse
|
19
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023; 38:2155816. [PMID: 36629427 PMCID: PMC9848314 DOI: 10.1080/14756366.2022.2155816] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
Affiliation(s)
- Aiva Plotniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | | | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Carta
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Matthias Govaerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Juliana Aizawa
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
20
|
Nesterovich VM, Belykh DA, Gorokhovets NV, Kurbatov LK, Zamyatnin AA, Ikryannikova LN. Secondary metabolites of plants and their possible role in the "age of superbugs". BIOMEDITSINSKAIA KHIMIIA 2023; 69:371-382. [PMID: 38153052 DOI: 10.18097/pbmc20236906371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Bacterial infections are a serious cause of high morbidity and mortality worldwide. Over the past decades, the drug resistance of bacterial pathogens has been steadily increasing, while the rate of development of new effective antibacterial drugs remains consistently low. The plant kingdom is sometimes called a bottomless well for the search for new antimicrobial therapies. This is due to the fact that plants are easily accessible and cheap to process, while extracts and components of plant origin often demonstrate a high level of biological activity with minor side effects. The variety of compounds obtained from plant raw materials can provide a wide choice of various chemical structures for interaction with various targets inside bacterial cells, while the rapid development of modern biotechnological tools opens the way to the targeted production of bioactive components with desired properties. The objective of this review is to answer the question, whether antimicrobials of plant origin have a chance to play the role of a panacea in the fight against infectious diseases in the "post-antibiotic era".
Collapse
Affiliation(s)
| | | | | | | | - A A Zamyatnin
- Sechenov University, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
21
|
Peng B, Li Y, Yin J, Ding W, Fazuo W, Xiao Z, Yin H. A bibliometric analysis on discovering anti-quorum sensing agents against clinically relevant pathogens: current status, development, and future directions. Front Microbiol 2023; 14:1297843. [PMID: 38098670 PMCID: PMC10720721 DOI: 10.3389/fmicb.2023.1297843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Background Quorum sensing is bacteria's ability to communicate and regulate their behavior based on population density. Anti-quorum sensing agents (anti-QSA) is promising strategy to treat resistant infections, as well as reduce selective pressure that leads to antibiotic resistance of clinically relevant pathogens. This study analyzes the output, hotspots, and trends of research in the field of anti-QSA against clinically relevant pathogens. Methods The literature on anti-QSA from the Web of Science Core Collection database was retrieved and analyzed. Tools such as CiteSpace and Alluvial Generator were used to visualize and interpret the data. Results From 1998 to 2023, the number of publications related to anti-QAS research increased rapidly, with a total of 1,743 articles and reviews published in 558 journals. The United States was the largest contributor and the most influential country, with an H-index of 88, higher than other countries. Williams was the most productive author, and Hoiby N was the most cited author. Frontiers in Microbiology was the most prolific and the most cited journal. Burst detection indicated that the main frontier disciplines shifted from MICROBIOLOGY, CLINICAL, MOLECULAR BIOLOGY, and other biomedicine-related fields to FOOD, MATERIALS, NATURAL PRODUCTS, and MULTIDISCIPLINARY. In the whole research history, the strongest burst keyword was cystic-fibrosis patients, and the strongest burst reference was Lee and Zhang (2015). In the latest period (burst until 2023), the strongest burst keyword was silver nanoparticle, and the strongest burst reference was Whiteley et al. (2017). The co-citation network revealed that the most important interest and research direction was anti-biofilm/anti-virulence drug development, and timeline analysis suggested that this direction is also the most active. The key concepts alluvial flow visualization revealed seven terms with the longest time span and lasting until now, namely Escherichia coli, virulence, Pseudomonas aeruginosa, virulence factor, bacterial biofilm, gene expression, quorum sensing. Comprehensive analysis shows that nanomaterials, marine natural products, and artificial intelligence (AI) may become hotspots in the future. Conclusion This bibliometric study reveals the current status and trends of anti-QSA research and may assist researchers in identifying hot topics and exploring new research directions.
Collapse
Affiliation(s)
- Bo Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
| | - Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jiajia Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Wang Fazuo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhihui Xiao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| |
Collapse
|
22
|
Vetrivel A, Vetrivel P, Dhandapani K, Natchimuthu S, Ramasamy M, Madheswaran S, Murugesan R. Inhibition of biofilm formation, quorum sensing and virulence factor production in Pseudomonas aeruginosa PAO1 by selected LasR inhibitors. Int Microbiol 2023; 26:851-868. [PMID: 36806045 DOI: 10.1007/s10123-023-00338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
The quorum sensing network of Pseudomonas aeruginosa mediates the regulation of genes controlling biofilm formation and virulence factors. The rise of drug resistance to Pseudomonas aeruginosa infections has made quorum sensing-regulated biofilm formation in clinical settings a major issue. In the present study, LasR inhibitors identified in our previous study were evaluated for their antibiofilm and antiquorum sensing activities against P. aeruginosa PAO1. The compounds selected were (3-[2-(3,4-dimethoxyphenyl)-2-(1H-indol-3-yl)ethyl]-1-(2-fluorophenyl)urea) (C1), (3-(4-fluorophenyl)-2-[(3-methylquinoxalin-2-yl)methylsulfanyl]quinazolin-4-one) (C2) and (2-({4-[4-(2-methoxyphenyl)piperazin-1-yl]pyrimidin-2-yl}sulfanyl)-N-(2,4,6-trimethylphenyl)acetamide) (C3). The minimum inhibitory concentrations of C1 and C2 were 1000 μM, whereas that of C3 was 500 μM. At sub-MICs, the compounds showed potent antibiofilm activity without affecting the growth of P. aeruginosa PAO1. Electron microscopy confirmed the disruption of biofilm by the selected compounds. The antiquorum sensing activity of the compounds was revealed by the inhibition of violacein in Chromobacterium violaceum and the inhibition of swimming and swarming motilities in P. aeruginosa PAO1. Furthermore, the compounds also attenuated the production of quorum sensing-mediated virulence factors. The qRT-PCR revealed the downregulation of quorum sensing regulatory genes, namely lasI, lasR, rhlI, rhlR, lasB, pqsA and pqsR. The selected compounds also exhibited lower cytotoxicity against peripheral blood lymphocytes. Thus, this study could pave a way to explore these compounds for the development of therapeutic agent against Pseudomonas aeruginosa biofilm-related infections.
