1
|
Herculano RD, Dos Reis CE, de Souza SMB, Pegorin Brasil GS, Scontri M, Kawakita S, Carvalho BG, Bebber CC, Su Y, de Sousa Abreu AP, Mecwan MM, Mandal K, Fusco Almeida AM, Mendes Giannini MJS, Guerra NB, Mussagy CU, Bosculo MRM, Gemeinder JLP, de Almeida BFM, Floriano JF, Farhadi N, Monirizad M, Khorsandi D, Nguyen HT, Gomez A, Tirpáková Z, Peirsman A, da Silva Sasaki JC, He S, Forster S, Burd BS, Dokmeci MR, Terra-Garcia M, Junqueira JC, de Mendonça RJ, Cardoso MR, Dos Santos LS, Silva GR, Barros NR, Jucaud V, Li B. Amphotericin B-loaded natural latex dressing for treating Candida albicans wound infections using Galleria mellonella model. J Control Release 2024; 365:744-758. [PMID: 38072085 DOI: 10.1016/j.jconrel.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Amphotericin B (AmB) is the gold standard for antifungal drugs. However, AmB systemic administration is restricted because of its side effects. Here, we report AmB loaded in natural rubber latex (NRL), a sustained delivery system with low toxicity, which stimulates angiogenesis, cell adhesion and accelerates wound healing. Physicochemical characterizations showed that AmB did not bind chemically to the polymeric matrix. Electronic and topographical images showed small crystalline aggregates from AmB crystals on the polymer surface. About 56.6% of AmB was released by the NRL in 120 h. However, 33.6% of this antifungal was delivered in the first 24 h due to the presence of AmB on the polymer surface. The biomaterial's excellent hemo- and cytocompatibility with erythrocytes and human dermal fibroblasts (HDF) confirmed its safety for dermal wound application. Antifungal assay against Candida albicans showed that AmB-NRL presented a dose-dependent behavior with an inhibition halo of 30.0 ± 1.0 mm. Galleria mellonella was employed as an in vivo model for C. albicans infection. Survival rates of 60% were observed following the injection of AmB (0.5 mg.mL-1) in G. mellonella larvae infected by C. albicans. Likewise, AmB-NRL (0.5 mg.mL-1) presented survival rates of 40%, inferring antifungal activity against fungus. Thus, NRL adequately acts as an AmB-sustained release matrix, which is an exciting approach, since this antifungal is toxic at high concentrations. Our findings suggest that AmB-NRL is an efficient, safe, and reasonably priced ($0.15) dressing for the treatment of cutaneous fungal infections.
Collapse
Affiliation(s)
- Rondinelli Donizetti Herculano
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| | - Camila Eugênia Dos Reis
- Fundação Educacional do Município de Assis (FEMA), 1200 Getulio Vargas Avenue, 19807-130 Assis, SP, Brazil
| | | | - Giovana Sant'Ana Pegorin Brasil
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Mateus Scontri
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Bruna Gregatti Carvalho
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; University of Campinas (UNICAMP), Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, 13083-852 Campinas, SP, Brazil
| | - Camila Calderan Bebber
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Yanjin Su
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Ana Paula de Sousa Abreu
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Marvin M Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Ana Marisa Fusco Almeida
- São Paulo State University (UNESP), Department of Clinical Analysis, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Maria José Soares Mendes Giannini
- São Paulo State University (UNESP), Department of Clinical Analysis, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | | | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Maria Rachel Melo Bosculo
- University Center of the Integrated Faculties of Ourinhos (UNIFIO), Km 338, BR-153, 19909-100 Ourinhos, SP, Brazil
| | - José Lúcio Pádua Gemeinder
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; University Center of the Integrated Faculties of Ourinhos (UNIFIO), Km 338, BR-153, 19909-100 Ourinhos, SP, Brazil
| | | | - Juliana Ferreira Floriano
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; São Paulo State University (UNESP), School of Sciences, 17033-360 Bauru, SP, Brazil
| | - Neda Farhadi
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Mahsa Monirizad
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Zuzana Tirpáková
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovak Republic
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Plastic, Reconstructive and Aesthetic Surgery, University Hospital Ghent, Ghent, Belgium
| | - Josana Carla da Silva Sasaki
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Siqi He
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Samuel Forster
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Betina Sayeg Burd
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Maíra Terra-Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), 12244-514 São José dos Campos, SP, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), 12244-514 São José dos Campos, SP, Brazil
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marcos Roberto Cardoso
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13561-970 São Carlos, SP, Brazil
| | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, Universidade de São Paulo University (USP), 3900 Bandeirantes Avenue, 14, 040-901 Ribeirão Preto, SP, Brazil
| | - Gláucio Ribeiro Silva
- Federal Institute of Education, Science, and Technology of Minas Gerais, s/n São Luiz Gonzaga Street, 35577-010, Formiga, MG, Brazil
| | - Natan Roberto Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| |
Collapse
|