1
|
Chen S, Rao W, Fu L, Liu G, Zhang J, Liao Y, Lv N, Deng G, Yang S, Lin L, Li L, Qu J, Liu S, Zou J. Population Pharmacokinetic Modeling of Pyrazinamide Among Chinese Patients With Drug-Sensitive or Multidrug-Resistant Tuberculosis. Ther Drug Monit 2024:00007691-990000000-00264. [PMID: 39240829 DOI: 10.1097/ftd.0000000000001255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/20/2024] [Indexed: 09/08/2024]
Abstract
BACKGROUND Pyrazinamide is used to treat drug-susceptible (DS) and multidrug-resistant (MDR) tuberculosis (TB). This study aimed to characterize the factors associated with the pharmacokinetic parameters of pyrazinamide and evaluate the disposition of the current regimen, which could provide suggestions for adequate dosing strategies for therapeutic targets. METHODS A population pharmacokinetic model of pyrazinamide was developed based on the data from 499 plasma concentrations from 222 Chinese patients diagnosed with DS or MDR TB. Pyrazinamide exposure was best described using a one-compartment model. RESULTS No significant differences were observed in the pharmacokinetic parameters between DS and MDR TB. The final covariate model showed that total body weight was the only significant covariate for apparent clearance, which increased by 0.45 L/h with a 10 kg increase in body weight. A simulation showed that for typical subjects weighing 40-80 kg, a fixed dosage of 1500 mg daily had an area under the concentration-time curve from 0 to 24 hours (AUC0-24) of 389.9-716.0 mg·h/L and peak serum concentrations of the drug (Cmax) of 32.2-44.8 mg/L. CONCLUSIONS Fixed pyrazinamide doses of 1500, 1750, and 2000 mg are recommended for patients weighing 40-70, 70-80, and 80-90 kg, respectively, to achieve the exposure targets of AUC0-24 > 363 mg·h/L or Cmax > 35 mg/L to attain efficacy.
Collapse
Affiliation(s)
- Shuyan Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | | | - Liang Fu
- Division Two of Pulmonary Diseases Department, Shenzhen Third People's Hospital, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Guohui Liu
- Pulmonary Diseases Department, Shenzhen Third People's Hospital, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Jiancong Zhang
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China; and
| | | | - Ning Lv
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China; and
| | - Guofang Deng
- Division Two of Pulmonary Diseases Department, Shenzhen Third People's Hospital, Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Shijin Yang
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China; and
| | | | - Lujin Li
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China; and
| | | | - Jin Zou
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China; and
| |
Collapse
|
2
|
Ekqvist D, Bornefall A, Augustinsson D, Sönnerbrandt M, Nordvall MJ, Fredrikson M, Carlsson B, Sandstedt M, Simonsson USH, Alffenaar JWC, Paues J, Niward K. Safety and pharmacokinetics-pharmacodynamics of a shorter tuberculosis treatment with high-dose pyrazinamide and rifampicin: a study protocol of a phase II clinical trial (HighShort-RP). BMJ Open 2022; 12:e054788. [PMID: 35273049 PMCID: PMC8915351 DOI: 10.1136/bmjopen-2021-054788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Increased dosing of rifampicin and pyrazinamide seems a viable strategy to shorten treatment and prevent relapse of drug-susceptible tuberculosis (TB), but safety and efficacy remains to be confirmed. This clinical trial aims to explore safety and pharmacokinetics-pharmacodynamics of a high-dose pyrazinamide-rifampicin regimen. METHODS AND ANALYSIS Adult patients with pulmonary TB admitted to six hospitals in Sweden and subjected to receive first-line treatment are included. Patients are randomised (1:3) to either 6-month standardised TB treatment or a 4-month regimen based on high-dose pyrazinamide (40 mg/kg) and rifampicin (35 mg/kg) along with standard doses of isoniazid and ethambutol. Plasma samples for measurement of drug exposure determined by liquid chromatography tandem-mass spectrometry are obtained at 0, 1, 2, 4, 6, 8, 12 and 24 hours, at day 1 and 14. Maximal drug concentration (Cmax) and area under the concentration-time curve (AUC0-24h) are estimated by non-compartmental analysis. Conditions for early model-informed precision dosing of high-dose pyrazinamide-rifampicin are pharmacometrically explored. Adverse drug effects are monitored throughout the study and graded according to Common Terminology Criteria for Adverse Events V.5.0. Early bactericidal activity is assessed by time to positivity in BACTEC MGIT 960 of induced sputum collected at day 0, 5, 8, 15 and week 8. Minimum inhibitory concentrations of first-line drugs are determined using broth microdilution. Disease severity is assessed with X-ray grading and a validated clinical scoring tool (TBscore II). Clinical outcome is registered according to WHO definitions (2020) in addition to occurrence of relapse after end of treatment. Primary endpoint is pyrazinamide AUC0-24h and main secondary endpoint is safety. ETHICS AND DISSEMINATION The study is approved by the Swedish Ethical Review Authority and the Swedish Medical Products Agency. Informed written consent is collected before study enrolment. The study results will be submitted to a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT04694586.