Collapse
Affiliation(s)
- Aishwarya Vetrivel
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Preethi Vetrivel
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore
| | - Kavitha Dhandapani
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Santhi Natchimuthu
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Monica Ramasamy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Soundariya Madheswaran
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - Rajeswari Murugesan
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India.
| |
Collapse
|
23
|
Zeng X, Yue H, Zhang L, Chen G, Zheng Q, Hu Q, Du X, Tian Q, Zhao X, Liang L, Yang Z, Bai H, Liu Y, Zhao M, Fu X. Gut microbiota-derived autoinducer-2 regulates lung inflammation through the gut-lung axis. Int Immunopharmacol 2023; 124:110971. [PMID: 37748222 DOI: 10.1016/j.intimp.2023.110971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE This study aimed to determine whether autoinducer-2 (AI-2), a crucial bacterial metabolite and quorum sensing molecule, is involved in lung immunity through the gut-lung axis. METHODS The level of AI-2 and the gut microbiome composition were analysed in the stools from pneumonic patients and the mouse model of acute lung injury. The effect of AI-2 on lung inflammation was further investigated in the mouse model. RESULTS The diversity of the faecal microbiota was reduced in pneumonic patients treated with antibiotics compared with healthy volunteers. The AI-2 level in the stool was positively correlated with inflammatory molecules in the serum of pneumonic patients. Intraperitoneal injection of AI-2 reinforced lung inflammation in the acute lung injury mouse model, characterized by increased secretion of inflammatory molecules, including IL-6, IL-1β, C-C chemokines, and CXCL chemokines, which were alleviated by the AI-2 inhibitor D-ribose. CONCLUSIONS Our results suggested that gut microbiota-derived AI-2 could modulate lung inflammation through the gut-lung axis.
Collapse
Affiliation(s)
- Xianghao Zeng
- Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan Province 637000, China; Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Huawen Yue
- Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan Province 637000, China
| | - Ling Zhang
- Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan Province 637000, China
| | - Guimei Chen
- Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan Province 637000, China
| | - Qiao Zheng
- Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan Province 637000, China
| | - Qing Hu
- Clinical Medical College, North Sichuan Medical College, Nanchong City, Sichuan Province 637000, China
| | - Xinhao Du
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Qian Tian
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Xinyu Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Lanfan Liang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Ziyi Yang
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Hang Bai
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Yanqin Liu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province 610500, China.
| |
Collapse
|
24
|
Vasilchenko AS, Gurina EV, Drozdov KA, Vershinin NA, Kravchenko SV, Vasilchenko AV. Exploring the antibacterial action of gliotoxin: Does it induce oxidative stress or protein damage? Biochimie 2023; 214:86-95. [PMID: 37356563 DOI: 10.1016/j.biochi.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
The study aimed to investigate the effects of gliotoxin (GTX), a secondary fungal metabolite belonging to the epipolythiodioxopiperazines class, on Gram-positive and Gram-negative bacteria. While the cytotoxic mechanism of GTX on eukaryotes is well understood, its interaction with bacteria is not yet fully comprehended. The study discovered that S. epidermidis displayed a higher uptake rate of GTX than E.coli. However, Gram-negative bacteria required higher doses of GTX than Gram-positive bacteria to experience the bactericidal effect, which occurred within 4 h for both types of bacteria. The treatment of bioluminescent sensor E.coli MG1655 pKatG-lux with GTX resulted in oxidative stress. Pre-incubation with the antioxidant Trolox did not increase the GTX inhibitory dose, however, slightly increased the bacterial growth rate comparing to GTX alone. At the same time, we found that GTX inhibitory dose was significantly increased by the pretreatment of bacteria with 2-mercaptoethanol and reduced glutathione. Using another biosensor, E. coli MG1655 pIpbA-lux, we showed that bacteria treated with GTX exhibited heat shock stress. SDS-page electrophoresis demonstrated protein aggregation under the GTX treatment. In addition, we have found that gliotoxin's action on bacteria was significantly inhibited when zinc salt was added to the growth medium.
Collapse
Affiliation(s)
- Alexey S Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Ecological and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia.
| | - Elena V Gurina
- Laboratory of Antimicrobial Resistance, Institute of Ecological and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Konstantin A Drozdov
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Nikita A Vershinin
- Laboratory of Antimicrobial Resistance, Institute of Ecological and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Sergey V Kravchenko
- Laboratory of Antimicrobial Resistance, Institute of Ecological and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Anastasia V Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Ecological and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| |
Collapse
|
25
|
Zhang Z, Sun Y, Yi Y, Bai X, Zhu L, Zhu J, Gu M, Zhu Y, Jiang L. Screening and Identification of a Streptomyces Strain with Quorum-Sensing Inhibitory Activity and Effect of the Crude Extracts on Virulence Factors of Pseudomonas aeruginosa. Microorganisms 2023; 11:2079. [PMID: 37630639 PMCID: PMC10458028 DOI: 10.3390/microorganisms11082079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Quorum-sensing (QS) is involved in numerous physiological processes in bacteria, such as biofilm formation, sporulation, and virulence formation. Therefore, the search for new quorum-sensing inhibitors (QSI) is a promising strategy that opens up a new perspective for controlling QS-mediated bacterial pathogens. To explore new QSIs, a strain named Streptomyces sp. D67 with QS inhibitory activity was isolated from the soil of the arid zone around the Kumutag Desert in Xinjiang. Phylogenetic analyses demonstrated that strain D67 shared the highest similarity with Streptomyces ardesiacus NBRC 15402T (98.39%), which indicated it represented a potential novel species in the Streptomyces genus. The fermentation crude extracts of strain D67 can effectively reduce the violacein production produced by Chromobacterium violaceum CV026 and the swarming and swimming abilities of Pseudomonas aeruginosa. It also has significant inhibitory activity on the production of virulence factors such as biofilm, pyocyanin, and rhamnolipids of P. aeruginosa in a significant concentration-dependent manner, but not on protease activity. A total of 618 compounds were identified from the fermentation crude extracts of strain D67 by LC-MS, and 19 compounds with significant QS inhibitory activity were observed. Overall, the strain with QS inhibitory activity was screened from Kumutag Desert in Xinjiang for the first time, which provided a basis for further research and development of new QSI.
Collapse
Affiliation(s)
- Zhidong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| | - Yang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| | - Yuanyang Yi
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
| | - Xiaoyu Bai
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jing Zhu
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
| | - Meiying Gu
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.Z.); (Y.Y.); (J.Z.)
| | - Yanlei Zhu
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China;
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China;
| |
Collapse
|
26
|
Jayaraman S, Adhilaxmi Kannan M, Rajendhran N, John GJ, Ramasamy T. Indole-3-acetic acid impacts biofilm formation and virulence production of Pseudomonas aeruginosa. BIOFOULING 2023; 39:800-815. [PMID: 37853689 DOI: 10.1080/08927014.2023.2269537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Bacterial pathogenesis involves complex mechanisms contributing to virulence and persistence of infections. Understanding the multifactorial nature of bacterial infections is crucial for developing effective interventions. The present study investigated the efficacy of indole-3-acetic acid (IAA) against Pseudomonas aeruginosa with various end points including antibacterial activity, minimum inhibitory concentration (MIC), virulence factor production, biofilm inhibition, bacterial cell detachment, and viability assays. Results showed significant biofilm inhibition, bacterial cell detachment, and modest effects on bacterial viability. Microscopic analysis confirmed the disintegrated biofilm matrix, supporting the inhibitory effect of IAA. Additionally, molecular docking studies revealed potential mechanisms of action through active bond interactions between IAA and virulence proteins. These findings highlight IAA as an effective antibiofilm agent against P. aeruginosa.
