1
|
Kloula Ben Ghorbal S, Dhaya I, Ouzari IH, Chatti A. Cyclopropanation and membrane unsaturation improve antibiotic resistance of swarmer Pseudomonas and its sod mutants exposed to radiations, in vitro and in silico approch. World J Microbiol Biotechnol 2024; 40:243. [PMID: 38869625 DOI: 10.1007/s11274-024-04033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
It was known that UVc irradiation increases the reactive oxygen species' (ROS) levels in bacteria hence the intervention of antioxidant enzymes and causes also changes in fatty acids (FAs) composition enabling bacteria to face antibiotics. Here, we intended to elucidate an interrelationship between SOD and susceptibility to antibiotics by studying FA membrane composition of UVc-treated P. aeruginosa PAO1 and its isogenic mutants (sodM, sodB and sod MB) membrane, after treatment with antibiotics. Swarmer mutants defective in genes encoding superoxide dismutase were pre-exposed to UVc radiations and then tested by disk diffusion method for their contribution to antibiotic tolerance in comparison with the P. aeruginosa wild type (WT). Moreover, fatty acid composition of untreated and UVc-treated WT and sod mutants was examined by Gaz chromatography and correlated to antibiotic resistance. Firstly, it has been demonstrated that after UVc exposure, swarmer WT strain, sodM and sodB mutants remain resistant to polymixin B, a membrane target antibiotic, through membrane unsaturation supported by the intervention of Mn-SOD after short UVc exposure and cyclopropanation of unsaturated FAs supported by the action of Fe-SOD after longer UVc exposure. However, resistance for ciprofloxacin is correlated with increase in saturated FAs. This correlation has been confirmed by a molecular docking approach showing that biotin carboxylase, involved in the initial stage of FA biosynthesis, exhibits a high affinity for ciprofloxacin. This investigation has explored the correlation of antibiotic resistance with FA content of swarmer P.aeruginosa pre-exposed to UVc radiations, confirmed to be antibiotic target dependant.
Collapse
Affiliation(s)
- Salma Kloula Ben Ghorbal
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées, Technopole Borj Cedria, BP 273, 8020, Soliman, Tunisia.
| | - Ibtihel Dhaya
- LR18ES03- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecules Valorization, University of Tunis El Manar, Tunis, Tunisia
| | - Imene-Hadda Ouzari
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Physiques et Naturelles de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Abdelwaheb Chatti
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées, Technopole Borj Cedria, BP 273, 8020, Soliman, Tunisia
- Unite de Biochimie des Lipides et Interactions des Macromolécules en Biologie (03/UR/0902), Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Zarzouna, 7021, Bizerte, Tunisia
| |
Collapse
|
2
|
Schempp FM, Hofmann KE, Mi J, Kirchner F, Meffert A, Schewe H, Schrader J, Buchhaupt M. Investigation of monoterpenoid resistance mechanisms in Pseudomonas putida and their consequences for biotransformations. Appl Microbiol Biotechnol 2020; 104:5519-5533. [PMID: 32296906 PMCID: PMC7275096 DOI: 10.1007/s00253-020-10566-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/05/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
Monoterpenoids are widely used in industrial applications, e.g. as active ingredients in pharmaceuticals, in flavor and fragrance compositions, and in agriculture. Severe toxic effects are known for some monoterpenoids making them challenging compounds for biotechnological production processes. Some strains of the bacterium Pseudomonas putida show an inherent extraordinarily high tolerance towards solvents including monoterpenoids. An understanding of the underlying factors can help to create suitable strains for monoterpenoids de novo production or conversion. In addition, knowledge about tolerance mechanisms could allow a deeper insight into how bacteria can oppose monoterpenoid containing drugs, like tea tree oil. Within this work, the resistance mechanisms of P. putida GS1 were investigated using selected monoterpenoid-hypertolerant mutants. Most of the mutations were found in efflux pump promoter regions or associated transcription factors. Surprisingly, while for the tested monoterpenoid alcohols, ketone, and ether high efflux pump expression increased monoterpenoid tolerance, it reduced the tolerance against geranic acid. However, an increase of geranic acid tolerance could be gained by a mutation in an efflux pump component. It was also found that increased monoterpenoid tolerance can counteract efficient biotransformation ability, indicating the need for a fine-tuned and knowledge-based tolerance improvement for production strain development.Key points• Altered monoterpenoid tolerance mainly related to altered activity of efflux pumps.• Increased tolerance to geranic acid surprisingly caused by decreased export activity. • Reduction of export activity can be beneficial for biotechnological conversions.
