1
|
Deng C, Wu W, Yuan Y, Li G, Zhang H, Zheng S, Li M, Tan R, Wang Y, Nadia J, Feng D, Li D, Wu Z, Xu Q, Li C, Wang Z, Liang Y, Doehl JSP, Su X, Bacar A, Said Abdallah K, Mohamed H, Msa Mliva A, Wellems TE, Song J. Malaria Control by Mass Drug Administration With Artemisinin Plus Piperaquine on Grande Comore Island, Union of Comoros. Open Forum Infect Dis 2023; 10:ofad076. [PMID: 36910690 PMCID: PMC10003749 DOI: 10.1093/ofid/ofad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Background Mass drug administration (MDA) is a powerful tool for malaria control, but the medicines to use, dosing, number of rounds, and potential selection of drug resistance remain open questions. Methods Two monthly rounds of artemisinin-piperaquine (AP), each comprising 2 daily doses, were administered across the 7 districts of Grande Comore Island. In 3 districts, low-dose primaquine (PMQLD) was also given on the first day of each monthly round. Plasmodium falciparum malaria rates, mortality, parasitemias, adverse events, and genetic markers of potential drug resistance were evaluated. Results Average population coverages of 80%-82% were achieved with AP in 4 districts (registered population 258 986) and AP + PMQLD in 3 districts (83 696). The effectiveness of MDA was 96.27% (95% confidence interval [CI], 95.27%-97.06%; P < .00001) in the 4 AP districts and 97.46% (95% CI, 94.54%-98.82%; P < .00001) in the 3 AP + PMQLD districts. In comparative statistical modeling, the effectiveness of the 2 monthly rounds on Grande Comore Island was nearly as high as that of 3 monthly rounds of AP or AP + PMQLD in our earlier study on Anjouan Island. Surveys of pre-MDA and post-MDA samples showed no significant changes in PfK13 polymorphism rates, and no PfCRT mutations previously linked to piperaquine resistance in Southeast Asia were identified. Conclusions MDA with 2 monthly rounds of 2 daily doses of AP was highly effective on Grande Comore Island. The feasibility and lower expense of this 2-month versus 3-month regimen of AP may offer advantages for MDA programs in appropriate settings.
Collapse
Affiliation(s)
- Changsheng Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Wanting Wu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Yueming Yuan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Guoming Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Hongying Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Shaoqin Zheng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Mingqiang Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Ruixiang Tan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Yuxin Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Julie Nadia
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Danhong Feng
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Di Li
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Zhibing Wu
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Changqing Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Zhenhua Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Yuan Liang
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Johannes S P Doehl
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xinzhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Affane Bacar
- National Malaria Center of The Union of Comoros, Moroni, The Union of Comoros
| | - Kamal Said Abdallah
- National Malaria Center of The Union of Comoros, Moroni, The Union of Comoros
| | - Hafidhou Mohamed
- National Malaria Center of The Union of Comoros, Moroni, The Union of Comoros
| | - Ahamada Msa Mliva
- National Malaria Center of The Union of Comoros, Moroni, The Union of Comoros
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
2
|
Hughes E, Wallender E, Mohamed Ali A, Jagannathan P, Savic RM. Malaria PK/PD and the Role Pharmacometrics Can Play in the Global Health Arena: Malaria Treatment Regimens for Vulnerable Populations. Clin Pharmacol Ther 2021; 110:926-940. [PMID: 33763871 PMCID: PMC8518425 DOI: 10.1002/cpt.2238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
Malaria is an infectious disease which disproportionately effects children and pregnant women. These vulnerable populations are often excluded from clinical trials resulting in one‐size‐fits‐all treatment regimens based on those established for a nonpregnant adult population. Pharmacokinetic/pharmacodynamic (PK/PD) models can be used to optimize dose selection as they define the drug exposure‐response relationship. Additionally, these models are able to identify patient characteristics that cause alterations in the expected PK/PD profiles and through simulations can recommend changes to dosing which compensate for the differences. In this review, we examine how PK/PD models have been applied to optimize antimalarial dosing recommendations for young children, including those who are malnourished, pregnant women, and individuals receiving concomitant therapies such as those for HIV treatment. The malaria field has had great success in utilizing PK/PD models as a foundation to update treatment guidelines and propose the next generation of dosing regimens to investigate in clinical trials. We propose how the malaria field can continue to use modeling to improve therapies by further integrating PK data into clinical studies and including data on drug resistance and host immunity in PK/PD models. Finally, we suggest that other disease areas can achieve similar success in applying pharmacometrics to improve outcomes by implementing three key principals.
Collapse
Affiliation(s)
- Emma Hughes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Erika Wallender
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Ali Mohamed Ali
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | | | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Quang NN, Chavchich M, Anh CX, Birrell GW, van Breda K, Travers T, Rowcliffe K, Edstein MD. Comparison of the Pharmacokinetics and Ex Vivo Antimalarial Activities of Artesunate-Amodiaquine and Artemisinin-Piperaquine in Healthy Volunteers for Preselection Malaria Therapy. Am J Trop Med Hyg 2018; 99:65-72. [PMID: 29741150 PMCID: PMC6085815 DOI: 10.4269/ajtmh.17-0434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 03/09/2018] [Indexed: 11/07/2022] Open
Abstract
The pharmacokinetics (PK) and ex vivo activity (pharmacodynamics [PD]) of two artemisinin combination therapies (ACTs) (artemisinin-piperaquine [ARN-PPQ] [Artequick®] and artesunate-amodiaquine [ARS-AQ] [Coarsucam™]) in healthy Vietnamese volunteers were compared following 3-day courses of the ACTs for the preselection of the drugs for falciparum malaria therapy. For PK analysis, serial plasma samples were collected from two separate groups of 22 volunteers after ACT administration. Of these volunteers, ex vivo activity was assessed in plasma samples from seven volunteers who received both ACTs. The area under the concentration-time curve (AUC0-∞) was 3.6-fold higher for dihydroartemisinin (active metabolite of ARS) than that for ARN, whereas the AUC0-∞ of desethylamodiaquine (active metabolite of AQ) was 2.0-fold lower than that of PPQ. Based on the 50% inhibitory dilution values of the volunteers' plasma samples collected from 0.25 to 3 hours after the last dose, the ex vivo activity of ARS-AQ was 2.9- to 16.2-fold more potent than that of ARN-PPQ against the drug-sensitive D6 Plasmodium falciparum line. In addition, at 1.5, 4.0, and 24 hours after the last dose, the ex vivo activity of ARS-AQ was 20.8-, 3.5-, and 8.5-fold more potent than that of ARN-PPQ against the ARN-sensitive MRA1239 line. By contrast, at 1.5 hours, the ex vivo activity of ARS-AQ was 5.4-fold more active than that of ARN-PPQ but had similar activities at 4 and 24 hours against the ARN-resistant MRA1240 line. The PK-PD data suggest that ARS-AQ possesses superior antimalarial activity than that of ARN-PPQ and would be the preferred ACT for further in vivo efficacy testing in multidrug-resistant falciparum malaria areas.