Collapse
Affiliation(s)
- David Ekqvist
- Department of Infectious Diseases, Region Östergötland, Linköping University, Linköping, Sweden
| | - Anna Bornefall
- Department of Infectious Diseases, Region Östergötland, Linköping, Sweden
| | | | | | - Michaela Jonsson Nordvall
- Department of Clinical Microbiology, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Björn Carlsson
- Department of Clinical Pharmacology, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mårten Sandstedt
- Department of Radiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | | - Jan-Willem C Alffenaar
- School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Jakob Paues
- Department of Infectious Diseases, and Department of Biomedical and Clinical Sciences, Linköping University, Linkoping, Sweden
| | - Katarina Niward
- Department of Infectious Diseases, and Department of Biomedical and Clinical Sciences, Linköping University, Linkoping, Sweden
| |
Collapse
|
3
|
Wang X, Wu F, Zou H, Yang Y, Chen G, Liu K, Zhang Y, Liu L. Neurodevelopmental toxicity of pyrazinamide to larval zebrafish and the restoration after intoxication withdrawing. J Appl Toxicol 2022; 42:1276-1286. [PMID: 35102572 DOI: 10.1002/jat.4294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 11/10/2022]
Abstract
To investigate the neurotoxicity of pyrazinamide (PZA) to larval zebrafish, the PZA effects were assessed followed by its mechanism being explored. Same as isoniazid (INH), this compound is a first-line anti-tuberculosis drug and is suggested to be a risk that inducing nerve injury with long-term intoxication. Our findings indicated that zebrafish larvae obtained severe nerve damage secondary to constant immersion in various concentrations of PZA (i.e., 0.5, 1.0, and 1.5 mM) from 4 hpf (hours post fertilization) onwards until 120 hpf. The damage presented as dramatically decrease of locomotor capacity and dopaminergic neuron (DAN)-rich region length in addition to defect of brain blood vessels (BBVs). Moreover, PZA-administrated zebrafish showed a decreased dopamine (DA) level and downregulated expression of neurodevelopment-related genes, such as shha, mbp, neurog1, and gfap. However, secondary to 48 hours' restoration in fish medium (i.e., at 168 hpf), the neurotoxicity described above was prominently ameliorated. The results showed that PZA at the concentrations we tested was notably neurotoxic to larval zebrafish, and this nerve injury was restorable after PZA withdrawing. Therefore, this finding will probably provide a reference for clinical medication.
Collapse
Affiliation(s)
- Xixin Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fangyan Wu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmacy, Changzhou University, Changzhou, China.,Shanghai OneTar Biomedicine, Shanghai, China
| | - Hongyuan Zou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanan Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Pharmacy, Changzhou University, Changzhou, China
| | - Gaoyang Chen
- The Second People's Hospital of Taizhou, Taizhou, Jiangsu, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Liu
- School of Pharmacy, Changzhou University, Changzhou, China
| |
Collapse
|
4
|
Zhang N, Savic RM, Boeree MJ, Peloquin CA, Weiner M, Heinrich N, Bliven-Sizemore E, Phillips PPJ, Hoelscher M, Whitworth W, Morlock G, Posey J, Stout JE, Mac Kenzie W, Aarnoutse R, Dooley KE. Optimising pyrazinamide for the treatment of tuberculosis. Eur Respir J 2021; 58:13993003.02013-2020. [PMID: 33542052 DOI: 10.1183/13993003.02013-2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/11/2020] [Indexed: 11/05/2022]
Abstract
Pyrazinamide is a potent sterilising agent that shortens the treatment duration needed to cure tuberculosis. It is synergistic with novel and existing drugs for tuberculosis. The dose of pyrazinamide that optimises efficacy while remaining safe is uncertain, as is its potential role in shortening treatment duration further.Pharmacokinetic data, sputum culture, and safety laboratory results were compiled from Tuberculosis Trials Consortium (TBTC) studies 27 and 28 and Pan-African Consortium for the Evaluation of Antituberculosis Antibiotics (PanACEA) multi-arm multi-stage tuberculosis (MAMS-TB), multi-centre phase 2 trials in which participants received rifampicin (range 10-35 mg·kg-1), pyrazinamide (range 20-30 mg·kg-1), plus two companion drugs. Pyrazinamide pharmacokinetic-pharmacodynamic (PK-PD) and pharmacokinetic-toxicity analyses were performed.In TBTC studies (n=77), higher pyrazinamide maximum concentration (Cmax) was associated with shorter time to culture conversion (TTCC) and higher probability of 2-month culture conversion (p-value<0.001). Parametric survival analyses showed that relationships varied geographically, with steeper PK-PD relationships seen among non-African than African participants. In PanACEA MAMS-TB (n=363), TTCC decreased as pyrazinamide Cmax increased and varied by rifampicin area under the curve (p-value<0.01). Modelling and simulation suggested that very high doses of pyrazinamide (>4500 mg) or increasing both pyrazinamide and rifampicin would be required to reach targets associated with treatment shortening. Combining all trials, liver toxicity was rare (3.9% with grade 3 or higher liver function tests (LFT)), and no relationship was seen between pyrazinamide Cmax and LFT levels.Pyrazinamide's microbiological efficacy increases with increasing drug concentrations. Optimising pyrazinamide alone, though, is unlikely to be sufficient to allow tuberculosis treatment shortening; rather, rifampicin dose would need to be increased in parallel.