Collapse
Affiliation(s)
- Sudharshini Jayaraman
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Monika Adhilaxmi Kannan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Nandhini Rajendhran
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Georrge J John
- Department of Bioinformatics, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
27
|
Fahey D, O'Brien J, Pagnon J, Page S, Wilson R, Slamen N, Roddam L, Ambrose M. DinB (DNA polymerase IV), ImuBC and RpoS contribute to the generation of ciprofloxacin-resistance mutations in Pseudomonas aeruginosa. Mutat Res 2023; 827:111836. [PMID: 37625357 DOI: 10.1016/j.mrfmmm.2023.111836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/01/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
We investigated the role(s) of the damage-inducible SOS response dinB and imuBC gene products in the generation of ciprofloxacin-resistance mutations in the important human opportunistic bacterial pathogen, Pseudomonas aeruginosa. We found that the overall numbers of ciprofloxacin resistant (CipR) mutants able to be recovered under conditions of selection were significantly reduced when the bacterial cells concerned carried a defective dinB gene, but could be elevated to levels approaching wild-type when these cells were supplied with the dinB gene on a plasmid vector; in turn, firmly establishing a role for the dinB gene product, error-prone DNA polymerase IV, in the generation of CipR mutations in P. aeruginosa. Further, we report that products of the SOS-regulated imuABC gene cassette of this organism, ImuB and the error-prone ImuC DNA polymerase, are also involved in generating CipR mutations in this organism, since the yields of CipR mutations were substantially decreased in imuB- or imuC-defective cells compared to wild-type. Intriguingly, we found that the mutability of a dinB-defective strain could not be rescued by overexpression of the imuBC genes. And similarly, overexpression of the dinB gene either only modestly or else failed to restore CipR mutations in imuB- or imuC-defective cells, respectively. Combined, these results indicated that the products of the dinB and imuBC genes were acting in the same pathway leading to the generation of CipR mutations in P. aeruginosa. In addition, we provide evidence indicating that the general stress response sigma factor σs, RpoS, is required for mutagenesis in this organism and is in part at least modulating the dinB (DNA polymerase IV)-dependent mutational process. Altogether, these data provide further insight into the complexity and multifaceted control of the mutational mechanism(s) contributing to the generation of ciprofloxacin-resistance mutations in P. aeruginosa.
Collapse
Affiliation(s)
- Declan Fahey
- School of Medicine, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - James O'Brien
- School of Medicine, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Joanne Pagnon
- School of Medicine, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Simone Page
- School of Medicine, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Nic Slamen
- School of Medicine, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Louise Roddam
- School of Medicine, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Mark Ambrose
- School of Medicine, University of Tasmania, Hobart 7001, Tasmania, Australia.
| |
Collapse
|
28
|
Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023; 11:1614. [PMID: 37375116 PMCID: PMC10305407 DOI: 10.3390/microorganisms11061614] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilm is complex and consists of bacterial colonies that reside in an exopolysaccharide matrix that attaches to foreign surfaces in a living organism. Biofilm frequently leads to nosocomial, chronic infections in clinical settings. Since the bacteria in the biofilm have developed antibiotic resistance, using antibiotics alone to treat infections brought on by biofilm is ineffective. This review provides a succinct summary of the theories behind the composition of, formation of, and drug-resistant infections attributed to biofilm and cutting-edge curative approaches to counteract and treat biofilm. The high frequency of medical device-induced infections due to biofilm warrants the application of innovative technologies to manage the complexities presented by biofilm.
Collapse
Affiliation(s)
- Satish Sharma
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
| | - James Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Stanley A. Schwartz
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Medicine, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Liana Bruggemann
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY 14260, USA;
| | - Ravikumar Aalinkeel
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Medicine, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| |
Collapse
|
29
|
Drumond MM, Tapia-Costa AP, Neumann E, Nunes ÁC, Barbosa JW, Kassuha DE, Mancha-Agresti P. Cell-free supernatant of probiotic bacteria exerted antibiofilm and antibacterial activities against Pseudomonas aeruginosa: A novel biotic therapy. Front Pharmacol 2023; 14:1152588. [PMID: 37397469 PMCID: PMC10311102 DOI: 10.3389/fphar.2023.1152588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Aim: This study aims to verify the antibacterial and antibiofilm action of cell-free spent medium (CFSM) from four lactic acid bacteria with potential probiotic characteristics (Lactiplantibacillus plantarum, Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus delbrueckii) against two Pseudomonas aeruginosa strains. Main methods: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the CFSM, antibacterial activity by analysing the formation of inhibition zones, and inhibition of planktonic cultures were determined. Whether an increase in the concentration of CFSM influenced the growth of pathogenic strains and the anti-adhesive activity of the CFSM in biofilm formation (crystal violet and MTT assays) were determined, which were all corroborated by using scanning electron microscopy. Key findings: The relationship between the MIC and MBC values showed a bactericidal or bacteriostatic effect for all the cell-free spent media (CFSMs) tested for P. aeruginosa 9027™ and 27853™ strains. The CFSM supplemental doses of 18 or 22%, 20 or 22%, 46 or 48%, and 50 or 54% of L. acidophilus, L. delbrueckii, L. plantarum, and L. johnsonii, respectively, could completely inhibit the growth of both pathogen strains. The antibiofilm activity of the CFSM in three biofilm conditions (pre-coated, co-incubated, and preformed) demonstrated values ranging between 40% and 80% for biofilm inhibition, and similar results were observed for cell viability. Significance: This work provides strong evidence that the postbiotic derived from different Lactobacilli could be practical as an adjuvant therapy for reducing the use of antibiotics, being a good candidate to overcome the growing challenge of hospital infections due to this pathogen.
Collapse
Affiliation(s)
- Mariana Martins Drumond
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Programa de Pós Graduação em Engenharia de Materiais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Tapia-Costa
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - Elisabeth Neumann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Álvaro Cantini Nunes
- Laboratório de Genética Molecular de Protozoários Parasitas, Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Jorge Wanderson Barbosa
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Engenharia de Materiais, Belo Horizonte, Minas Gerais, Brazil
| | - Diego E. Kassuha
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - Pamela Mancha-Agresti
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Programa de Pós Graduação em Engenharia de Materiais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
30
|
Naga NG, El-Badan DE, Ghanem KM, Shaaban MI. It is the time for quorum sensing inhibition as alternative strategy of antimicrobial therapy. Cell Commun Signal 2023; 21:133. [PMID: 37316831 DOI: 10.1186/s12964-023-01154-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/29/2023] [Indexed: 06/16/2023] Open
Abstract
Multiple drug resistance poses a significant threat to public health worldwide, with a substantial increase in morbidity and mortality rates. Consequently, searching for novel strategies to control microbial pathogenicity is necessary. With the aid of auto-inducers (AIs), quorum sensing (QS) regulates bacterial virulence factors through cell-to-cell signaling networks. AIs are small signaling molecules produced during the stationary phase. When bacterial cultures reach a certain level of growth, these molecules regulate the expression of the bound genes by acting as mirrors that reflect the inoculum density.Gram-positive bacteria use the peptide derivatives of these signaling molecules, whereas Gram-negative bacteria use the fatty acid derivatives, and the majority of bacteria can use both types to modulate the expression of the target gene. Numerous natural and synthetic QS inhibitors (QSIs) have been developed to reduce microbial pathogenesis. Applications of QSI are vital to human health, as well as fisheries and aquaculture, agriculture, and water treatment. Video Abstract.