Collapse
Affiliation(s)
- Nguyen Ngoc Quang
- Institute for Clinical Infectious Diseases, Central Military Hospital 108, Hanoi, Vietnam
| | - Marina Chavchich
- Department of Drug Evaluation, Australian Army Malaria Institute, Brisbane, Australia
| | - Chu Xuan Anh
- Institute for Clinical Infectious Diseases, Central Military Hospital 108, Hanoi, Vietnam
| | - Geoffrey W. Birrell
- Department of Drug Evaluation, Australian Army Malaria Institute, Brisbane, Australia
| | - Karin van Breda
- Department of Drug Evaluation, Australian Army Malaria Institute, Brisbane, Australia
| | - Thomas Travers
- Department of Drug Evaluation, Australian Army Malaria Institute, Brisbane, Australia
| | - Kerryn Rowcliffe
- Department of Drug Evaluation, Australian Army Malaria Institute, Brisbane, Australia
| | - Michael D. Edstein
- Department of Drug Evaluation, Australian Army Malaria Institute, Brisbane, Australia
| |
Collapse
|
4
|
Sugiarto SR, Davis TME, Salman S. Pharmacokinetic considerations for use of artemisinin-based combination therapies against falciparum malaria in different ethnic populations. Expert Opin Drug Metab Toxicol 2017; 13:1115-1133. [PMID: 29027504 DOI: 10.1080/17425255.2017.1391212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Artemisinin-based combination therapy (ACT) is used extensively as first-line treatment for uncomplicated falciparum malaria. There has been no rigorous assessment of the potential for racial/ethnic differences in the pharmacokinetic properties of ACTs that might influence their efficacy. Areas covered: A comprehensive literature search was performed that identified 72 publications in which the geographical origin of the patients could be ascertained and the key pharmacokinetic parameters maximum drug concentration (Cmax), area under the plasma concentration-time curve (AUC) and elimination half-life (t½β) were available for one or more of the five WHO-recommended ACTs (artemether-lumefantrine, artesunate-amodiaquine, artesunate-mefloquine, dihydroartemisinin-piperaquine and artesunate-sulfadoxine-pyrimethamine). Comparisons of each of the three pharmacokinetic parameters of interest were made by drug (artemisinin derivative and long half-life partner), race/ethnicity (African, Asian, Caucasian, Melanesian, South American) and patient categories based on age and pregnancy status. Expert opinion: The review identified no evidence of a clinically significant influence of race/ethnicity on the pharmacokinetic properties of the nine component drugs in the five ACTs currently recommended by WHO for first-line treatment of uncomplicated falciparum malaria. This provides reassurance for health workers in malaria-endemic regions that ACTs can be given in recommended doses with the expectation of adequate blood concentrations regardless of race/ethnicity.
Collapse
Affiliation(s)
- Sri Riyati Sugiarto
- a Medical School , University of Western Australia, Fremantle Hospital , Fremantle , Australia
| | - Timothy M E Davis
- a Medical School , University of Western Australia, Fremantle Hospital , Fremantle , Australia
| | - Sam Salman
- a Medical School , University of Western Australia, Fremantle Hospital , Fremantle , Australia
| |
Collapse
|
5
|
LC-MS/MS quantitation of antimalarial drug piperaquine and metabolites in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1063:253-258. [PMID: 28863865 DOI: 10.1016/j.jchromb.2017.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/31/2017] [Accepted: 06/18/2017] [Indexed: 11/22/2022]
Abstract
PURPOSE This study aimed to develop a sensitive, quantitative assay for the antimalarial piperaquine (PQ) and its metabolites M1 and M2 in human plasma. RESULTS Analytes were gradiently separated on a C18 column and detected with a Sciex API 4000 MS/MS with an ESI source operated in the positive ion mode with deuterated PQ as internal standard. The response was linear in the range 3.9-2508nM with a runtime of 7.0min per sample. The method was applied to clinical samples from healthy volunteers. CONCLUSION This LC-MS/MS method for the simultaneous quantitation of PQ and two of its metabolites in plasma may prove helpful for assessment of metabolite safety issues in vivo.