Collapse
Affiliation(s)
- Florence Miramella Schempp
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany.,Faculty Biological Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Katharina Elisabeth Hofmann
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Jia Mi
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Ferdinand Kirchner
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Annika Meffert
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Hendrik Schewe
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Jens Schrader
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Markus Buchhaupt
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Spatiotemporal expression of the putative MdtABC efflux pump of Phtotorhabdus luminescens occurs in a protease-dependent manner during insect infection. PLoS One 2019; 14:e0212077. [PMID: 30763358 PMCID: PMC6375597 DOI: 10.1371/journal.pone.0212077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 01/25/2019] [Indexed: 11/19/2022] Open
Abstract
Photorhabdus luminescens is an enterobacterium establishing a mutualistic symbiosis with nematodes, that also kills insects after septicaemia and connective tissue colonization. The role of the bacterial mdtABC genes encoding a putative multidrug efflux system from the resistance/nodulation/cell division family was investigated. We showed that a mdtA mutant and the wild type had similar levels of resistance to antibiotics, antimicrobial peptides, metals, detergents and bile salts. The mdtA mutant was also as pathogenic as the wild-type following intrahaemocoel injection in Locusta migratoria, but had a slightly attenuated phenotype in Spodoptera littoralis. A transcriptional fusion of the mdtA promoter (PmdtA) and the green fluorescent protein (gfp) encoding gene was induced by copper in bacteria cultured in vitro. The PmdtA-gfp fusion was strongly induced within bacterial aggregates in the haematopoietic organ during late stages of infection in L. migratoria, whereas it was only weakly expressed in insect plasma throughout infection. A medium supplemented with haematopoietic organ extracts induced the PmdtA-gfp fusion ex vivo, suggesting that site-specific mdtABC expression resulted from insect signals from the haematopoietic organ. Finally, we showed that protease inhibitors abolished ex vivo activity of the PmdtA-gfp fusion in the presence of haematopoietic organ extracts, suggesting that proteolysis by-products play a key role in upregulating the putative MdtABC efflux pump during insect infection with P. luminescens.
Collapse
|
4
|
Subhadra B, Kim J, Kim DH, Woo K, Oh MH, Choi CH. Local Repressor AcrR Regulates AcrAB Efflux Pump Required for Biofilm Formation and Virulence in Acinetobacter nosocomialis. Front Cell Infect Microbiol 2018; 8:270. [PMID: 30131944 PMCID: PMC6090078 DOI: 10.3389/fcimb.2018.00270] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022] Open
Abstract
Multidrug efflux systems contribute to antimicrobial resistance and pathogenicity in bacteria. Here, we report the identification and characterization of a transcriptional regulator AcrR controlling the yet uncharacterized multidrug efflux pump, AcrAB in Acinetobacter nosocomialis. In silico analysis revealed that the homologs of AcrR and AcrAB are reported in the genomes of many other bacterial species. We confirmed that the genes encoding the AcrAB efflux pump, acrA and acrB forms a polycistronic operon which is under the control of acrR gene upstream of acrA. Bioinformatic analysis indicated the presence of AcrR binding motif in the promoter region of acrAB operon and the specific binding of AcrR was confirmed by electrophoretic mobility shift assay (EMSA). The EMSA data showed that AcrR binds to −89 bp upstream of the start codon of acrA. The mRNA expression analysis depicted that the expression of acrA and acrB genes are elevated in the deletion mutant compared to that in the wild type confirming that AcrR acts as a repressor of acrAB operon in A. nosocomialis. The deletion of acrR resulted in increased motility, biofilm/pellicle formation and invasion in A. nosocomialis. We further analyzed the role of AcrR in A. nosocomialis pathogenesis in vivo using murine model and it was shown that acrR mutant is highly virulent inducing severe infection in mouse leading to host death. In addition, the intracellular survival rate of acrR mutant was higher compared to that of wild type. Our data demonstrates that AcrR functions as an important regulator of AcrAB efflux pump and is associated with several phenotypes such as motility, biofilm/pellicle formation and pathogenesis in A. nosocomialis.
Collapse
Affiliation(s)
- Bindu Subhadra
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jaeseok Kim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Dong Ho Kim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Kyungho Woo
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, South Korea
| | - Chul Hee Choi
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
5
|
Ramaswamy VK, Vargiu AV, Malloci G, Dreier J, Ruggerone P. Molecular Determinants of the Promiscuity of MexB and MexY Multidrug Transporters of Pseudomonas aeruginosa. Front Microbiol 2018; 9:1144. [PMID: 29910784 PMCID: PMC5992780 DOI: 10.3389/fmicb.2018.01144] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
Secondary multidrug transporters of the resistance-nodulation-cell division (RND) superfamily contribute crucially to antibiotic resistance in Gram-negative bacteria. Compared to the most studied transporter AcrB of Escherichia coli, little is known about the molecular determinants of distinct polyspecificities of the most important RND transporters MexB and MexY of Pseudomonas aeruginosa. In an effort to add knowledge on this topic, we performed an exhaustive atomic-level comparison of the main putative recognition sites (access and deep binding pockets) in these two Mex transporters. We identified an underlying link between some structural, chemical and dynamical features of the binding pockets and the physicochemical nature of the corresponding substrates recognized by either one or both pumps. In particular, mosaic-like lipophilic and electrostatic surfaces of the binding pockets provide for both proteins several multifunctional sites for diffuse binding of diverse substrates. Specific lipophilicity signatures of the weakly conserved deep pocket suggest a key role of this site as a selectivity filter as in Acr transporters. Finally, the different dynamics of the bottom-loop in MexB and MexY support its possible role in binding of large substrates. Our work represents the first comparative study of the major RND transporters in P. aeruginosa and also the first structure-based study of MexY, for which no experimental structure is available yet.