Collapse
Affiliation(s)
- Nourhan G Naga
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Dalia E El-Badan
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Khaled M Ghanem
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mona I Shaaban
- Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
31
|
Thereza Fiori-Duarte A, Bitencourt de Souza Ferreira L, Sanches Ascencio A, Fábio Kawano D. Modulation of Pseudomonas aeruginosa quorum sensing by ajoene through direct competition with small RNAs for binding at the proximal site of Hfq - a structure-based perspective. Gene 2023:147506. [PMID: 37224934 DOI: 10.1016/j.gene.2023.147506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Bacteria can communicate to each other via quorum sensing, a cell density-dependent gene regulation system that stimulates the expression of virulence factors in the neighboring cells. Although the interaction of the natural product ajoene with the Hfq protein has been associated with the disruption of the quorum sensing system in Pseudomonas aeruginosa, there is no information concerning the corresponding ligand-target interaction process. Herein we observed a strong correlation (p < 0.00001) between the estimated affinities for the binding of 23 ajoene analogues at the proximal site of the Hfq protein of P. aeruginosa and their corresponding IC50 values, which reflect the reduction in the transcription of a virulence factor after quorum sensing inhibition. In this concern, our analyses reinforces previous propositions suggesting that ajoene could target the Hfq protein and affects its interaction with RNAs. Based on docking simulations, we tried to elucidate the binding mode of ajoene into the proximal Hfq site and the also to established the minimum set of groups that would be necessary for a good interaction at this site, which includes a single hydrogen bond acceptor feature surrounded by groups that interact via π-sulfur (i.e., disulfide sulfurs) and/or π-alkyl/π-π stacking interactions (e.g., vinyl or small aryl/heteroaryl/heterocyclic groups). Because of the widespread role of Hfq as a matchmaker between messenger and small regulatory RNAs in Gram-negatives, we believe the discussion here provided for P. aeruginosa could be extrapolated for Gram-negatives in general, while the interaction of ajoene over the Hfq protein of Gram-positives would still remain more controversial.
Collapse
Affiliation(s)
- Ana Thereza Fiori-Duarte
- Group on the Research & Development of Bioactive Compounds (GR&DBC), Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Rua Cândido Portinari 200, 13083-871 Campinas-SP, Brazil
| | - Luciana Bitencourt de Souza Ferreira
- Group on the Research & Development of Bioactive Compounds (GR&DBC), Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Rua Cândido Portinari 200, 13083-871 Campinas-SP, Brazil
| | - Amanda Sanches Ascencio
- Group on the Research & Development of Bioactive Compounds (GR&DBC), Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Rua Cândido Portinari 200, 13083-871 Campinas-SP, Brazil
| | - Daniel Fábio Kawano
- Group on the Research & Development of Bioactive Compounds (GR&DBC), Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, Rua Cândido Portinari 200, 13083-871 Campinas-SP, Brazil.
| |
Collapse
|
32
|
Ye X, Mao S, Li Y, Yang Z, Du A, Wang H. Design, Synthesis, and Biological Evaluation of Phenyloxadiazole Sulfoxide Derivatives as Potent Pseudomonas aeruginosa Biofilm Inhibitors. Molecules 2023; 28:molecules28093879. [PMID: 37175289 PMCID: PMC10180516 DOI: 10.3390/molecules28093879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
With the development of antimicrobial agents, researchers have developed new strategies through key regulatory systems to block the expression of virulence genes without affecting bacterial growth. This strategy can minimize the selective pressure that leads to the emergence of resistance. Quorum sensing (QS) is an intercellular communication system that plays a key role in the regulation of bacterial virulence and biofilm formation. Studies have revealed that the QS system controls 4-6% of the total number of P. aeruginosa genes, and quorum sensing inhibitors (QSIs) could be a promising target for developing new prevention and treatment strategies against P. aeruginosa infection. In this study, four series of phenyloxadiazole and phenyltetrazole sulfoxide derivatives were synthesized and evaluated for their inhibitory effects on P. aeruginosa PAO1 biofilm formation. Our results showed that 5b had biofilm inhibitory activity and reduced the production of QS-regulated virulence factors in P. aeruginosa. In addition, silico molecular docking studies have shown that 5b binds to the P. aeruginosa QS receptor protein LasR through hydrogen bond interaction. Preliminary structure-activity relationship and docking studies show that 5b has broad application prospects as an anti-biofilm compound, and further research will be carried out in the future to solve the problem of microbial resistance.
Collapse
Affiliation(s)
- Xinyi Ye
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shen Mao
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yasheng Li
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhikun Yang
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Aoqi Du
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
33
|
Beenker WAG, Hoeksma J, Bannier-Hélaouët M, Clevers H, den Hertog J. Paecilomycone Inhibits Quorum Sensing in Gram-Negative Bacteria. Microbiol Spectr 2023; 11:e0509722. [PMID: 36920212 PMCID: PMC10100902 DOI: 10.1128/spectrum.05097-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes major health care concerns due to its virulence and high intrinsic resistance to antimicrobial agents. Therefore, new treatments are greatly needed. An interesting approach is to target quorum sensing (QS). QS regulates the production of a wide variety of virulence factors and biofilm formation in P. aeruginosa. This study describes the identification of paecilomycone as an inhibitor of QS in both Chromobacterium violaceum and P. aeruginosa. Paecilomycone strongly inhibited the production of virulence factors in P. aeruginosa, including various phenazines, and biofilm formation. In search of the working mechanism, we found that paecilomycone inhibited the production of 4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS), but not 2'-aminoacetophenone (2-AA). Therefore, we suggest that paecilomycone affects parts of QS in P. aeruginosa by targeting the PqsBC complex and alternative targets or alters processes that influence the enzymatic activity of the PqsBC complex. The toxicity of paecilomycone toward eukaryotic cells and organisms was low, making it an interesting lead for further clinical research. IMPORTANCE Antibiotics are becoming less effective against bacterial infections due to the evolution of resistance among bacteria. Pseudomonas aeruginosa is a Gram-negative pathogen that causes major health care concerns and is difficult to treat due to its high intrinsic resistance to antimicrobial agents. Therefore, new targets are needed, and an interesting approach is to target quorum sensing (QS). QS is the communication system in bacteria that regulates multiple pathways, including the production of virulence factors and biofilm formation, which leads to high toxicity in the host and low sensitivity to antibiotics, respectively. We found a compound, named paecilomycone, that inhibited biofilm formation and the production of various virulence factors in P. aeruginosa. The toxicity of paecilomycone toward eukaryotic cells and organisms was low, making it an interesting lead for further clinical research.