Collapse
|
6
|
Age, Weight, and CYP2D6 Genotype Are Major Determinants of Primaquine Pharmacokinetics in African Children. Antimicrob Agents Chemother 2017; 61:AAC.02590-16. [PMID: 28289025 PMCID: PMC5404566 DOI: 10.1128/aac.02590-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
Low-dose primaquine is recommended to prevent Plasmodium falciparum malaria transmission in areas threatened by artemisinin resistance and areas aiming for malaria elimination. Community treatment campaigns with artemisinin-based combination therapy in combination with the gametocytocidal primaquine dose target all age groups, but no studies thus far have assessed the pharmacokinetics of this gametocytocidal drug in African children. We recruited 40 children participating in a primaquine efficacy trial in Burkina Faso to study primaquine pharmacokinetics. These children received artemether-lumefantrine and either a 0.25- or a 0.40-mg/kg primaquine dose. Seven blood samples were collected from each participant for primaquine and carboxy-primaquine plasma levels determinations: one sample was collected before primaquine administration and six after primaquine administration according to partially overlapping sampling schedules. Physiological population pharmacokinetic modeling was used to assess the impact of weight, age, and CYP2D6 genotype on primaquine and carboxy-primaquine pharmacokinetics. Despite linear weight normalized dosing, the areas under the plasma concentration-time curves and the peak concentrations for both primaquine and carboxy-primaquine increased with age and body weight. Children who were CYP2D6 poor metabolizers had higher levels of the parent compound, indicating a lower primaquine CYP2D6-mediated metabolism. Our data indicate that primaquine and carboxy-primaquine pharmacokinetics are influenced by age, weight, and CYP2D6 genotype and suggest that dosing strategies may have to be reconsidered to maximize the transmission-blocking properties of primaquine. (This study has been registered at ClinicalTrials.gov under registration no. NCT01935882.)
Collapse
|
7
|
Hoglund RM, Workman L, Edstein MD, Thanh NX, Quang NN, Zongo I, Ouedraogo JB, Borrmann S, Mwai L, Nsanzabana C, Price RN, Dahal P, Sambol NC, Parikh S, Nosten F, Ashley EA, Phyo AP, Lwin KM, McGready R, Day NPJ, Guerin PJ, White NJ, Barnes KI, Tarning J. Population Pharmacokinetic Properties of Piperaquine in Falciparum Malaria: An Individual Participant Data Meta-Analysis. PLoS Med 2017; 14:e1002212. [PMID: 28072872 PMCID: PMC5224788 DOI: 10.1371/journal.pmed.1002212] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/29/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Artemisinin-based combination therapies (ACTs) are the mainstay of the current treatment of uncomplicated Plasmodium falciparum malaria, but ACT resistance is spreading across Southeast Asia. Dihydroartemisinin-piperaquine is one of the five ACTs currently recommended by the World Health Organization. Previous studies suggest that young children (<5 y) with malaria are under-dosed. This study utilised a population-based pharmacokinetic approach to optimise the antimalarial treatment regimen for piperaquine. METHODS AND FINDINGS Published pharmacokinetic studies on piperaquine were identified through a systematic literature review of articles published between 1 January 1960 and 15 February 2013. Individual plasma piperaquine concentration-time data from 11 clinical studies (8,776 samples from 728 individuals) in adults and children with uncomplicated malaria and healthy volunteers were collated and standardised by the WorldWide Antimalarial Resistance Network. Data were pooled and analysed using nonlinear mixed-effects modelling. Piperaquine pharmacokinetics were described successfully by a three-compartment disposition model with flexible absorption. Body weight influenced clearance and volume parameters significantly, resulting in lower piperaquine exposures in small children (<25 kg) compared to larger children and adults (≥25 kg) after administration of the manufacturers' currently recommended dose regimens. Simulated median (interquartile range) day 7 plasma concentration was 29.4 (19.3-44.3) ng/ml in small children compared to 38.1 (25.8-56.3) ng/ml in larger children and adults, with the recommended dose regimen. The final model identified a mean (95% confidence interval) increase of 23.7% (15.8%-32.5%) in piperaquine bioavailability between each piperaquine dose occasion. The model also described an enzyme maturation function in very young children, resulting in 50% maturation at 0.575 (0.413-0.711) y of age. An evidence-based optimised dose regimen was constructed that would provide piperaquine exposures across all ages comparable to the exposure currently seen in a typical adult with standard treatment, without exceeding the concentration range observed with the manufacturers' recommended regimen. Limited data were available in infants and pregnant women with malaria as well as in healthy individuals. CONCLUSIONS The derived population pharmacokinetic model was used to develop a revised dose regimen of dihydroartemisinin-piperaquine that is expected to provide equivalent piperaquine exposures safely in all patients, including in small children with malaria. Use of this dose regimen is expected to prolong the useful therapeutic life of dihydroartemisinin-piperaquine by increasing cure rates and thereby slowing resistance development. This work was part of the evidence that informed the World Health Organization technical guidelines development group in the development of the recently published treatment guidelines (2015).