Collapse
Affiliation(s)
- Nan Zhang
- University of California, San Francisco, School of Pharmacy, San Francisco, CA, USA
| | - Radojka M Savic
- University of California, San Francisco, School of Pharmacy, San Francisco, CA, USA
| | - Martin J Boeree
- Depts of Lung Diseases and Pharmacy, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Charles A Peloquin
- College of Pharmacy and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Marc Weiner
- Veterans Administration Medical Center, San Antonio, TX, USA
| | - Norbert Heinrich
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich, and German Center for Infection Research (DZIF), Munich Partner site, Munich, Germany
| | | | - Patrick P J Phillips
- Center for Tuberculosis, University of California San Francisco, San Francisco, CA, USA
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich, and German Center for Infection Research (DZIF), Munich Partner site, Munich, Germany
| | | | - Glenn Morlock
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James Posey
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jason E Stout
- UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, CA, USA
| | | | - Robert Aarnoutse
- Depts of Lung Diseases and Pharmacy, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Kelly E Dooley
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
5
|
Muliaditan M, Della Pasqua O. How long will treatment guidelines for TB continue to overlook variability in drug exposure? J Antimicrob Chemother 2020; 74:3274-3280. [PMID: 31360999 DOI: 10.1093/jac/dkz319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/23/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Despite wide clinical acceptance, the use of weight-banded dosing regimens for the treatment of TB in adults has been defined on an empirical basis. The potential impact of known covariate factors on exposure to different drugs has not been taken into account. OBJECTIVES To evaluate the effect of demographic factors on the exposure to standard of care drugs after weight-banded dosing, as currently recommended by TB treatment guidelines. In addition, we aim to identify alternative dosing regimens that ensure comparable systemic exposure across the overall patient population. METHODS Clinical trial simulations were performed to assess the differences in systemic exposure in a cohort of virtual patients. Secondary pharmacokinetic parameters were used to evaluate the adequacy of each regimen along with the percentage of patients achieving predefined thresholds. RESULTS Our results show that patients weighing less than 40 kg are underexposed relative to patients with higher body weight. The opposite trend was observed following a crude weight band-based dosing regimen with 50 kg as the cut-off point. Simulations indicate that a fixed-dose regimen based on three (<40 kg), four (40-70 kg) or five (>70 kg) tablets of 150 mg rifampicin, 75 mg isoniazid, 400 mg pyrazinamide and 275 mg ethambutol reduces variability in exposure, increasing the overall probability of favourable long-term outcome across the population. CONCLUSIONS These findings suggest the need to revisit current guidelines for the dose of standard of care drugs for TB treatment in adults. The proposed fixed-dose regimen should be considered in future clinical trials.