Collapse
Affiliation(s)
- Wouter A. G. Beenker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jelmer Hoeksma
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marie Bannier-Hélaouët
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Institute Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
34
|
Patel R, Soni M, Soyantar B, Shivangi S, Sutariya S, Saraf M, Goswami D. A clash of quorum sensing vs quorum sensing inhibitors: an overview and risk of resistance. Arch Microbiol 2023; 205:107. [PMID: 36881156 DOI: 10.1007/s00203-023-03442-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Indiscriminate use of antibiotics to treat microbial pathogens has caused emergence of multiple drug resistant strains. Most infectious diseases are caused by microbes that are capable of intercommunication using signaling molecules, which is known as quorum sensing (QS). Such pathogens express their pathogenicity through various QS-regulated virulence factors. Interference of QS could lead to decisive results in controlling such pathogenicity. Hence, QS inhibition has become an attractive new approach for the development of novel drugs. Many quorum sensing inhibitors (QSIs) of diverse origins have been reported. It is imperative that more such anti-QS compounds be found and studied, as they have significant effect on microbial pathogenicity. This review attempts to give a brief account of QS mechanism, its inhibition and describes some compounds with anti-QS potential. Also discussed is the possibility of emergence of quorum sensing resistance.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Mansi Soni
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Bilv Soyantar
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Suruchi Shivangi
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Swati Sutariya
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
35
|
Song H, Li Y, Wang Y. Two-component system GacS/GacA, a global response regulator of bacterial physiological behaviors. ENGINEERING MICROBIOLOGY 2023; 3:100051. [PMID: 39628522 PMCID: PMC11611043 DOI: 10.1016/j.engmic.2022.100051] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 12/06/2024]
Abstract
The signal transduction system of microorganisms helps them adapt to changes in their complex living environment. Two-component system (TCS) is a representative signal transduction system that plays a crucial role in regulating cellular communication and secondary metabolism. In Gram-negative bacteria, an unorthodox TCS consisting of histidine kinase protein GacS (initially called LemA) and response regulatory protein GacA is widespread. It mainly regulates various physiological activities and behaviors of bacteria, such as quorum sensing, secondary metabolism, biofilm formation and motility, through the Gac/Rsm (Regulator of secondary metabolism) signaling cascade pathway. The global regulatory ability of GacS/GacA in cell physiological activities makes it a potential research entry point for developing natural products and addressing antibiotic resistance. In this review, we summarize the progress of research on GacS/GacA from various perspectives, including the reaction mechanism, related regulatory pathways, main functions and GacS/GacA-mediated applications. Hopefully, this review will facilitate further research on GacS/GacA and promote its application in regulating secondary metabolism and as a therapeutic target.
Collapse
Affiliation(s)
- Huihui Song
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yuying Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
36
|
Lima EMF, Almeida FAD, Sircili MP, Bueris V, Pinto UM. N-acetylcysteine (NAC) attenuates quorum sensing regulated phenotypes in Pseudomonas aeruginosa PAO1. Heliyon 2023; 9:e14152. [PMID: 36923901 PMCID: PMC10009464 DOI: 10.1016/j.heliyon.2023.e14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
The expression of many virulence genes in bacteria is regulated by quorum sensing (QS), and the inhibition of this mechanism has been intensely investigated. N-acetylcysteine (NAC) has good antibacterial activity and is able to interfere with biofilm-related respiratory infections, but little is known whether this compound has an effect on bacterial QS communication. This work aimed to evaluate the potential of NAC as a QS inhibitor (QSI) in Pseudomonas aeruginosa PAO1 through in silico and in vitro analyses, as well as in combination with the antibiotic tobramycin. Initially, a molecular docking analysis was performed between the QS regulatory proteins, LasR and RhlR, of P. aeruginosa with NAC, 3-oxo-C12-HSL, C4-HSL, and furanone C30. The NAC sub-inhibitory concentration was determined by growth curves. Then, we performed in vitro tests using the QS reporter strains P. aeruginosa lasB-gfp and rhlA-gfp, as well as the expression of QS-related phenotypes. Finally, the synergistic effect of NAC with the antibiotic tobramycin was calculated by fractional inhibitory concentrations index (FICi) and investigated against bacterial growth, pigment production, and biofilm formation. In the molecular docking study, NAC bound to LasR and RhlR proteins in a similar manner to the AHL cognate, suggesting that it may be able to bind to QS receptor proteins in vivo. In the biosensor assay, the GFP signal was turned down in the presence of NAC at 1000, 500, 250, and 125 μM for lasB-gfp and rhlA-gfp (p < 0.05), suggesting a QS inhibitory effect. Pyocyanin and rhamnolipids decreased (p < 0.05) up to 34 and 37%, respectively, in the presence of NAC at 125 μM. Swarming and swimming motilities were inhibited (p < 0.05) by NAC at 250 to 10000 μM. Additionally, 2500 and 10000 μM of NAC reduced biofilm formation. NAC-tobramycin combination showed synergistic effect with FICi of 0.8, and the best combination was 2500-1.07 μM, inhibiting biofilm formation up to 60%, besides reducing pyocyanin and pyoverdine production. Confocal microscopy images revealed a stronger, dense, and compact biofilm of P. aeruginosa PAO1 control, while the biofilm treated with NAC-tobramycin became thinner and more dispersed. Overall, NAC at low concentrations showed promising anti-QS properties against P. aeruginosa PAO1, adding to its already known effect as an antibacterial and antibiofilm agent.
Collapse
Affiliation(s)
- Emília Maria França Lima
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo (USP), São Paulo, SP, Brazil
| | - Felipe Alves de Almeida
- Instituto de Laticínios Cândido Tostes (ILCT), Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Juiz de Fora, MG, Brazil
| | | | - Vanessa Bueris
- Microbiology Department, Institute of Biomedical Science, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo (USP), São Paulo, SP, Brazil
- Corresponding author.
| |
Collapse
|
37
|
Natural Medicine a Promising Candidate in Combating Microbial Biofilm. Antibiotics (Basel) 2023; 12:antibiotics12020299. [PMID: 36830210 PMCID: PMC9952808 DOI: 10.3390/antibiotics12020299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Studies on biofilm-related infections are gaining prominence owing to their involvement in most clinical infections and seriously threatening global public health. A biofilm is a natural form of bacterial growth ubiquitous in ecological niches, considered to be a generic survival mechanism adopted by both pathogenic and non-pathogenic microorganisms and entailing heterogeneous cell development within the matrix. In the ecological niche, quorum sensing is a communication channel that is crucial to developing biofilms. Biofilm formation leads to increased resistance to unfavourable ecological effects, comprising resistance to antibiotics and antimicrobial agents. Biofilms are frequently combated with modern conventional medicines such as antibiotics, but at present, they are considered inadequate for the treatment of multi-drug resistance; therefore, it is vital to discover some new antimicrobial agents that can prevent the production and growth of biofilm, in addition to minimizing the side effects of such therapies. In the search for some alternative and safe therapies, natural plant-derived phytomedicines are gaining popularity among the research community. Phytomedicines are natural agents derived from natural plants. These plant-derived agents may include flavonoids, terpenoids, lectins, alkaloids, polypeptides, polyacetylenes, phenolics, and essential oils. Since they are natural agents, they cause minimal side effects, so could be administered with dose flexibility. It is vital to discover some new antimicrobial agents that can control the production and growth of biofilms. This review summarizes and analyzes the efficacy characteristics and corresponding mechanisms of natural-product-based antibiofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and their sources, along with their mechanism, quorum sensing signalling pathways, disrupting extracellular matrix adhesion. The review also provides some other strategies to inhibit biofilm-related illness. The prepared list of newly discovered natural antibiofilm agents could help in devising novel strategies for biofilm-associated infections.