Collapse
Affiliation(s)
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, Monserrato, Italy
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato, Italy
| | - Jürg Dreier
- Basilea Pharmaceutica International Ltd., Basel, Switzerland
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato, Italy
| |
Collapse
|
6
|
Thekkiniath J, Ravirala R, San Francisco M. Multidrug Efflux Pumps in the Genus Erwinia: Physiology and Regulation of Efflux Pump Gene Expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:131-49. [DOI: 10.1016/bs.pmbts.2016.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Mun SH, Joung DK, Kim SB, Park SJ, Seo YS, Gong R, Choi JG, Shin DW, Rho JR, Kang OH, Kwon DY. The mechanism of antimicrobial activity of sophoraflavanone B against methicillin-resistant Staphylococcus aureus. Foodborne Pathog Dis 2014; 11:234-9. [PMID: 24601672 DOI: 10.1089/fpd.2013.1627] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sophoraflavanone B (SPF-B), a prenylated flavonoid, can be isolated from the roots of Desmodium caudatum. The aim of this study was to determine the mechanism of SPF-B's antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). MRSA is a multidrug-resistant pathogen and the main cause of hospital- and community-acquired infections. The minimum inhibitory concentration (MIC) of SPF-B was assessed using the broth microdilution method. The mechanism of action of SPF-B on S. aureus was analyzed in combination assays incorporating detergents, ATPase inhibitors, and peptidoglycan (PGN) derived from S. aureus. Furthermore, morphological changes in the SPF-B-treated MRSA strains were investigated using transmission electron microscopy. The MIC of SPF-B for MRSA was in the range of 15.6-31.25 μg/mL. The mechanism of action of SPF-B on MRSA was investigated using combination assays with detergent and ATPase inhibitors. The optical density at 600 nm of MRSA suspensions treated with a combination of detergent and SPF-B reduced the MRSA by 63%-73%. In the SPF-B and PGN combination assay, direct binding of SPF-B with PGN from S. aureus was evident. These data may be validated for the development of new antibacterial drugs for low MRSA resistance.
Collapse
Affiliation(s)
- Su-Hyun Mun
- 1 BK21 Plus Team, Professional Graduate School of Oriental Medicine, Wonkwang University , Iksan, Jeonbuk, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Multiple mutations lead to MexXY-OprM-dependent aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 58:221-8. [PMID: 24145539 DOI: 10.1128/aac.01252-13] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Constitutive overproduction of the pump MexXY-OprM is recognized as a major cause of resistance to aminoglycosides, fluoroquinolones, and zwitterionic cephalosporins in Pseudomonas aeruginosa. In this study, 57 clonally unrelated strains recovered from non-cystic fibrosis patients were analyzed to characterize the mutations resulting in upregulation of the mexXY operon. Forty-four (77.2%) of the strains, classified as agrZ mutants were found to harbor mutations inactivating the local repressor gene (mexZ) of the mexXY operon (n = 33; 57.9%) or introducing amino acid substitutions in its product, MexZ (n = 11; 19.3%). These sequence variations, which mapped in the dimerization domain, the DNA binding domain, or the rest of the MexZ structure, mostly affected amino acid positions conserved in TetR-like regulators. The 13 remaining MexXY-OprM strains (22.8%) contained intact mexZ genes encoding wild-type MexZ proteins. Eight (14.0%) of these isolates, classified as agrW1 mutants, overexpressed the gene PA5471, which codes for the MexZ antirepressor ArmZ [corrected], with 5 strains exhibiting growth defects at 37°C and 44°C, consistent with mutations impairing ribosome activity. Interestingly, one agrW1 mutant appeared to harbor a 7-bp deletion in the coding sequence of the leader peptide, PA5471.1, involved in ribosome-dependent, translational attenuation of PA5471 expression. Finally, DNA sequencing and complementation experiments revealed that 5 (8.8%) strains, classified as agrW2 mutants, harbored single amino acid variations in the sensor histidine kinase of ParRS, a two-component system known to positively control mexXY expression. Collectively, these results demonstrate that clinical strains of P. aeruginosa exploit different regulatory circuitries to mutationally overproduce the MexXY-OprM pump and become multidrug resistant, which accounts for the high prevalence of MexXY-OprM mutants in the clinical setting.