Collapse
Affiliation(s)
- Richard M. Hoglund
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lesley Workman
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Michael D. Edstein
- Department of Drug Evaluation, Australian Army Malaria Institute, Brisbane, Queensland, Australia
| | - Nguyen Xuan Thanh
- Department of Malaria, Military Institute of Hygiene and Epidemiology, Hanoi, Viet Nam
| | - Nguyen Ngoc Quang
- Department of Infectious Diseases, Military Hospital 108, Hanoi, Viet Nam
| | - Issaka Zongo
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jean Bosco Ouedraogo
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Steffen Borrmann
- Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Leah Mwai
- Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Joanna Briggs Affiliate Centre for Evidence-Based Health Care, Evidence Synthesis and Translation Unit, Afya Research Africa, Nairobi, Kenya
| | - Christian Nsanzabana
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ric N. Price
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Prabin Dahal
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nancy C. Sambol
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Sunil Parikh
- Yale School of Public Health and Medicine, New Haven, Connecticut, United States of America
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Elizabeth A. Ashley
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Khin Maung Lwin
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Rose McGready
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nicholas P. J. Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Philippe J. Guerin
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Karen I. Barnes
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Joel Tarning
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Validation and Application of a Dried Blood Spot Assay for Biofilm-Active Antibiotics Commonly Used for Treatment of Prosthetic Implant Infections. Antimicrob Agents Chemother 2016; 60:4940-55. [PMID: 27270283 DOI: 10.1128/aac.00756-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/31/2016] [Indexed: 11/20/2022] Open
Abstract
Dried blood spot (DBS) antibiotic assays can facilitate pharmacokinetic (PK)/pharmacodynamic (PD) studies in situations where venous blood sampling is logistically difficult. We sought to develop, validate, and apply a DBS assay for rifampin (RIF), fusidic acid (FUS), and ciprofloxacin (CIP). These antibiotics are considered active against organisms in biofilms and are therefore commonly used for the treatment of infections associated with prosthetic implants. A liquid chromatography-mass spectroscopy DBS assay was developed and validated, including red cell partitioning and thermal stability for each drug and the rifampin metabolite desacetyl rifampin (Des-RIF). Plasma and DBS concentrations in 10 healthy adults were compared, and the concentration-time profiles were incorporated into population PK models. The limits of quantification for RIF, Des-RIF, CIP, and FUS in DBS were 15 μg/liter, 14 μg/liter, 25 μg/liter, and 153 μg/liter, respectively. Adjusting for hematocrit, red cell partitioning, and relative recovery, DBS-predicted plasma concentrations were comparable to measured plasma concentrations for each antibiotic (r > 0.95; P < 0.0001), and Bland-Altman plots showed no significant bias. The final population PK estimates of clearance, volume of distribution, and time above threshold MICs for measured and DBS-predicted plasma concentrations were comparable. These drugs were stable in DBSs for at least 10 days at room temperature and 1 month at 4°C. The present DBS antibiotic assays are robust and can be used as surrogates for plasma concentrations to provide valid PK and PK/PD data in a variety of clinical situations, including therapeutic drug monitoring or studies of implant infections.
Collapse
|
9
|
Moore BR, Benjamin JM, Auyeung SO, Salman S, Yadi G, Griffin S, Page-Sharp M, Batty KT, Siba PM, Mueller I, Rogerson SJ, Davis TM. Safety, tolerability and pharmacokinetic properties of coadministered azithromycin and piperaquine in pregnant Papua New Guinean women. Br J Clin Pharmacol 2016; 82:199-212. [PMID: 26889763 PMCID: PMC4917786 DOI: 10.1111/bcp.12910] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/09/2016] [Accepted: 02/14/2016] [Indexed: 12/14/2022] Open
Abstract
AIMS The aim of the present study was to investigate the safety, tolerability and pharmacokinetics of coadministered azithromycin (AZI) and piperaquine (PQ) for treating malaria in pregnant Papua New Guinean women. METHODS Thirty pregnant women (median age 22 years; 16-32 weeks' gestation) were given three daily doses of 1 g AZI plus 960 mg PQ tetraphosphate with detailed monitoring/blood sampling over 42 days. Plasma AZI and PQ were assayed using liquid chromatography-mass spectrometry and high-performance liquid chromatography, respectively. Pharmacokinetic analysis was by population-based compartmental models. RESULTS The treatment was well tolerated. The median (interquartile range) increase in the rate-corrected electrocardiographic QT interval 4 h postdose [12 (6-26) ms(0) (.5) ] was similar to that found in previous studies of AZI given in pregnancy with other partner drugs. Six women with asymptomatic malaria cleared their parasitaemias within 72 h. Two apararasitaemic women developed late uncomplicated Plasmodium falciparum infections on Days 42 and 83. Compared with previous pregnancy studies, the area under the concentration-time curve (AUC0-∞ ) for PQ [38818 (24354-52299) μg h l(-1) ] was similar to published values but there was a 52% increase in relative bioavailability with each dose. The AUC0-∞ for AZI [46799 (43526-49462) μg h l(-1) ] was at least as high as reported for higher-dose regimens, suggesting saturable absorption and/or concentration-dependent tissue uptake and clearance from the central compartment. CONCLUSIONS AZI-PQ appears to be well tolerated and safe in pregnancy. Based on the present/other data, total AZI doses higher than 3 g for the treatment and prevention of malaria may be unnecessary in pregnant women, while clearance of parasitaemia could improve the relative bioavailability of PQ.
Collapse
Affiliation(s)
- Brioni R Moore
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - John M Benjamin
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Siu On Auyeung
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Sam Salman
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Gumul Yadi
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Suzanne Griffin
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Madhu Page-Sharp
- School of Pharmacy, Curtin University of Technology, Bentley, Western Australia, Australia
| | - Kevin T Batty
- School of Pharmacy, Curtin University of Technology, Bentley, Western Australia, Australia
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Ivo Mueller
- Infection and Immunity, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
- Barcelona Institute for Global Health (ISGLOBAL), Barcelona, Spain
| | - Stephen J Rogerson
- Department of Medicine (RMH), The University of Melbourne, Parkville, Victoria, Australia
| | - Timothy Me Davis
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
10
|
Senarathna SMDKG, Page-Sharp M, Crowe A. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation. PLoS One 2016; 11:e0152677. [PMID: 27045516 PMCID: PMC4821601 DOI: 10.1371/journal.pone.0152677] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/17/2016] [Indexed: 12/11/2022] Open
Abstract
The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10(-6) cm/sec, followed by amodiaquine around 20 x 10(-6) cm/sec; both mefloquine and artesunate were around 10 x 10(-6) cm/sec. Methylene blue was between 2 and 6 x 10(-6) cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine.