Collapse
|
38
|
Auranofin inhibits virulence pathways in Pseudomonas aeruginosa. Bioorg Med Chem 2023; 79:117167. [PMID: 36682225 DOI: 10.1016/j.bmc.2023.117167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/18/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Pseudomonas aeruginosa is widely attributed as the leading cause of hospital-acquired infections. Due to intrinsic antibiotic resistance mechanisms and the ability to form biofilms, P. aeruginosa infections are challenging to treat. P. aeruginosa employs multiple virulence mechanisms to establish infections, many of which are controlled by the global virulence regulator Vfr. An attractive strategy to combat P. aeruginosa infections is thus the use of anti-virulence compounds. Here, we report the discovery that FDA-approved drug auranofin attenuates virulence pathways in P. aeruginosa, including quorum sensing (QS) and Type IV pili (TFP). We show that auranofin acts via multiple targets, one of which being Vfr. Consistent with inhibition of QS and TFP expression, we show that auranofin attenuates biofilm maturation, and when used in combination with colistin, displays strong synergy in eradicating P. aeruginosa biofilms. Auranofin may have immediate applications as an anti-virulence drug against P. aeruginosa infections.
Collapse
|
39
|
Jiang S, Deng Y, Long Z, Liu P, Hong J, Wei T, Zhang Y, Sun S, Zhuo S, Shang L. Reduction of pyocyanin synthesis and antibiotic resistance in Pseudomonas aeruginosa by low concentration ethanol. FEMS Microbiol Lett 2023; 370:fnad069. [PMID: 37451707 DOI: 10.1093/femsle/fnad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
Pseudomonas aeruginosa is a common bacteria that may cause a wide range of severe illnesses in humans. One of the nonantibiotic therapies, antivirulence factor therapy, has attracted ongoing interest. Screening for and investigating bacterial virulence factor inhibitors is critical for the development of antivirulence factor treatments. Pyocyanin is P. aeruginosa's distinctive pigment, and it plays a key role in infection. The impact of low concentration ethanol on pyocyanin production was investigated in this research. Pyocyanin production was found both subjectively and quantitatively. The effects of ethanol on the expression of pyocyanin production genes were studied using qRT-PCR and western blotting. The findings demonstrated that low concentrations of ethanol (as little as 0.1%) greatly suppressed pyocyanin production without affecting P. aeruginosa growth. The degree of inhibition increased as the ethanol contentration rose. Ethanol inhibits the expression of genes involved in pyocyanin production. This inhibitory impact was mostly seen at the protein level. Further research revealed that ethanol increased the expression of the post-transcriptional regulator RsmA, which inhibits pyocyanin production. Given the favorable relationship between pyocyanin production and antibiotic resistance, the impact of low concentration ethanol on various antibiotics was investigated. Ethanol lowered antibiotic resistance in P. aeruginosa, presumably by inhibiting pyocyanin.
Collapse
Affiliation(s)
- Shijie Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan Province 621010, China
| | - Yunfeng Deng
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan Province 621010, China
| | - Zhijian Long
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan Province 621010, China
| | - Peng Liu
- School of Basic Medicine, Guangxi University of Chinese Medicine, 13 Wuhe Dadao, Nanning City, Guangxi Province 530200, China
| | - Jing Hong
- School of Basic Medicine, Guangxi University of Chinese Medicine, 13 Wuhe Dadao, Nanning City, Guangxi Province 530200, China
| | - Tingzhou Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan Province 621010, China
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, Sichuan Province 621010, China
| | - Shanshan Sun
- School of Basic Medicine, Guangxi University of Chinese Medicine, 13 Wuhe Dadao, Nanning City, Guangxi Province 530200, China
| | - Shaoyuan Zhuo
- School of Basic Medicine, Guangxi University of Chinese Medicine, 13 Wuhe Dadao, Nanning City, Guangxi Province 530200, China
| | - Liguo Shang
- School of Basic Medicine, Guangxi University of Chinese Medicine, 13 Wuhe Dadao, Nanning City, Guangxi Province 530200, China
| |
Collapse
|
40
|
Xue B, Shen Y, Zuo J, Song D, Fan Q, Zhang X, Yi L, Wang Y. Bringing Antimicrobial Strategies to a New Level: The Quorum Sensing System as a Target to Control Streptococcus suis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122006. [PMID: 36556371 PMCID: PMC9782415 DOI: 10.3390/life12122006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Streptococcus suis (S. suis) is an important zoonotic pathogen. It mainly uses quorum sensing (QS) to adapt to complex and changeable environments. QS is a universal cell-to-cell communication system that has been widely studied for its physiological functions, including the regulation of bacterial adhesion, virulence, and biofilm formation. Quorum sensing inhibitors (QSIs) are highly effective at interfering with the QS system and bacteria have trouble developing resistance to them. We review the current research status of the S. suis LuxS/AI-2 QS system and QSIs. Studies showed that by inhibiting the formation of AI-2, targeting the LuxS protein, inhibiting the expression of luxs gene can control the LuxS/AI-2 QS system of S. suis. Other potential QSIs targets are summarized, which may be preventing and treating S. suis infections, including AI-2 production, transmission, LuxS protein, blockage of AI-2 binding to receptors, AI-2-mediated QS. Since antibiotics are becoming increasingly ineffective due to the emergence of resistant bacteria, including S. suis, it is thus critical to find new antibacterial drugs with different mechanisms of action. QSIs provide hope for the development of such drugs.
Collapse
Affiliation(s)
- Bingqian Xue
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Dong Song
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Xiaoling Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
- College of Life Science, Luoyang Normal University, Luoyang 471000, China
- Correspondence: (L.Y.); (Y.W.)