Collapse
|
9
|
Akter F, Hossain MM, Rahman A, Shaha M, Amani AEAAA. Antimicrobials resistance pattern of Escherichia coli collected from various pathological specimens. Pak J Biol Sci 2012; 15:1080-1084. [PMID: 24261124 DOI: 10.3923/pjbs.2012.1080.1084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Irrational use of antibiotics is common in Bangladesh. The purpose of the present study was to know the effectiveness of various commonly used antimicrobials against Escherichia coli. Antimicrobial susceptibility test was done by Disc Diffusion method. In this study, antimicrobial resistance pattern of 163 isolates of Escherichia coli collected from various pathological specimens were determined. Most of the isolates (77%) were collected from urine sample. The highest numbers of isolates were resistant to cloxacillin (96.93%) and the lowest number isolates were resistant to imipenem (5.52%). Out of 163 isolates 141 (86.5%) were resistant to ampicillin, 89 (54.60%) to ceftazidime and 88 (53.99%) to ceftriaxone. From this study, it also appears that third generation cephalosporins (ceftazidime and ceftriaxone) were more effective against the test isolates in comparison to penicillin. The present study also revealed that 113 (69.33%) isolates were resistant to ciprofloxacin, 92 (56.44%) to chloramphenicol, 121 (74.23%) to co-trimoxazole and 128 (78.53%) to nalidixic acid. To the aminoglycoside drug 58 (35.58%) isolates were resistant to gentamicin and 74 (45.40%) to netilmicin. In this study 138 (84.66%) isolates were resistant to doxycycline, 126 (77.30%) isolates were resistant to tetracycline. Four isolates showed resistance to all the antimicrobials used except to imipenem. In the present study imipenem was found to be the most effective and 154 out of 163 isolates (94.48%) were found to be sensitive and cloxacillin was least effective and only 5 out of 163 isolates (3.07%) were sensitive to this penicillinase resistant drug.
Collapse
Affiliation(s)
- Farhana Akter
- Department of Pharmacy, University of Asia Pacific, Dhaka-1209, Bangladesh
| | | | | | | | | |
Collapse
|
10
|
KIM H, SUZUKI H, MATSUOKA M, MATSUBA T, YOKOYAMA K, NAKAJIMA C, SUZUKI Y. Molecular mechanism of the acquisition of new-quinolone resistance in Mycobacterium leprae and M. tuberculosis and rapid differentiation methods for resistant bacilli. ACTA ACUST UNITED AC 2011; 80:17-27. [DOI: 10.5025/hansen.80.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hyun KIM
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control
| | - Haruka SUZUKI
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control
| | | | - Takashi MATSUBA
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University
| | - Kazumasa YOKOYAMA
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control
| | - Chie NAKAJIMA
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control
| | - Yasuhiko SUZUKI
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control
- JST/JICA-SATREPS
| |
Collapse
|
11
|
Abstract
Multiresistance plasmids and transposons, the integrons, the co-amplification of several resistance genes or finally the accumulation of independent mutations can lead to microorganisms resistant to multiple drugs. On the other hand multidrug resistance is due to an efflux pump conferring resistance to unrelated drugs. These microbial efflux pumps are belonging to various transporter families and are often encoded in microbial genomes. There is mounting evidence that these efflux systems are responsible for clinical multidrug resistance in bacteria, yeasts and parasites.
Collapse
Affiliation(s)
- M Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL, Québec, Canada
| | | |
Collapse
|
12
|
Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, Alvarez-Ortega C. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 2009; 33:430-49. [PMID: 19207745 DOI: 10.1111/j.1574-6976.2008.00157.x] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Multidrug efflux pumps have emerged as relevant elements in the intrinsic and acquired antibiotic resistance of bacterial pathogens. In contrast with other antibiotic resistance genes that have been obtained by virulent bacteria through horizontal gene transfer, genes coding for multidrug efflux pumps are present in the chromosomes of all living organisms. In addition, these genes are highly conserved (all members of the same species contain the same efflux pumps) and their expression is tightly regulated. Together, these characteristics suggest that the main function of these systems is not resisting the antibiotics used in therapy and that they should have other roles relevant to the behavior of bacteria in their natural ecosystems. Among the potential roles, it has been demonstrated that efflux pumps are important for processes of detoxification of intracellular metabolites, bacterial virulence in both animal and plant hosts, cell homeostasis and intercellular signal trafficking.
Collapse
Affiliation(s)
- Jose Luis Martinez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
13
|
The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism. Proc Natl Acad Sci U S A 2008; 105:13586-91. [PMID: 18757728 DOI: 10.1073/pnas.0803391105] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MexR is a MarR family protein that negatively regulates multidrug efflux systems in the human pathogen Pseudomonas aeruginosa. The mechanism of MexR-regulated antibiotic resistance has never been elucidated in the past. We present here that two Cys residues in MexR are redox-active. They form intermonomer disulfide bonds in MexR dimer with a redox potential of -155 mV. This MexR oxidation leads to its dissociation from promoter DNA, derepression of the mexAB-oprM drug efflux operon, and increased antibiotic resistance of P. aeruginosa. We show computationally that the formation of disulfide bonds is consistent with a conformation change that prevents the oxidized MexR from binding to DNA. Collectively, the results reveal that MexR is a redox regulator that senses peroxide stress to mediate antibiotic resistance in P. aeruginosa.