Collapse
Affiliation(s)
- S M D K Ganga Senarathna
- School of Pharmacy, Curtin University, Perth, Western Australia, 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Madhu Page-Sharp
- School of Pharmacy, Curtin University, Perth, Western Australia, 6102, Australia
| | - Andrew Crowe
- School of Pharmacy, Curtin University, Perth, Western Australia, 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- * E-mail:
| |
Collapse
|
11
|
Davis TME, Moore BR, Salman S, Page-Sharp M, Batty KT, Manning L. Use of quantitative pharmacology tools to improve malaria treatments. Expert Rev Clin Pharmacol 2015; 9:303-16. [DOI: 10.1586/17512433.2016.1129273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Sambol NC, Yan L, Creek DJ, McCormack SA, Arinaitwe E, Bigira V, Wanzira H, Kakuru A, Tappero JW, Lindegardh N, Tarning J, Nosten F, Aweeka FT, Parikh S. Population Pharmacokinetics of Piperaquine in Young Ugandan Children Treated With Dihydroartemisinin-Piperaquine for Uncomplicated Malaria. Clin Pharmacol Ther 2015; 98:87-95. [PMID: 25732044 PMCID: PMC5088713 DOI: 10.1002/cpt.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 01/09/2023]
Abstract
This prospective trial investigated the population pharmacokinetics of piperaquine given with dihydroartemisinin to treat uncomplicated malaria in 107 Ugandan children 6 months to 2 years old, an age group previously unstudied. Current weight-based dosing does not adequately address physiological changes in early childhood. Patients were administered standard 3-day oral doses and provided 1,282 capillary plasma concentrations from 218 malaria episodes. Less than 30% of treatments achieved 57 ng/mL on day 7. A three-compartment model with first-order absorption described the data well. Age had a statistically significant effect (P < 0.005) on clearance/bioavailability in a model that accounts for allometric scaling. Simulations demonstrated that higher doses in all children, but especially in those with lower weight for age, are required for adequate piperaquine exposure, although safety and tolerance will need to be established. These findings support other evidence that both weight- and age-specific guidelines for piperaquine dosing in children are urgently needed.
Collapse
Affiliation(s)
- Nancy C. Sambol
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA, USA
| | - Li Yan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Darren J. Creek
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Shelley A. McCormack
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA, USA
| | | | - Victor Bigira
- Makerere University School of Medicine, Kampala, Uganda
| | | | - Abel Kakuru
- Makerere University School of Medicine, Kampala, Uganda
| | - Jordan W. Tappero
- Centers for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA
| | - Niklas Lindegardh
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Francois Nosten
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Francesca T. Aweeka
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA, USA
| | - Sunil Parikh
- Yale School of Public Health and Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Population pharmacokinetics, tolerability, and safety of dihydroartemisinin-piperaquine and sulfadoxine-pyrimethamine-piperaquine in pregnant and nonpregnant Papua New Guinean women. Antimicrob Agents Chemother 2015; 59:4260-71. [PMID: 25963981 DOI: 10.1128/aac.00326-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/02/2015] [Indexed: 01/01/2023] Open
Abstract
The tolerability, safety, and disposition of dihydroartemisinin (DHA) and piperaquine (PQ) were assessed in 32 pregnant (second/third trimester) and 33 nonpregnant Papua New Guinean women randomized to adult treatment courses of DHA-PQ (three daily doses) or sulfadoxine-pyrimethamine (SP)-PQ (three daily PQ doses, single dose of SP). All dose adminstrations were observed, and subjects fasted for 2 h postdose. Plasma PQ was assayed by using high-performance liquid chromatography, and DHA was assessed by using liquid chromatography-mass spectrometry. Compartmental pharmacokinetic models were developed using a population-based approach. Both regimens were well tolerated. There was an expected increase in the rate-corrected electrocardiographic QT interval which was independent of pregnancy and treatment. Two pregnant and two nonpregnant women had Plasmodium falciparum parasitemia which cleared within 48 h, and no other subject became slide positive for malaria during 42 days of follow-up. Of 30 pregnant women followed to delivery, 27 (90%) delivered healthy babies and 3 (10%) had stillbirths; these obstetric outcomes are consistent with those in the general population. The area under the plasma PQ concentration-time curve (AUC0-∞) was lower in the pregnant patients (median [interquartile range], 23,721 μg · h/liter [21,481 to 27,951 μg · h/liter] versus 35,644 μg · h/liter [29,546 to 39,541 μg · h/liter]; P < 0.001) in association with a greater clearance relative to bioavailability (73.5 liters/h [69.4 to 78.4] versus 53.8 liters/h [49.7 to 58.2]; P < 0.001), but pregnancy did not influence the pharmacokinetics of DHA. The apparent pharmacokinetic differences between the present study and results from other studies of women with uncomplicated malaria that showed no effect of pregnancy on the AUC0-∞ of PQ and greater bioavailability may reflect differences in postdose fat intake, proportions of women with malaria, and/or racial differences in drug disposition.
Collapse
|
14
|
Randomized Noninferiority Trial of Dihydroartemisinin-Piperaquine Compared with Sulfadoxine-Pyrimethamine plus Amodiaquine for Seasonal Malaria Chemoprevention in Burkina Faso. Antimicrob Agents Chemother 2015; 59:4387-96. [PMID: 25918149 DOI: 10.1128/aac.04923-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/16/2015] [Indexed: 01/30/2023] Open
Abstract
The WHO recommends that children living in areas of highly seasonal malaria transmission in the Sahel subregion should receive seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine plus amodiaquine (SPAQ). We evaluated the use of dihydroartemisinin-piperaquine (DHAPQ) as an alternative drug that could be used if SPAQ starts to lose efficacy. A total of 1,499 children 3 to 59 months old were randomized to receive SMC with SPAQ or DHAPQ over 3 months. The primary outcome measure was the risk of clinical malaria (fever or a history of fever with a parasite density of at least 3,000/μl). A cohort of 250 children outside the trial was followed up as a control group. Molecular markers of drug resistance were assessed. The risk of a malaria attack was 0.19 in the DHAPQ group and 0.15 in the SPAQ group, an odds ratio of 1.33 (95% confidence interval [CI], 1.02 to 1.72). Efficacy of SMC compared to the control group was 77% (67% to 84%) for DHAPQ and 83% (74% to 89%) for SPAQ. pfdhfr and pfdhps mutations associated with antifolate resistance were more prevalent in parasites from children who received SPAQ than in children who received DHAPQ. Both regimens were highly efficacious and well tolerated. DHAPQ is a potential alternative drug for SMC. (This trial is registered at ClinicalTrials.gov under registration no. NCT00941785.).