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang 471000, China
- Correspondence: (L.Y.); (Y.W.)
| |
Collapse
|
41
|
Shchelik IS, Gademann K. Synthesis and Antimicrobial Evaluation of New Cephalosporin Derivatives Containing Cyclic Disulfide Moieties. ACS Infect Dis 2022; 8:2327-2338. [PMID: 36251034 DOI: 10.1021/acsinfecdis.2c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Due to a steady increase in microbial resistance, there is a need to increase the effectiveness of antibiotic performance by involving additional mechanisms of their penetration or retention for their better action. Cephalosporins are a successful group of antibiotics to combat pathogenic microorganisms, including drug-resistant strains. In this study, we investigated the effect of newly synthesized cephalosporin derivatives with cyclic disulfide modifications against several Gram-positive and Gram-negative strains as well as against biofilm formation. The incorporation of asparagusic acid was found to be effective in improving the activity of the drug against Gram-negative strains compared to the all carbon-control compounds. Furthermore, we could demonstrate the successful reduction of biofilm formation for Staphylococcus aureus and Pseudomonas aeruginosa at similar concentrations as obtained against planktonic cells. We propose that the incorporation of cyclic disulfides is one additional strategy to improve antibiotic activity and to combat bacterial infections.
Collapse
Affiliation(s)
- Inga S Shchelik
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
42
|
Jia T, Liu D, Bi X, Li M, Cai Z, Fu J, Liu Z, Wu P, Ke X, Jia A, Zhang G, Li G, Yang L. The AhR ligand phthiocol and vitamin K analogs as Pseudomonas aeruginosa quorum sensing inhibitors. Front Microbiol 2022; 13:896687. [PMID: 36187967 PMCID: PMC9515472 DOI: 10.3389/fmicb.2022.896687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) protein senses microbial-secreted metabolites to trigger the host's innate immune system. The Pseudomonas quinolone signal (PQS) and Mycobacterium tuberculosis (MTb) metabolite phthiocol (Pht) are both ligands of AhR with similar chemical structures. As PQS is an essential quorum-sensing molecule that regulates a wide range of virulence factors in Pseudomonas aeruginosa, we hypothesized that Pht and its analogs are potential P. aeruginosa quorum-sensing inhibitors (QSIs) with immune-modulating functions. In this study, we demonstrated that Pht was able to inhibit the P. aeruginosa pqs QS system and reduce both biofilm formation and the production of pyocyanin. Molecular docking analysis suggested that Pht competes with PQS at the binding site of its receptor, PqsR. An electrophoretic mobility shift assay confirmed the Pht-PqsR interaction and showed that Pht attenuated PqsR from binding to the pqsA promoter. Proteomic analysis showed that synthesis of the key pqs QS proteins decreased upon the addition of Pht to the bacterial cultures. Furthermore, Pht analogs vitamins K1 (Phylloquinone), K2 (Menaquinones), and K3 (Menadione) were also showed to inhibit the P. aeruginosa pqs QS system while able to activate the AhR signaling pathways. Our study suggests that the AhR ligands Pht and its vitamin K analogs are promising QSIs for the alternative treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Tianyuan Jia
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dongjing Liu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xianbiao Bi
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Menglu Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiapeng Fu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zhi Liu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Pengyao Wu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xue Ke
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Aiqun Jia
- School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Guoliang Zhang
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Guobao Li
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Guobao Li
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Liang Yang
| |
Collapse
|
43
|
An Overview of Biofilm Formation-Combating Strategies and Mechanisms of Action of Antibiofilm Agents. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081110. [PMID: 35892912 PMCID: PMC9394423 DOI: 10.3390/life12081110] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Biofilm formation on surfaces via microbial colonization causes infections and has become a major health issue globally. The biofilm lifestyle provides resistance to environmental stresses and antimicrobial therapies. Biofilms can cause several chronic conditions, and effective treatment has become a challenge due to increased antimicrobial resistance. Antibiotics available for treating biofilm-associated infections are generally not very effective and require high doses that may cause toxicity in the host. Therefore, it is essential to study and develop efficient anti-biofilm strategies that can significantly reduce the rate of biofilm-associated healthcare problems. In this context, some effective combating strategies with potential anti-biofilm agents, including plant extracts, peptides, enzymes, lantibiotics, chelating agents, biosurfactants, polysaccharides, organic, inorganic, and metal nanoparticles, etc., have been reviewed to overcome biofilm-associated healthcare problems. From their extensive literature survey, it can be concluded that these molecules with considerable structural alterations might be applied to the treatment of biofilm-associated infections, by evaluating their significant delivery to the target site of the host. To design effective anti-biofilm molecules, it must be assured that the minimum inhibitory concentrations of these anti-biofilm compounds can eradicate biofilm-associated infections without causing toxic effects at a significant rate.
Collapse
|
44
|
Novel approaches for the treatment of infections due to multidrug-resistant bacterial pathogens. Future Med Chem 2022; 14:1133-1148. [PMID: 35861021 DOI: 10.4155/fmc-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance (AMR), which is a major challenge for global healthcare, emerging because of several reasons including overpopulation, increased global migration and selection pressure due to enhanced use of antibiotics. Antibiotics are the widely used therapeutic options to combat infectious diseases; however, unfortunately, inadequate and irregular antibiotic courses are also major contributing factors in the emergence of AMR. Additionally, persistent failure to develop and commercialize new antibiotics has created the scarcity of effective anti-infective drugs. Thus, there is an urgent need for a new class of antimicrobials and other novel approaches to curb the menace of AMR. Besides the conventional approaches, some novel approaches such as the use of antimicrobial peptides, bacteriophages, immunomodulation, host-directed therapy and antibodies have shown really promising potentials.
Collapse
|
45
|
Beenker WAG, Hoeksma J, den Hertog J. Gregatins, a Group of Related Fungal Secondary Metabolites, Inhibit Aspects of Quorum Sensing in Gram-Negative Bacteria. Front Microbiol 2022; 13:934235. [PMID: 35865924 PMCID: PMC9296082 DOI: 10.3389/fmicb.2022.934235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/02/2022] [Indexed: 12/11/2022] Open
Abstract
Quorum sensing (QS) is a process that regulates gene expression based on cell density. In bacteria, QS facilitates collaboration and controls a large number of pathways, including biofilm formation and virulence factor production, which lead to lower sensitivity to antibiotics and higher toxicity in the host, respectively. Inhibition of QS is a promising strategy to combat bacterial infections. In this study, we tested the potential of secondary metabolites from fungi to inhibit bacterial QS using a library derived from more than ten thousand different fungal strains. We used the reporter bacterium, Chromobacterium violaceum, and identified 39 fungal strains that produced QS inhibitor activity. These strains expressed two QS inhibitors that had been described before and eight QS inhibitors that had not been described before. Further testing for QS inhibitor activity against the opportunistic pathogen Pseudomonas aeruginosa led to the identification of gregatins as an interesting family of compounds with QS inhibitor activity. Although various gregatins inhibited QS in P. aeruginosa, these gregatins did not inhibit virulence factor production and biofilm formation. We conclude that gregatins inhibit some, but not all aspects of QS.