Collapse
|
14
|
Crosby JA, Kachlany SC. TdeA, a TolC-like protein required for toxin and drug export in Aggregatibacter (Actinobacillus) actinomycetemcomitans. Gene 2006; 388:83-92. [PMID: 17116373 PMCID: PMC1831674 DOI: 10.1016/j.gene.2006.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/04/2006] [Accepted: 10/04/2006] [Indexed: 10/24/2022]
Abstract
Aggregatibacter actinomycetemcomitans is an oral bacterium that causes localized aggressive periodontitis (LAP) and extra-oral infections such as sub-acute infective endocarditis. As part of its array of virulence factors, A. actinomycetemcomitans produces leukotoxin (LtxA), a member of the RTX family of toxins. LtxA kills human leukocytes and we have recently shown that the toxin is required for beta-hemolysis by A. actinomycetemcomitans on solid medium. In other RTX toxin-producing bacteria, an outer membrane channel-forming protein, TolC, is required for toxin secretion and drug export. We have identified an ORF in A. actinomycetemcomitans that encodes a putative protein having predicted structural properties similar to TolC. Inactivation of this ORF resulted in a mutant that was no longer beta-hemolytic and did not secrete LtxA. This mutant was significantly more sensitive to antimicrobial agents compared to the wild type strain and was unable to export the antimicrobial agent berberine. Thus, this ORF was named tdeA for "toxin and drug export". Examination of the DNA sequence surrounding tdeA revealed two upstream ORFs that encode proteins similar to the drug efflux proteins, MacA and MacB. Inactivation of macB in A. actinomycetemcomitans did not alter the drug sensitivity profile or the hemolytic activity of the mutant. The genes macA, macB and tdeA are organized as an operon and are constitutively expressed as a single transcript. These results show that A. actinomycetemcomitans indeed requires a TolC-like protein for LtxA secretion and that this protein, TdeA, also functions as part of a drug efflux system.
Collapse
Affiliation(s)
| | - Scott C. Kachlany
- *Correspondence to: Scott C. Kachlany, Department of Oral Biology, University of Medicine and Dentistry of NJ, 185 S. Orange Avenue, Medical Science Building C-636, Newark, NJ 07103, 973.972.3057 (office) 973.972.0045 (fax)
| |
Collapse
|
15
|
Morita Y, Cao L, Gould VC, Avison MB, Poole K. nalD encodes a second repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Bacteriol 2006; 188:8649-54. [PMID: 17028276 PMCID: PMC1698243 DOI: 10.1128/jb.01342-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Pseudomonas aeruginosa nalD gene encodes a TetR family repressor with homology to the SmeT and TtgR repressors of the smeDEF and ttgABC multidrug efflux systems of Stenotrophomonas maltophilia and Pseudomonas putida, respectively. A sequence upstream of mexAB-oprM and overlapping a second promoter for this efflux system was very similar to the SmeT and TtgR operator sequences, and NalD binding to this region was, in fact, demonstrated. Moreover, increased expression from this promoter was seen in a nalD mutant, consistent with NalD directly controlling mexAB-oprM expression from a second promoter.
Collapse
Affiliation(s)
- Yuji Morita
- Department of Microbiology & Immunology, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
16
|
Sobel ML, Hocquet D, Cao L, Plesiat P, Poole K. Mutations in PA3574 (nalD) lead to increased MexAB-OprM expression and multidrug resistance in laboratory and clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2005; 49:1782-6. [PMID: 15855496 PMCID: PMC1087681 DOI: 10.1128/aac.49.5.1782-1786.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in genes mexR and nalC have previously been shown to drive overexpression of the MexAB-OprM multidrug efflux system in Pseudomonas aeruginosa. A transposon insertion multidrug-resistant mutant of P. aeruginosa overproducing MexAB-OprM was disrupted in yet a third gene, PA3574, encoding a probable repressor of the TetR/AcrR family that we have dubbed NalD. Clinical strains overexpressing MexAB-OprM but lacking mutations in mexR or nalC were also shown to carry mutations in nalD. Moreover, the cloned nalD gene reduced the multidrug resistance and MexAB-OprM expression of the transposon mutant and clinical isolates, highlighting the significance of the nalD mutations vis-a-vis MexAB-OprM overexpression in these isolates.
Collapse
Affiliation(s)
- Mara L Sobel
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
17
|
Yoneda K, Chikumi H, Murata T, Gotoh N, Yamamoto H, Fujiwara H, Nishino T, Shimizu E. Measurement of Pseudomonas aeruginosa multidrug efflux pumps by quantitative real-time polymerase chain reaction. FEMS Microbiol Lett 2005; 243:125-31. [PMID: 15668010 DOI: 10.1016/j.femsle.2004.11.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 11/26/2004] [Accepted: 11/29/2004] [Indexed: 11/29/2022] Open
Abstract
Multidrug efflux pumps contribute to multiple antibiotic resistance in Pseudomonas aeruginosa. Pump expression usually has been quantified by Western blotting. Quantitative real-time polymerase chain reaction has been developed to measure mRNA expression for genes of interest. Whether this method correlates with pump protein quantities is unclear. We devised a real-time PCR for mRNA expression of MexAB-OprM and MexXY-OprM multidrug efflux pumps. In laboratory strains differing in MexB and MexY expression and in several clinical isolates, protein and mRNA expression correlated well. Quantitative real-time PCR should be a useful alternative in quantitating expression of multidrug efflux pumps by P. aeruginosa isolates in clinical laboratories.