Collapse
Affiliation(s)
- Morris Muliaditan
- Clinical Pharmacology & Therapeutics Group, University College London, London, UK
| | - Oscar Della Pasqua
- Clinical Pharmacology & Therapeutics Group, University College London, London, UK.,Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, Uxbridge, UK
| |
Collapse
|
6
|
Millard JD, Mackay EA, Bonnett LJ, Davies GR. The impact of inclusion, dose and duration of pyrazinamide (PZA) on efficacy and safety outcomes in tuberculosis: systematic review and meta-analysis protocol. Syst Rev 2019; 8:329. [PMID: 31847921 PMCID: PMC6915872 DOI: 10.1186/s13643-019-1231-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/12/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pyrazinamide (PZA) is a key component of current and future regimens for tuberculosis (TB). Inclusion of PZA at higher doses and for longer durations may improve efficacy outcomes but must be balanced against the potential for worse safety outcomes. METHODS We will search for randomised and quasi-randomised clinical trials in adult participants with and without the inclusion of PZA in TB treatment regimens in the Cochrane infectious diseases group's trials register, Cochrane central register of controlled trials (CENTRAL), MEDLINE, EMBASE, LILACS, the metaRegister of Controlled Trials (mRCT) and the World Health Organization (WHO) international clinical trials registry platform. One author will screen abstracts and remove ineligible studies (10% of which will be double-screened by a second author). Two authors will review full texts for inclusion. Safety and efficacy data will be extracted to pre-piloted forms by one author (10% of which will be double-extracted by a second author). The Cochrane risk of bias tool will be used to assess study quality. The study has three objectives: the association of (1) inclusion, (2) dose and (3) duration of PZA with efficacy and safety outcomes. Risk ratios as relative measures of effect for direct comparisons within trials (all objectives) and proportions as absolute measures of effect for indirect comparisons across trials (for objectives 2 and 3) will be calculated. If there is insufficient data for direct comparisons within trials for objective 1, indirect comparisons between trials will be performed. Measures of effect will be pooled, with corresponding 95% confidence intervals and p values. Meta-analysis will be performed using the generalised inverse variance method for fixed effects models (FEM) or the DerSimonian-Laird method for random effects models (REM). For indirect comparisons, meta-regression for absolute measures against dose and duration data will be performed. Heterogeneity will be quantified through the I2-statistic for direct comparisons and the τ2 statistic for indirect comparisons using meta-regression. DISCUSSION The current use of PZA for TB is based on over 60 years of clinical trial data, but this has never been synthesised to guide rationale use in future regimens and clinical trials. Systematic review registration: International Prospective Register of Systematic Reviews (PROSPERO) CRD42019138735.
Collapse
Affiliation(s)
- James D. Millard
- Wellcome Trust Liverpool Glasgow Centre for Global Health Research, Block E Royal Infirmary Complex, 70 Pembroke Place, Liverpool, UK
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Africa Health Research Institute, Durban, South Africa
- School of Medicine, University of Liverpool, Liverpool, UK
| | - Elizabeth A. Mackay
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- School of Medicine, University of Liverpool, Liverpool, UK
| | - Laura J. Bonnett
- School of Medicine, University of Liverpool, Liverpool, UK
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Geraint R. Davies
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- School of Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Clout AE, Della Pasqua O, Hanna MG, Orlu M, Pitceathly RDS. Drug repurposing in neurological diseases: an integrated approach to reduce trial and error. J Neurol Neurosurg Psychiatry 2019; 90:1270-1275. [PMID: 31171583 DOI: 10.1136/jnnp-2019-320879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Identifying effective disease-modifying therapies for neurological diseases remains an important challenge in drug discovery and development. Drug repurposing attempts to determine new indications for pre-existing compounds and represents a major opportunity to address this clinically unmet need. It is potentially more cost-effective and time-efficient than de novo drug development and has yielded notable successes in neurological disorders. However, across all medical disciplines, only 30% of repurposed drugs, and 10% of novel candidate molecules, gain market approval. One potentially significant contributor towards this limited success rate is an incomplete knowledge of the exposure-response relationships for the compounds of interest, and how these relate to the new indication, prior to commencing a new trial. We provide an overview of the current approach to early-stage drug repurposing and consider the issues contributing to inconclusive, or possibly falsely negative, Phase II and III trial outcomes in neurological diseases by highlighting examples that illustrate the limitations of empirical evidence generation without a strong scientific basis for the dose rationale. We conclude with a framework suggesting a translational, iterative approach, that integrates pharmacological, pharmaceutical and clinical expertise, towards preclinical and early clinical drug development. This ensures appropriate dosing regimen, route of administration and/or formulation are selected for the new indication before their evaluation in prospective clinical trials.
Collapse
Affiliation(s)
| | - Oscar Della Pasqua
- Clinical Pharmacology and Therapeutics Group, UCL School of Pharmacy, London, UK.,Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, Uxbridge, UK
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, London, UK
| | - Robert D S Pitceathly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK .,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
8
|
Mimicking in-vivo exposures to drug combinations in-vitro: anti-tuberculosis drugs in lung lesions and the hollow fiber model of infection. Sci Rep 2019; 9:13228. [PMID: 31519935 PMCID: PMC6744479 DOI: 10.1038/s41598-019-49556-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/27/2019] [Indexed: 11/09/2022] Open
Abstract
Here, we evaluate protocol requirements to mimic therapeutically relevant drug concentrations at the site of infection (i.e. lung lesion) in an in-vitro hollow fibre model of infection using pulmonary tuberculosis as a paradigm. Steady-state pharmacokinetic profiles in plasma, lung tissue and lung lesion homogenate were simulated for isoniazid, rifampicin and pyrazinamide and moxifloxacin. An R-shiny User Interface was developed to support conversion of in-vivo pharmacokinetic CMAX, TMAX and T1/2 estimates into pump settings. A monotherapy protocol mimicking isoniazid in lung lesion homogenate (isoniazid CMAX = 1,200 ng/ml, TMAX = 2.2 hr and T1/2 = 4.7 hr), and two combination therapy protocols including drugs with similar (isoniazid and rifampicin (CMAX = 400 ng/ml)) and different half-lives (isoniazid and pyrazinamide (CMAX = 28,900 ng/ml and T1/2 = 8.0 hr)) were implemented in a hollow-fiber system. Drug levels in the perfusate were analysed using ultra-high-performance liquid chromatographic-tandem mass spectrometric detection. Steady state pharmacokinetic profiles measured in the hollow fiber model were similar to the predicted in-vivo steady-state lung lesion homogenate pharmacokinetic profiles. The presented approach offers the possibility to use pharmacological data to study the effect of target tissue exposure for drug combinations. Integration with pharmacokinetics modelling principles through a web interface will provide access to a wider community interested in the evaluation of efficacy of anti-tubercular drugs.