Collapse
Affiliation(s)
- Wouter A. G. Beenker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Jelmer Hoeksma
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen den Hertog
| |
Collapse
|
46
|
Current Advances in the Concept of Quorum Sensing-Based Prevention of Spoilage of Fish Products by Pseudomonads. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microbial spoilage of fish is attributed to quorum sensing (QS)-based activities. QS is a communication process between the cells in which microorganisms secrete and sense the specific chemicals (autoinductors, AIs) that regulate proteolysis, lipolysis, and biofilm formation. These activities change the organoleptic characteristics and reduce the safety of the products. Although the microbial community of fish is diverse and may consist of a range of bacterial strains, the deterioration of fish-based products is attributed to the growth and activity of Pseudomonas spp. This work summarizes recent advancements to assess the influence of QS mechanisms on seafood spoilage by Pseudomonas spp. The quorum sensing inhibition (QSI) in the context of fish preservation has also been discussed. Detailed recognition of this phenomenon is crucial in establishing effective strategies to prevent the premature deterioration of fish-based products.
Collapse
|
47
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
48
|
Upton RL, Dop RA, Sadler E, Lunt AM, Neill DR, Hasell T, Crick CR. Investigating the viability of sulfur polymers for the fabrication of photoactive, antimicrobial, water repellent coatings. J Mater Chem B 2022; 10:4153-4162. [PMID: 35438120 DOI: 10.1039/d2tb00319h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elemental sulfur (S8), a by-product of the petroleum refining industries, possesses many favourable properties including photocatalytic activity and antibacterial activity, in addition to being intrinsically hydrophobic. Despite this, there is a relative lack of research employing elemental sulfur and/or sulfur copolymers within superhydrophobic materials design. In this work, we present the use of sulfur copolymers to produce superhydrophobic materials with advanced functionalities. Using inverse vulcanization and the use of a natural organic crosslinker, perillyl alcohol (PER), stable S8-PER copolymers were synthesised and later combined with silica (SiO2) nanoparticles, to achieve highly water repellent composites that displayed both antimicrobial and photocatalytic properties, in the absence of carcinogenic and/or expensive materials. Here, we investigated the antibacterial performance of coatings against the Staphylococcus aureus bacterial strain, where coatings displayed great promise for use in antifouling applications, as they were found to limit surface adhesion by more than 99%, when compared to uncoated glass samples. Furthermore, UV dye degradation tests were performed, utilizing the commercially available dye resazurin, and it was shown that coatings had the potential to simultaneously exhibit surface hydrophobicity and photoactivity, demonstrating a great advancement in the field of superhydrophobic materials.
Collapse
Affiliation(s)
- Rebekah L Upton
- University of Liverpool, Department of Chemistry, Materials Innovation Factory, Liverpool, L69 7ZX, UK.,Queen Mary University of London, School of Engineering and Materials Science, London, E1 4NS, UK.
| | - Romy A Dop
- University of Liverpool, Department of Chemistry, Materials Innovation Factory, Liverpool, L69 7ZX, UK
| | - Emma Sadler
- Queen Mary University of London, School of Engineering and Materials Science, London, E1 4NS, UK.
| | - Amy M Lunt
- University of Liverpool, Department of Chemistry, Materials Innovation Factory, Liverpool, L69 7ZX, UK
| | - Daniel R Neill
- University of Liverpool, Department of Clinical Infection, Microbiology and Immunology, 8 West Derby Street, Liverpool, L69 7BE, UK
| | - Tom Hasell
- University of Liverpool, Department of Chemistry, Materials Innovation Factory, Liverpool, L69 7ZX, UK
| | - Colin R Crick
- Queen Mary University of London, School of Engineering and Materials Science, London, E1 4NS, UK.
| |
Collapse
|
49
|
Li Y, Feng T, Wang Y. The role of bacterial signaling networks in antibiotics response and resistance regulation. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:163-178. [PMID: 37073223 PMCID: PMC10077285 DOI: 10.1007/s42995-022-00126-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/07/2022] [Indexed: 05/03/2023]
Abstract
Excessive use of antibiotics poses a threat to public health and the environment. In ecosystems, such as the marine environment, antibiotic contamination has led to an increase in bacterial resistance. Therefore, the study of bacterial response to antibiotics and the regulation of resistance formation have become an important research field. Traditionally, the processes related to antibiotic responses and resistance regulation have mainly included the activation of efflux pumps, mutation of antibiotic targets, production of biofilms, and production of inactivated or passivation enzymes. In recent years, studies have shown that bacterial signaling networks can affect antibiotic responses and resistance regulation. Signaling systems mostly alter resistance by regulating biofilms, efflux pumps, and mobile genetic elements. Here we provide an overview of how bacterial intraspecific and interspecific signaling networks affect the response to environmental antibiotics. In doing so, this review provides theoretical support for inhibiting bacterial antibiotic resistance and alleviating health and ecological problems caused by antibiotic contamination.
Collapse
Affiliation(s)
- Yuying Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Tao Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Ecology and Environmental Science, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071 China
| |
Collapse
|
50
|
Anti-Virulence Activity of 3,3′-Diindolylmethane (DIM): A Bioactive Cruciferous Phytochemical with Accelerated Wound Healing Benefits. Pharmaceutics 2022; 14:pharmaceutics14050967. [PMID: 35631553 PMCID: PMC9144697 DOI: 10.3390/pharmaceutics14050967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Antimicrobial resistance is among the top global health problems with antibacterial resistance currently representing the major threat both in terms of occurrence and complexity. One reason current treatments of bacterial diseases are ineffective is the occurrence of protective and resistant biofilm structures. Phytochemicals are currently being reviewed for newer anti-virulence agents. In the present study, we aimed to investigate the anti-virulence activity of 3,3′-diindolylmethane (DIM), a bioactive cruciferous phytochemical. Using a series of in vitro assays on major Gram-negative pathogens, including transcriptomic analysis, and in vivo porcine wound studies as well as in silico experiments, we show that DIM has anti-biofilm activity. Following DIM treatment, our findings show that biofilm formation of two of the most prioritized bacterial pathogens Acinetobacter baumannii and Pseudomonas aeruginosa was inhibited respectively by 65% and 70%. Combining the antibiotic tobramycin with DIM enabled a high inhibition (94%) of P. aeruginosa biofilm. A DIM-based formulation, evaluated for its wound-healing efficacy on P. aeruginosa-infected wounds, showed a reduction in its bacterial bioburden, and wound size. RNA-seq was used to evaluate the molecular mechanism underlying the bacterial response to DIM. The gene expression profile encompassed shifts in virulence and biofilm-associated genes. A network regulation analysis showed the downregulation of 14 virulence-associated super-regulators. Quantitative real-time PCR verified and supported the transcriptomic results. Molecular docking and interaction profiling indicate that DIM can be accommodated in the autoinducer- or DNA-binding pockets of the virulence regulators making multiple non-covalent interactions with the key residues that are involved in ligand binding. DIM treatment prevented biofilm formation and destroyed existing biofilm without affecting microbial death rates. This study provides evidence for bacterial virulence attenuation by DIM.
Collapse
|