Collapse
Affiliation(s)
- Kazuhiko Yoneda
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-machi, Yonago-shi, Tottori-ken 683-0805, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sobel ML, Neshat S, Poole K. Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J Bacteriol 2005; 187:1246-53. [PMID: 15687188 PMCID: PMC545639 DOI: 10.1128/jb.187.4.1246-1253.2005] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Disruption of the PA2491 gene in a mini-Tn5-tet insertion mutant of a clinical isolate of Pseudomonas aeruginosa increased expression of the mexEF-oprN multidrug efflux genes and decreased production of outer membrane protein OprD, concomitant with enhanced resistance to chloramphenicol, quinolones, and imipenem, which was reminiscent of previously described nfxC mutants. PA2491 encodes a probable oxidoreductase previously shown to be positively regulated by the MexT positive regulator of mexEF-oprN expression (T. Kohler, S. F. Epp, L. K. Curty, and J. C. Pechere, J. Bacteriol. 181:6300-6305, 1999). Spontaneous multidrug-resistant mutants of the P. aeruginosa clinical isolate hyperexpressing mexEF-oprN and showing reduced production of OprD were readily selected in vitro, and all of them were shown to carry mutations in PA2491, highlighting the probable significance of such mutations as determinants of MexEF-OprN-mediated multidrug resistance in vivo.
Collapse
Affiliation(s)
- Mara L Sobel
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
19
|
Cao L, Srikumar R, Poole K. MexAB-OprM hyperexpression in NalC-type multidrug-resistant Pseudomonas aeruginosa: identification and characterization of the nalC gene encoding a repressor of PA3720-PA3719. Mol Microbiol 2005; 53:1423-36. [PMID: 15387820 DOI: 10.1111/j.1365-2958.2004.04210.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MexAB-OprM is a multidrug efflux system that contributes to intrinsic and acquired multidrug resistance in Pseudomonas aeruginosa, the latter as a result of mutational hyperexpression of the mexAB-oprM operon. While efflux gene hyperexpression typically results from mutations in the linked mexR repressor gene, it also occurs independently of mexR mutations in so-called nalC mutants that demonstrate more modest mexAB-oprM expression and, thus, more modest multidrug resistance than do mexR strains. Using a transposon insertion mutagenesis approach, nalC mutant strains were selected and the disrupted gene, PA3721, identified. Amplification and sequencing of this gene from previously isolated spontaneous nalC mutants revealed the presence of mutations in all instances and as such, PA3721 has been renamed nalC. PA3721 (nalC) encodes a probable repressor of the TetR/AcrR family and occurs upstream of an apparent two-gene operon, PA3720-PA3719, whose expression was negatively regulated by PA3721. Thus, PA3720-PA3719 was hyperexpressed in transposon insertion and spontaneous nalC mutants. The loss of PA3719 but not of PA3720 expression in a spontaneous nalC mutant reduced MexAB-OprM expression to wild-type levels and compromised multidrug resistance, an indication that hyperexpression of PA3719 only was necessary for the nalC phenotype. Introduction of PA3719 into wild-type P. aeruginosa on a multicopy plasmid was, in fact, sufficient to promote elevated MexAB-OprM expression and multidrug resistance characteristic of a nalC strain. Thus, the nalC (PA3721) mutation serves only to enhance PA3720-PA3719 expression, with expression of PA3719 (encodes a 53 amino acid protein of predicted pI 10.4) directly or indirectly impacting MexAB-OprM expression. Intriguingly, nalC strains produce markedly elevated levels of stable MexR protein suggesting that PA3720-PA3719 hyperexpression somehow modulates MexR repressor activity. The deduced products of PA3720-PA3719 show no homology to sequences presently in the GenBank databases, however, and as such provide no clues as to how this might occur.
Collapse
Affiliation(s)
- Lily Cao
- Department of Microbiology and Immunology, Queen's University, Kingston, ON, Canada, K7L 3N6
| | | | | |
Collapse
|
20
|
Middlemiss JK, Poole K. Differential impact of MexB mutations on substrate selectivity of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa. J Bacteriol 2004; 186:1258-69. [PMID: 14973037 PMCID: PMC344428 DOI: 10.1128/jb.186.5.1258-1269.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integral inner membrane resistance-nodulation-division (RND) components of three-component RND-membrane fusion protein-outer membrane factor multidrug efflux systems define the substrate selectivity of these efflux systems. To gain a better understanding of what regions of these proteins are important for substrate recognition, a plasmid-borne mexB gene encoding the RND component of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa was mutagenized in vitro by using hydroxylamine and mutations compromising the MexB contribution to antibiotic resistance identified in a DeltamexB strain. Of 100 mutants that expressed wild-type levels of MexB and showed increased susceptibility to one or more of carbenicillin, chloramphenicol, nalidixic acid, and novobiocin, the mexB genes of a representative 46 were sequenced, and 19 unique single mutations were identified. While the majority of mutations occurred within the large periplasmic loops between transmembrane segment 1 (TMS-1) and TMS-2 and between TMS-7 and TMS-8 of MexB, mutations were seen in the TMSs and in other periplasmic as well as cytoplasmic loops. By threading the MexB amino acid sequence through the crystal structure of the homologous RND transporter from Escherichia coli, AcrB, a three-dimensional model of a MexB trimer was obtained and the mutations were mapped to it. Unexpectedly, most mutations mapped to regions of MexB predicted to be involved in trimerization or interaction with MexA rather than to regions expected to contribute to substrate recognition. Intragenic second-site suppressor mutations that restored the activity of the G220S mutant version of MexB, which was compromised for resistance to all tested MexAB-OprM antimicrobial substrates, were recovered and mapped to the apparently distal portion of MexB that is implicated in OprM interaction. As the G220S mutation likely impacted trimerization, it appears that either proper assembly of the MexB trimer is necessary for OprM interaction or OprM association with an unstable MexB trimer might stabilize it, thereby restoring activity.