Collapse
|
15
|
Laman M, Moore BR, Benjamin JM, Yadi G, Bona C, Warrel J, Kattenberg JH, Koleala T, Manning L, Kasian B, Robinson LJ, Sambale N, Lorry L, Karl S, Davis WA, Rosanas-Urgell A, Mueller I, Siba PM, Betuela I, Davis TME. Artemisinin-naphthoquine versus artemether-lumefantrine for uncomplicated malaria in Papua New Guinean children: an open-label randomized trial. PLoS Med 2014; 11:e1001773. [PMID: 25549086 PMCID: PMC4280121 DOI: 10.1371/journal.pmed.1001773] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 11/18/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Artemisinin combination therapies (ACTs) with broad efficacy are needed where multiple Plasmodium species are transmitted, especially in children, who bear the brunt of infection in endemic areas. In Papua New Guinea (PNG), artemether-lumefantrine is the first-line treatment for uncomplicated malaria, but it has limited efficacy against P. vivax. Artemisinin-naphthoquine should have greater activity in vivax malaria because the elimination of naphthoquine is slower than that of lumefantrine. In this study, the efficacy, tolerability, and safety of these ACTs were assessed in PNG children aged 0.5-5 y. METHODS AND FINDINGS An open-label, randomized, parallel-group trial of artemether-lumefantrine (six doses over 3 d) and artemisinin-naphthoquine (three daily doses) was conducted between 28 March 2011 and 22 April 2013. Parasitologic outcomes were assessed without knowledge of treatment allocation. Primary endpoints were the 42-d P. falciparum PCR-corrected adequate clinical and parasitologic response (ACPR) and the P. vivax PCR-uncorrected 42-d ACPR. Non-inferiority and superiority designs were used for falciparum and vivax malaria, respectively. Because the artemisinin-naphthoquine regimen involved three doses rather than the manufacturer-specified single dose, the first 188 children underwent detailed safety monitoring. Of 2,542 febrile children screened, 267 were randomized, and 186 with falciparum and 47 with vivax malaria completed the 42-d follow-up. Both ACTs were safe and well tolerated. P. falciparum ACPRs were 97.8% and 100.0% in artemether-lumefantrine and artemisinin-naphthoquine-treated patients, respectively (difference 2.2% [95% CI -3.0% to 8.4%] versus -5.0% non-inferiority margin, p = 0.24), and P. vivax ACPRs were 30.0% and 100.0%, respectively (difference 70.0% [95% CI 40.9%-87.2%], p<0.001). Limitations included the exclusion of 11% of randomized patients with sub-threshold parasitemias on confirmatory microscopy and direct observation of only morning artemether-lumefantrine dosing. CONCLUSIONS Artemisinin-naphthoquine is non-inferior to artemether-lumefantrine in PNG children with falciparum malaria but has greater efficacy against vivax malaria, findings with implications in similar geo-epidemiologic settings within and beyond Oceania. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry ACTRN12610000913077. Please see later in the article for the Editors' Summary.
Collapse
Affiliation(s)
- Moses Laman
- School of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Brioni R. Moore
- School of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - John M. Benjamin
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Gumul Yadi
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Cathy Bona
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Jonathan Warrel
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Johanna H. Kattenberg
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
- Infection and Immunity Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Tamarah Koleala
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Laurens Manning
- School of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Bernadine Kasian
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Leanne J. Robinson
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
- Infection and Immunity Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Naomi Sambale
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Lina Lorry
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Stephan Karl
- School of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia
- Infection and Immunity Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Wendy A. Davis
- School of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Anna Rosanas-Urgell
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Ivo Mueller
- Infection and Immunity Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Center de Recerca en Salut Internacional de Barcelona, Barcelona, Spain
| | - Peter M. Siba
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Inoni Betuela
- Papua New Guinea Institute of Medical Research, Madang, Madang Province, Papua New Guinea
| | - Timothy M. E. Davis
- School of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia
- * E-mail:
| |
Collapse
|
16
|
Zang M, Zhao L, Zhu F, Li X, Yang A, Xing J. Effect of CAR polymorphism on the pharmacokinetics of artemisinin in healthy Chinese subjects. Drug Metab Pharmacokinet 2014; 30:123-6. [PMID: 25760540 DOI: 10.1016/j.dmpk.2014.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/19/2014] [Accepted: 10/23/2014] [Indexed: 11/17/2022]
Abstract
Repeated pretreatment with the antimalarial drug artemisinin (QHS) could lead to reduced exposure to the parent drug, which is mainly mediated by auto-induction of CYP2B6 activity. CYP2B6 is most sensitive to the inductive effect of constitutive androstane receptor (CAR), which can be activated by QHS. CYP2B6 polymorphism has no influence on pharmacokinetics of QHS derivatives. This study aimed to investigate the effect of CAR (C540T) polymorphism on the auto-induction metabolism-mediated pharmacokinetics of QHS. Healthy Chinese subjects (six in each group with the genotypes of CAR 540C/C, 540C/T and 540T/T; all carrying the CYP2B6*1*1 genotype) received a recommended two-day oral doses of QHS-piperaquine (PQ) to assess the pharmacokinetics of QHS and its metabolite deoxyartemisinin (DQHS). The exposures to QHS and DQHS were significantly lower (p < 0.05) in subjects homozygous for the CAR 540T/T genotype than those with the 540C/C genotype after the repeated dose. QHS did not show different induction clearance in subjects homozygous for the 540C/C genotype (1.3-fold), compared with those carrying the heterozygous 540C/T (2.1-fold) or homozygous 540T/T (1.7-fold) genotype. In conclusion, the CAR (C540T) genotype contributed to the interindividual variability of QHS pharmacokinetics, and the dose regimen for QHS deserves further evaluation especially in specific populations.