Collapse
|
9
|
Srivastava S, Deshpande D, Magombedze G, Gumbo T. Efficacy Versus Hepatotoxicity of High-dose Rifampin, Pyrazinamide, and Moxifloxacin to Shorten Tuberculosis Therapy Duration: There Is Still Fight in the Old Warriors Yet! Clin Infect Dis 2018; 67:S359-S364. [PMID: 30496465 PMCID: PMC6260156 DOI: 10.1093/cid/ciy627] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background One approach that could increase the efficacy and reduce the duration of antituberculosis therapy is pharmacokinetics/pharmacodynamics-based optimization of doses. However, this could increase toxicity. Methods We mimicked the concentration-time profiles achieved by human equivalent doses of moxifloxacin 800 mg/day, rifampin 1800 mg/day, and pyrazinamide 4000 mg/day (high-dose regimen) vs isoniazid 300 mg/day, rifampin 600 mg/day, and pyrazinamide 2000 mg/day (standard therapy) in bactericidal and sterilizing effect studies in the hollow fiber system model of tuberculosis (HFS-TB). In an intracellular Mycobacterium tuberculosis (Mtb) HFS-TB experiment, we added a 3-dimensional human organotypic liver to determine potential hepatotoxicity of the high-dose regimen, based on lactate dehydrogenase (LDH). Treatment lasted 28 days and Mtb bacterial burden was based on colony counts. We calculated the time to extinction (TTE) of the Mtb population in the HFS-TB and used morphism-based transformation and Latin hypercube sampling to identify the minimum therapy duration in patients. Results The kill rate of standard therapy in the bactericidal effect and sterilizing effect experiments were 0.97 (95% confidence interval [CI], .91-.99) log10 colony-forming units (CFU)/mL/day, and 0.56 (95% CI, .49-.59) log10 CFU/mL/day, respectively. The high-dose regimen's bactericidal and sterilizing effect kill rates were 0.99 (95% CI, .96-.99) log10 CFU/mL/day and 0.72 (95% CI, .56-.79) log10 CFU/mL/day, respectively. The upper confidence bound for TTE in patients was 4.5-5 months for standard therapy vs 3.7 months on the high-dose regimen. There were no differences in LDH concentrations between the 2 regimens at any time point (P > .05). Conclusions The high-dose regimen may moderately shorten therapy without increased hepatotoxicity compared to standard therapy.
Collapse
Affiliation(s)
- Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Devyani Deshpande
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Gesham Magombedze
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
10
|
Tweed CD, Crook AM, Amukoye EI, Dawson R, Diacon AH, Hanekom M, McHugh TD, Mendel CM, Meredith SK, Murphy ME, Murthy SE, Nunn AJ, Phillips PPJ, Singh KP, Spigelman M, Wills GH, Gillespie SH. Toxicity associated with tuberculosis chemotherapy in the REMoxTB study. BMC Infect Dis 2018; 18:317. [PMID: 29996783 PMCID: PMC6042413 DOI: 10.1186/s12879-018-3230-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/02/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The incidence and severity of tuberculosis chemotherapy toxicity is poorly characterised. We used data available from patients in the REMoxTB trial to provide an assessment of the risks associated with the standard regimen and two experimental regimens containing moxifloxacin. METHODS All grade 3 & 4 adverse events (AEs) and their relationship to treatment for patients who had taken at least one dose of therapy in the REMoxTB clinical trial were recorded. Univariable logistic regression was used to test the relationship of baseline characteristics to the incidence of grade 3 & 4 AEs and significant characteristics (p < 0.10) were incorporated into a multivariable model. The timing of AEs during therapy was analysed in standard therapy and the experimental arms. Logistic regression was used to investigate the relationship between AEs (total and related-only) and microbiological cure on treatment. RESULTS In the standard therapy arm 57 (8.9%) of 639 patients experienced ≥1 related AEs with 80 of the total 113 related events (70.8%) occurring in the intensive phase of treatment. Both four-month experimental arms ("isoniazid arm" with moxifloxacin substituted for ethambutol & "ethambutol arm" with moxifloxacin substituted for isoniazid) had a lower total of related grade 3 & 4 AEs than standard therapy (63 & 65 vs 113 AEs). Female gender (adjOR 1.97, 95% CI 0.91-1.83) and HIV-positive status (adjOR 3.33, 95% CI 1.55-7.14) were significantly associated with experiencing ≥1 related AE (p < 0.05) on standard therapy. The most common adverse events on standard therapy related to hepatobiliary, musculoskeletal and metabolic disorders. Patients who experienced ≥1 related AE were more likely to fail treatment or relapse (adjOR 3.11, 95% CI 1.59-6.10, p < 0.001). CONCLUSIONS Most AEs considered related to standard therapy occurred in the intensive phase of treatment with female patients and HIV-positive patients demonstrating a significantly higher risk of AEs during treatment. Almost a tenth of standard therapy patients had a significant side effect, whereas both experimental arms recorded a lower incidence of toxicity. That patients with one or more AE are more likely to fail treatment suggests that treatment outcomes could be improved by identifying such patients through targeted monitoring.