Collapse
Affiliation(s)
- Jocelyn K Middlemiss
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
21
|
Abstract
What makes a heavy metal resistant bacterium heavy metal resistant? The mechanisms of action, physiological functions, and distribution of metal-exporting proteins are outlined, namely: CBA efflux pumps driven by proteins of the resistance-nodulation-cell division superfamily, P-type ATPases, cation diffusion facilitator and chromate proteins, NreB- and CnrT-like resistance factors. The complement of efflux systems of 63 sequenced prokaryotes was compared with that of the heavy metal resistant bacterium Ralstonia metallidurans. This comparison shows that heavy metal resistance is the result of multiple layers of resistance systems with overlapping substrate specificities, but unique functions. Some of these systems are widespread and serve in the basic defense of the cell against superfluous heavy metals, but some are highly specialized and occur only in a few bacteria. Possession of the latter systems makes a bacterium heavy metal resistant.
Collapse
Affiliation(s)
- Dietrich H Nies
- Institute of Microbiology, Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06099 Halle/Saale, Germany.
| |
Collapse
|
22
|
|
23
|
Okamoto K, Gotoh N, Nishino T. Alterations of susceptibility of Pseudomonas aeruginosa by overproduction of multidrug efflux systems, MexAB-OprM, MexCD-OprJ, and MexXY/OprM to carbapenems: substrate specificities of the efflux systems. J Infect Chemother 2002; 8:371-3. [PMID: 12525903 DOI: 10.1007/s10156-002-0193-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Overproduction of multidrug efflux systems MexAB-OprM, MexCD-OprJ, and MexXY/OprM of Pseudomonas aeruginosa caused reduction of susceptibility of the mutant, which lacked AmpC and all three systems to panipenem, meropenem, S4661 and DU6681a; meropenem, S4661 and DU6681a; and BO2727, panipenem, meropenem, S4661 and DU6681a, respectively, but not reduction of the susceptibility to imipenem and biapenem. Thus, we determined substrate specificities of these efflux systems to carbapenems.
Collapse
Affiliation(s)
- Kiyomi Okamoto
- Department of Microbiology, Kyoto Pharmaceutical University, 5 Misasaginakauchi-cho, Yamashina-ku, kyoto 607-8414, Japan
| | | | | |
Collapse
|
24
|
Murata T, Kuwagaki M, Shin T, Gotoh N, Nishino T. The substrate specificity of tripartite efflux systems of Pseudomonas aeruginosa is determined by the RND component. Biochem Biophys Res Commun 2002; 299:247-51. [PMID: 12437977 DOI: 10.1016/s0006-291x(02)02626-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The tripartite efflux systems MexAB-OprM and MexCD-OprJ of Pseudomonas aeruginosa each display characteristic substrate specificity against a variety of antimicrobial agents. The chimeric efflux system MexC-MexB-OprJ/DeltaMexD constructed by exchange of MexD with MexB endowed the recombinant host the same resistance profile as MexAB-OprM rather than MexCD-OprJ. The change of substrate specificity was shown to be due to extrusion from the chimeric efflux system by cellular accumulation experiments using tetracycline, erythromycin, and ethidium bromide. Thus, we conclude that MexB and MexD are primary components of the efflux system responsible for sorting extrusion substrates.
Collapse
Affiliation(s)
- Takeshi Murata
- Department of Microbiology, Kyoto Pharmaceutical University, Yamashina, 607-8414, Kyoto, Japan
| | | | | | | | | |
Collapse
|
25
|
Murata T, Gotoh N, Nishino T. Characterization of outer membrane efflux proteins OpmE, OpmD and OpmB of Pseudomonas aeruginosa: molecular cloning and development of specific antisera. FEMS Microbiol Lett 2002; 217:57-63. [PMID: 12445646 DOI: 10.1111/j.1574-6968.2002.tb11456.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The third genes, opmE, opmD and opmB, of multidrug efflux operons deduced from the Pseudomonas aeruginosa PAO1 genome data were cloned by polymerase chain reaction. The opmB gene product showed functional cooperation with inner membrane-associated components, MexAB, MexCD and MexXY, of the previously characterized multidrug efflux systems responsible for resistance to antimicrobial agents and extrusion of ethidium. The opmE and opmD gene products did not show functional cooperation. Immunoblots using a specific rabbit antiserum demonstrated, through exponential to stationary phases, constant expression of opmB and growth phase-dependent expression of opmD.