Collapse
Affiliation(s)
- Meitong Zang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Lixia Zhao
- Qilu Hospital, Shandong University, Jinan, China
| | - Fanping Zhu
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xinxiu Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Aijuan Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
17
|
Interspecies allometric scaling of antimalarial drugs and potential application to pediatric dosing. Antimicrob Agents Chemother 2014; 58:6068-78. [PMID: 25092696 DOI: 10.1128/aac.02538-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pharmacopeial recommendations for administration of antimalarial drugs are the same weight-based (mg/kg of body weight) doses for children and adults. However, linear calculations are known to underestimate pediatric doses; therefore, interspecies allometric scaling data may have a role in predicting doses in children. We investigated the allometric scaling relationships of antimalarial drugs using data from pharmacokinetic studies in mammalian species. Simple allometry (Y = a × W(b)) was utilized and compared to maximum life span potential (MLP) correction. All drugs showed a strong correlation with clearance (CL) in healthy controls. Insufficient data from malaria-infected species other than humans were available for allometric scaling. The allometric exponents (b) for CL of artesunate, dihydroartemisinin (from intravenous artesunate), artemether, artemisinin, clindamycin, piperaquine, mefloquine, and quinine were 0.71, 0.85, 0.66, 0.83, 0.62, 0.96, 0.52, and 0.40, respectively. Clearance was significantly lower in malaria infection than in healthy (adult) humans for quinine (0.07 versus 0.17 liter/h/kg; P = 0.0002) and dihydroartemisinin (0.81 versus 1.11 liters/h/kg; P = 0.04; power = 0.6). Interpolation of simple allometry provided better estimates of CL for children than MLP correction, which generally underestimated CL values. Pediatric dose calculations based on simple allometric exponents were 10 to 70% higher than pharmacopeial (mg/kg) recommendations. Interpolation of interspecies allometric scaling could provide better estimates than linear scaling of adult to pediatric doses of antimalarial drugs; however, the use of a fixed exponent for CL was not supported in the present study. The variability in allometric exponents for antimalarial drugs also has implications for scaling of fixed-dose combinations.
Collapse
|
18
|
Effect of coadministered fat on the tolerability, safety, and pharmacokinetic properties of dihydroartemisinin-piperaquine in Papua New Guinean children with uncomplicated malaria. Antimicrob Agents Chemother 2014; 58:5784-94. [PMID: 25049242 DOI: 10.1128/aac.03314-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Coadministration of dihydroartemisinin-piperaquine (DHA-PQ) with fat may improve bioavailability and antimalarial efficacy, but it might also increase toxicity. There have been no studies of these potential effects in the pediatric age group. The tolerability, safety, efficacy, and pharmacokinetics of DHA-PQ administered with or without 8.5 g fat were investigated in 30 Papua New Guinean children aged 5 to 10 years diagnosed with uncomplicated falciparum malaria. Three daily 2.5:11.5-mg-base/kg doses were given with water (n = 14, group A) or milk (n = 16, group B), with regular clinical/laboratory assessment and blood sampling over 42 days. Plasma PQ was assayed by high-performance liquid chromatography with UV detection, and DHA was assayed using liquid chromatography-mass spectrometry. Compartmental pharmacokinetic models for PQ and DHA were developed using a population-based approach. DHA-PQ was generally well tolerated, and initial fever and parasite clearance were prompt. There were no differences in the areas under the concentration-time curve (AUC0-∞) for PQ (median, 41,906 versus 36,752 μg · h/liter in groups A and B, respectively; P = 0.24) or DHA (4,047 versus 4,190 μg · h/liter; P = 0.67). There were also no significant between-group differences in prolongation of the corrected electrocardiographic QT interval (QTc) initially during follow-up, but the QTc tended to be higher in group B children at 24 h (mean ± standard deviation [SD], 15 ± 10 versus 6 ± 15 ms(0.5) in group A, P = 0.067) and 168 h (10 ± 18 versus 1 ± 23 ms(0.5), P = 0.24) when plasma PQ concentrations were relatively low. A small amount of fat does not change the bioavailability of DHA-PQ in children, but a delayed persistent effect on ventricular repolarization cannot be excluded.
Collapse
|
19
|
Zang M, Zhu F, Li X, Yang A, Xing J. Auto-induction of phase I and phase II metabolism of artemisinin in healthy Chinese subjects after oral administration of a new artemisinin-piperaquine fixed combination. Malar J 2014; 13:214. [PMID: 24889062 PMCID: PMC4055232 DOI: 10.1186/1475-2875-13-214] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/27/2014] [Indexed: 11/25/2022] Open
Abstract
Background Artequick is a relatively inexpensive artemisinin (Qing-hao-su; QHS)-based combination therapy (ACT) that contains QHS and piperaquine (PQ), which has not been widely used because of the decreased concentration level of QHS after repeated oral administrations for five to seven days as a monotherapy. This study was designed to evaluate the potential auto-induction metabolism of QHS in healthy Chinese adults after a two-day oral administration of QHS-PQ. The effect of QHS-PQ on the activity of the CYP2B6 and CYP3A4 was also investigated. Methods Fourteen healthy Chinese subjects received two-day oral doses of QHS-PQ (Artequick). A two-drug cocktail consisting of bupropion and midazolam was used to assess the activities of CYP2B6 and CYP3A, respectively. Plasma samples were analysed for QHS and its phase I/II metabolites, probe drugs and their metabolites, using a validated liquid chromatography tandem mass spectrometric (LC-MS) method. Results Four major phase I metabolites of QHS (M1-M3 and deoxy-QHS) and two subsequent phase II metabolites (M4-M5) were detected in human plasma after oral administrations of QHS-PQ. The AUC0-t of the QHS and its phase I metabolites decreased significantly (P < 0.05) with increased oral clearance (CL/F) after two-day oral doses of QHS-PQ, whereas its phase II metabolites exhibited higher AUC (P < 0.01). The phase I metabolic capability, calculated by the AUC0-t ratio of all phase I metabolites to QHS, increased 1.5-fold after the repeated dose (P < 0.01), and the phase II metabolic capability increased 1.5-fold for M4 and 3.0-fold for M5. The enzyme activity of CYP2B6 and CYP3A4 increased 2.1-fold and 3.2-fold, respectively, after two-day oral doses of QHS-PQ. Conclusions The auto-induction of both phase I and phase II metabolism of QHS was present in healthy Chinese subjects after a recommended two-day oral dose of QHS-PQ. The auto-induction metabolism also existed for phase I metabolites of QHS. The enzyme activity of CYP2B6 and CYP3A4 was induced after the two-day oral doses of QHS-PQ. Based on these results, the alternative common three-day regimen for QHS-PQ could probably lead to lower bioavailability of QHS and higher potential of drug-drug interaction caused by the induction of drug-metabolizing enzymes.