Collapse
Affiliation(s)
- Conor D. Tweed
- MRC Clinical Trials Unit at University College London, London, UK
| | - Angela M. Crook
- MRC Clinical Trials Unit at University College London, London, UK
| | | | - Rodney Dawson
- University of Cape Town Lung Institute, Cape Town, South Africa
| | | | | | - Timothy D. McHugh
- Division of Infection and Immunity, University College London, London, UK
| | | | | | - Michael E. Murphy
- Division of Infection and Immunity, University College London, London, UK
| | | | - Andrew J. Nunn
- MRC Clinical Trials Unit at University College London, London, UK
| | | | - Kasha P. Singh
- The Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | |
Collapse
|
11
|
Pharmacokinetics of Pyrazinamide and Optimal Dosing Regimens for Drug-Sensitive and -Resistant Tuberculosis. Antimicrob Agents Chemother 2017; 61:AAC.00490-17. [PMID: 28607022 DOI: 10.1128/aac.00490-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/24/2017] [Indexed: 11/20/2022] Open
Abstract
Pyrazinamide is used in the treatment of tuberculosis (TB) because its sterilizing effect against tubercle bacilli allows the shortening of treatment. It is part of standard treatment for drug-susceptible and drug-resistant TB, and it is being considered as a companion drug in novel regimens. The aim of this analysis was to characterize factors contributing to the variability in exposure and to evaluate drug exposures using alternative doses, thus providing evidence to support revised dosing recommendations for drug-susceptible and multidrug-resistant tuberculosis (MDR-TB). Pyrazinamide pharmacokinetic (PK) data from 61 HIV/TB-coinfected patients in South Africa were used in the analysis. The patients were administered weight-adjusted doses of pyrazinamide, rifampin, isoniazid, and ethambutol in fixed-dose combination tablets according to WHO guidelines and underwent intensive PK sampling on days 1, 8, 15, and 29. The data were interpreted using nonlinear mixed-effects modeling. PK profiles were best described using a one-compartment model with first-order elimination. Allometric scaling was applied to disposition parameters using fat-free mass. Clearance increased by 14% from the 1st day to the 29th day of treatment. More than 50% of patients with weight less than 55 kg achieved lower pyrazinamide exposures at steady state than the targeted area under the concentration-time curve from 0 to 24 h of 363 mg · h/liter. Among patients with drug-susceptible TB, adding 400 mg to the dose for those weighing 30 to 54 kg improved exposure. Average pyrazinamide exposure in different weight bands among patients with MDR-TB could be matched by administering 1,500 mg, 1,750 mg, and 2,000 mg to patients in the 33- to 50-kg, 51- to 70-kg, and greater than 70-kg weight bands, respectively.
Collapse
|
12
|
Muliaditan M, Davies GR, Simonsson US, Gillespie SH, Della Pasqua O. The implications of model-informed drug discovery and development for tuberculosis. Drug Discov Today 2017; 22:481-486. [DOI: 10.1016/j.drudis.2016.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/05/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022]
|
13
|
Liver Fatty Acid Binding Protein Deficiency Provokes Oxidative Stress, Inflammation, and Apoptosis-Mediated Hepatotoxicity Induced by Pyrazinamide in Zebrafish Larvae. Antimicrob Agents Chemother 2016; 60:7347-7356. [PMID: 27697757 DOI: 10.1128/aac.01693-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/24/2016] [Indexed: 01/30/2023] Open
Abstract
Pyrazinamide (PZA) is an essential antitubercular drug, but little is still known about its hepatotoxicity potential. This study examined the effects of PZA exposure on zebrafish (Danio rerio) larvae and the mechanisms underlying its hepatotoxicity. A transgenic line of zebrafish larvae that expressed enhanced green fluorescent protein (EGFP) in the liver was incubated with 1, 2.5, and 5 mM PZA from 72 h postfertilization (hpf). Different endpoints such as mortality, morphology changes in the size and shape of the liver, histological changes, transaminase analysis and apoptosis, markers of oxidative and genetic damage, as well as the expression of certain genes were selected to evaluate PZA-induced hepatotoxicity. Our results confirm the manner of PZA dose-dependent hepatotoxicity. PZA was found to induce marked injury in zebrafish larvae, such as liver atrophy, elevations of transaminase levels, oxidative stress, and hepatocyte apoptosis. To further understand the mechanism behind PZA-induced hepatotoxicity, changes in gene expression levels in zebrafish larvae exposed to PZA for 72 h postexposure (hpe) were determined. The results of this study demonstrated that PZA decreased the expression levels of liver fatty acid binding protein (L-FABP) and its target gene, peroxisome proliferator-activated receptor α (PPAR-α), and provoked more severe oxidative stress and hepatitis via the upregulation of inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and transforming growth factor β (TGF-β). These findings suggest that L-FABP-mediated PPAR-α downregulation appears to be a hepatotoxic response resulting from zebrafish larva liver cell apoptosis, and L-FABP can be used as a biomarker for the early detection of PZA-induced liver damage in zebrafish larvae.
Collapse
|
14
|
Pharmacokinetic Evaluation of Sulfamethoxazole at 800 Milligrams Once Daily in the Treatment of Tuberculosis. Antimicrob Agents Chemother 2016; 60:3942-7. [PMID: 27067336 DOI: 10.1128/aac.02175-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/08/2016] [Indexed: 11/20/2022] Open
Abstract
For treatment of multidrug-resistant tuberculosis (MDR-TB), there is a scarcity of antituberculosis drugs. Co-trimoxazole is one of the available drug candidates, and it is already frequently coprescribed for TB-HIV-coinfected patients. However, only limited data are available on the pharmacokinetic (PK) and pharmacodynamic (PD) parameters of co-trimoxazole in TB patients. The objective of this study was to evaluate the PK parameters and in vitro PD data on the effective part of co-trimoxazole: sulfamethoxazole. In a prospective PK study in patients infected with drug-susceptible Mycobacterium tuberculosis (drug-susceptible TB patients) (age, >18), sulfamethoxazole-trimethoprim (SXT) was administered orally at a dose of 960 mg once daily. One-compartment population pharmacokinetic modeling was performed using MW\Pharm 3.81 (Mediware, Groningen, The Netherlands). The area under the concentration-time curve for the free, unbound fraction of a drug (ƒAUC)/MIC ratio and the period in which the free concentration exceeded the MIC (fT > MIC) were calculated. Twelve patients received 960 mg co-trimoxazole in addition to first-line drugs. The pharmacokinetic parameters of the population model were as follows (geometric mean ± standard deviation [SD]): metabolic clearance (CLm), 1.57 ± 3.71 liters/h; volume of distribution (V), 0.30 ± 0.05 liters · kg lean body mass(-1); drug clearance/creatinine clearance ratio (fr), 0.02 ± 0.13; gamma distribution rate constant (ktr_po), 2.18 ± 1.14; gamma distribution shape factor (n_po), 2.15 ± 0.39. The free fraction of sulfamethoxazole was 0.3, but ranged between 0.2 and 0.4. The median value of the MICs was 9.5 mg/liter (interquartile range [IQR], 4.75 to 9.5), and that of theƒAUC/MIC ratio was 14.3 (IQR, 13.0 to 17.5). The percentage of ƒT > MIC ranged between 43 and 100% of the dosing interval. The PK and PD data from this study are useful to explore a future dosing regimen of co-trimoxazole for MDR-TB treatment. (This study has been registered at ClinicalTrials.gov under registration no. NCT01832987.).