Collapse
Affiliation(s)
| | | | | | | | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, 44# West Wenhua Road, Jinan 250012, P R China.
| |
Collapse
|
20
|
|
21
|
The effect of dosing regimens on the antimalarial efficacy of dihydroartemisinin-piperaquine: a pooled analysis of individual patient data. PLoS Med 2013; 10:e1001564; discussion e1001564. [PMID: 24311989 PMCID: PMC3848996 DOI: 10.1371/journal.pmed.1001564] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 10/17/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Dihydroartemisinin-piperaquine (DP) is increasingly recommended for antimalarial treatment in many endemic countries; however, concerns have been raised over its potential under dosing in young children. We investigated the influence of different dosing schedules on DP's clinical efficacy. METHODS AND FINDINGS A systematic search of the literature was conducted to identify all studies published between 1960 and February 2013, in which patients were enrolled and treated with DP. Principal investigators were approached and invited to share individual patient data with the WorldWide Antimalarial Resistance Network (WWARN). Data were pooled using a standardised methodology. Univariable and multivariable risk factors for parasite recrudescence were identified using a Cox's regression model with shared frailty across the study sites. Twenty-four published and two unpublished studies (n = 7,072 patients) were included in the analysis. After correcting for reinfection by parasite genotyping, Kaplan-Meier survival estimates were 97.7% (95% CI 97.3%-98.1%) at day 42 and 97.2% (95% CI 96.7%-97.7%) at day 63. Overall 28.6% (979/3,429) of children aged 1 to 5 years received a total dose of piperaquine below 48 mg/kg (the lower limit recommended by WHO); this risk was 2.3-2.9-fold greater compared to that in the other age groups and was associated with reduced efficacy at day 63 (94.4% [95% CI 92.6%-96.2%], p<0.001). After adjusting for confounding factors, the mg/kg dose of piperaquine was found to be a significant predictor for recrudescence, the risk increasing by 13% (95% CI 5.0%-21%) for every 5 mg/kg decrease in dose; p = 0.002. In a multivariable model increasing the target minimum total dose of piperaquine in children aged 1 to 5 years old from 48 mg/kg to 59 mg/kg would halve the risk of treatment failure and cure at least 95% of patients; such an increment was not associated with gastrointestinal toxicity in the ten studies in which this could be assessed. CONCLUSIONS DP demonstrates excellent efficacy in a wide range of transmission settings; however, treatment failure is associated with a lower dose of piperaquine, particularly in young children, suggesting potential for further dose optimisation.
Collapse
|
22
|
Hoglund RM, Adam I, Hanpithakpong W, Ashton M, Lindegardh N, Day NPJ, White NJ, Nosten F, Tarning J. A population pharmacokinetic model of piperaquine in pregnant and non-pregnant women with uncomplicated Plasmodium falciparum malaria in Sudan. Malar J 2012. [PMID: 23190801 PMCID: PMC3551687 DOI: 10.1186/1475-2875-11-398] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Pregnancy is associated with an increased risk of developing a malaria infection and a higher risk of developing severe malaria. The pharmacokinetic properties of many anti-malarials are also altered during pregnancy, often resulting in a decreased drug exposure. Piperaquine is a promising anti-malarial partner drug used in a fixed-dose combination with dihydroartemisinin. The aim of this study was to investigate the population pharmacokinetics of piperaquine in pregnant and non-pregnant Sudanese women with uncomplicated Plasmodium falciparum malaria. Method Symptomatic patients received a standard dose regimen of the fixed dose oral piperaquine-dihydroartemisinin combination treatment. Densely sampled plasma aliquots were collected and analysed using a previously described LC-MS/MS method. Data from 12 pregnant and 12 non-pregnant women were analysed using nonlinear mixed-effects modelling. A Monte Carlo Mapped Power (MCMP) analysis was conducted based on a previously published study to evaluate the power of detecting covariates in this relatively small study. Results A three-compartment disposition model with a transit-absorption model described the observed data well. Body weight was added as an allometric function on all clearance and volume parameters. A statistically significant decrease in estimated terminal piperaquine half-life in pregnant compared with non-pregnant women was found, but there were no differences in post-hoc estimates of total piperaquine exposure. The MCMP analysis indicated a minimum of 13 pregnant and 13 non-pregnant women were required to identify pregnancy as a covariate on relevant pharmacokinetic parameters (80% power and p=0.05). Pregnancy was, therefore, evaluated as a categorical and continuous covariate (i.e. estimate gestational age) in a full covariate approach. Using this approach pregnancy was not associated with any major change in piperaquine elimination clearance. However, a trend of increasing elimination clearance with increasing gestational age could be seen. Conclusions The population pharmacokinetic properties of piperaquine were well described by a three-compartment disposition model in pregnant and non-pregnant women with uncomplicated malaria. The modelling approach showed no major difference in piperaquine exposure between the two groups and data presented here do not warrant a dose adjustment in pregnancy in this vulnerable population.
Collapse
Affiliation(s)
- Richard M Hoglund
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|