Collapse
|
15
|
Guo HL, Hassan HM, Zhang Y, Dong SZ, Ding PP, Wang T, Sun LX, Zhang LY, Jiang ZZ. Pyrazinamide Induced Rat Cholestatic Liver Injury through Inhibition of FXR Regulatory Effect on Bile Acid Synthesis and Transport. Toxicol Sci 2016; 152:417-28. [DOI: 10.1093/toxsci/kfw098] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
16
|
Gumbo T, Angulo-Barturen I, Ferrer-Bazaga S. Pharmacokinetic-Pharmacodynamic and Dose-Response Relationships of Antituberculosis Drugs: Recommendations and Standards for Industry and Academia. J Infect Dis 2015; 211 Suppl 3:S96-S106. [DOI: 10.1093/infdis/jiu610] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Abstract
Tuberculosis (TB) researchers and clinicians, by virtue of the social disease they study, are drawn into an engagement with ways of understanding illness that extend beyond the strictly biomedical model. Primers on social science concepts directly relevant to TB, however, are lacking. The particularities of TB disease mean that certain social science concepts are more relevant than others. Concepts such as structural violence can seem complicated and off-putting. Other concepts, such as gender, can seem so familiar that they are left relatively unexplored. An intimate familiarity with the social dimensions of disease is valuable, particularly for infectious diseases, because the social model is an important complement to the biomedical model. This review article offers an important introduction to a selection of concepts directly relevant to TB from health sociology, medical anthropology and social cognitive theory. The article has pedagogical utility and also serves as a useful refresher for those researchers already engaged in this genre of work. The conceptual tools of health sociology, medical anthropology and social cognitive theory offer insightful ways to examine the social, historical and cultural dimensions of public health. By recognizing cultural experience as a central force shaping human interactions with the world, TB researchers and clinicians develop a more nuanced consideration of how health, illness and medical treatment are understood, interpreted and confronted.
Collapse
|
18
|
Teutonico D, Musuamba F, Maas HJ, Facius A, Yang S, Danhof M, Della Pasqua O. Generating Virtual Patients by Multivariate and Discrete Re-Sampling Techniques. Pharm Res 2015; 32:3228-37. [PMID: 25994981 PMCID: PMC4577546 DOI: 10.1007/s11095-015-1699-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/15/2015] [Indexed: 11/26/2022]
Abstract
Purpose Clinical Trial Simulations (CTS) are a valuable tool for decision-making during drug development. However, to obtain realistic simulation scenarios, the patients included in the CTS must be representative of the target population. This is particularly important when covariate effects exist that may affect the outcome of a trial. The objective of our investigation was to evaluate and compare CTS results using re-sampling from a population pool and multivariate distributions to simulate patient covariates. Methods COPD was selected as paradigm disease for the purposes of our analysis, FEV1 was used as response measure and the effects of a hypothetical intervention were evaluated in different populations in order to assess the predictive performance of the two methods. Results Our results show that the multivariate distribution method produces realistic covariate correlations, comparable to the real population. Moreover, it allows simulation of patient characteristics beyond the limits of inclusion and exclusion criteria in historical protocols. Conclusion Both methods, discrete resampling and multivariate distribution generate realistic pools of virtual patients. However the use of a multivariate distribution enable more flexible simulation scenarios since it is not necessarily bound to the existing covariate combinations in the available clinical data sets. Electronic supplementary material The online version of this article (doi:10.1007/s11095-015-1699-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D Teutonico
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - F Musuamba
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - H J Maas
- Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Stockley Park, Middlesex, UK
| | - A Facius
- Department of Pharmacometrics, Nycomed GmbH, Constance, Germany
| | - S Yang
- Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Stockley Park, Middlesex, UK
| | - M Danhof
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - O Della Pasqua
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands.
- Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Stockley Park, Middlesex, UK.
- Clinical Pharmacology & Therapeutics, University College London, BMA House, Tavistock Square, London, WC1H 9JP, UK.
| |
Collapse
|
19
|
Comparative study of the effects of antituberculosis drugs and antiretroviral drugs on cytochrome P450 3A4 and P-glycoprotein. Antimicrob Agents Chemother 2014; 58:3168-76. [PMID: 24663015 DOI: 10.1128/aac.02278-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Predicting drug-drug interactions (DDIs) related to cytochrome P450 (CYP), such as CYP3A4 and one of the major drug transporters, P-glycoprotein (P-gp), is crucial in the development of future chemotherapeutic regimens to treat tuberculosis (TB) and TB/AIDS coinfection cases. We evaluated the effects of 30 anti-TB drugs, novel candidates, macrolides, and representative antiretroviral drugs on human CYP3A4 activity using a commercially available screening kit for CYP3A4 inhibitors and a human hepatocyte, HepaRG. Moreover, in order to estimate the interactions of these drugs with human P-gp, screening for substrates was performed. For some substrates, P-gp inhibition tests were carried out using P-gp-expressing MDCK cells. As a result, almost all the compounds showed the expected effects on human CYP3A4 both in the in vitro screening and in HepaRG cells. Importantly, the unproven mechanisms of DDIs caused by WHO group 5 drugs, thioamides, and p-aminosalicylic acid were elucidated. Intriguingly, clofazimine (CFZ) exhibited weak inductive effects on CYP3A4 at >0.25 μM in HepaRG cells, while an inhibitory effect was observed at 1.69 μM in the in vitro screening, suggesting that CFZ autoinduces CYP3A4 in the human liver. Our method, based on one of the pharmacokinetics parameters in humans, provides more practical information associated with not only DDIs but also with drug metabolism.
Collapse
|