Collapse
Affiliation(s)
- Takeshi Murata
- Department of Microbiology, Kyoto Pharmaceutical University, Yamashina, 607-8414, Kyoto, Japan
| | | | | |
Collapse
|
26
|
Yoshihara E, Maseda H, Saito K. The outer membrane component of the multidrug efflux pump from Pseudomonas aeruginosa may be a gated channel. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4738-45. [PMID: 12354104 DOI: 10.1046/j.1432-1033.2002.03134.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OprM, the outer membrane component of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa, has been assumed to facilitate the export of antibiotics across the outer membrane of this organism. Here we purified to homogeneity the OprM protein, reconstituted it into liposome membranes, and tested its channel activity by using the liposome swelling assay. It was demonstrated that OprM is a channel-forming protein and exhibits the channel property that amino acids diffuse more efficiently than saccharides. However, antibiotics showed no significant diffusion through the OprM channel in the liposome membrane, suggesting that OprM functions as a gated channel. We reasoned that the protease treatment may cause the disturbance of the gate structure of OprM. Hence, we treated OprM reconstituted in the membranes with alpha-chymotrypsin and examined its solute permeability. The results demonstrated that the protease treatment caused the opening of an OprM channel through which antibiotics were able to diffuse. To elucidate which cleavage is intimately related to the opening, we constructed mutant OprM proteins where the amino acid at the cleavage site was replaced with another amino acid. By examining the channel activity of these mutant proteins, it was shown that the proteolysis at tyrosine 185 and tyrosine 196 of OprM caused the channel opening. Furthermore, these residues were shown to face into the periplasmic space and interact with other component(s). We considered the possible opening mechanism of the OprM channel based on the structure of TolC, a homologue of OprM.
Collapse
Affiliation(s)
- Eisaku Yoshihara
- Department of Molecular Life Science, School of Medicine Tokai University, Isehara, Japan.
| | | | | |
Collapse
|
27
|
Lim D, Poole K, Strynadka NCJ. Crystal structure of the MexR repressor of the mexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Biol Chem 2002; 277:29253-9. [PMID: 12034710 DOI: 10.1074/jbc.m111381200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MexR is a member of the MarR family of bacterial transcriptional regulators and is the repressor for the MexAB-OprM operon, which encodes a tripartite multidrug efflux system in Pseudomonas aeruginosa. Mutations in MexR result in increased resistance to multiple antibiotics due to overexpression of this efflux system. We have determined the crystal structure of MexR to 2.1-A resolution in the absence of effector. The four copies of the MexR dimer in the asymmetric unit are observed in multiple conformations. Analysis of these conformational states in the context of a model of the MexR-DNA complex proposed in this study suggests that an effector-induced conformational change may inhibit DNA binding by reducing the spacing of the DNA binding domains. The inhibited conformation is exhibited by one of the four MexR dimers, which contains an ordered C-terminal tail from a neighboring monomer inserted between its DNA binding domains and which we propose may resemble the MexR-effector complex. Our results indicate that MexR may differ from the other described member of this family, MarR, in the nature of its effector, mode of DNA binding, and mechanism of regulation.
Collapse
Affiliation(s)
- Daniel Lim
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
28
|
Hirakata Y, Srikumar R, Poole K, Gotoh N, Suematsu T, Kohno S, Kamihira S, Hancock REW, Speert DP. Multidrug efflux systems play an important role in the invasiveness of Pseudomonas aeruginosa. J Exp Med 2002; 196:109-18. [PMID: 12093875 PMCID: PMC2194012 DOI: 10.1084/jem.20020005] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen. Certain strains can transmigrate across epithelial cells, and their invasive phenotype is correlated with capacity to cause invasive human disease and fatal septicemia in mice. Four multidrug efflux systems have been described in P. aeruginosa, however, their contribution to virulence is unclear. To clarify the role of efflux systems in invasiveness, P. aeruginosa PAO1 wild-type (WT) and its efflux mutants were evaluated in a Madin-Darby canine kidney (MDCK) epithelial cell monolayer system and in a murine model of endogenous septicemia. All efflux mutants except a deltamexCD-oprJ deletion demonstrated significantly reduced invasiveness compared with WT. In particular, a deltamexAB-oprM deletion strain was compromised in its capacity to invade or transmigrate across MDCK cells, and could not kill mice, in contrast to WT which was highly invasive (P < 0.0006) and caused fatal infection (P < 0.0001). The other mutants, including deltamexB and deltamexXY mutants, were intermediate between WT and the deltamexAB-oprM mutant in invasiveness and murine virulence. Invasiveness was restored to the deltamexAB-oprM mutant by complementation with mexAB-oprM or by addition of culture supernatant from MDCK cells infected with WT. We conclude that the P. aeruginosa MexAB-OprM efflux system exports virulence determinants that contribute to bacterial virulence.
Collapse
Affiliation(s)
- Yoichi Hirakata
- Division of Infectious and Immunological Diseases, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, V5Z 4H4 Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
De Kievit TR, Parkins MD, Gillis RJ, Srikumar R, Ceri H, Poole K, Iglewski BH, Storey DG. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2001; 45:1761-70. [PMID: 11353623 PMCID: PMC90543 DOI: 10.1128/aac.45.6.1761-1770.2001] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa biofilms are intrinsically resistant to antimicrobial chemotherapies. At present, very little is known about the physiological changes that occur during the transition from the planktonic to biofilm mode of growth. The resistance of P. aeruginosa biofilms to numerous antimicrobial agents that are substrates subject to active efflux from planktonic cells suggests that efflux pumps may substantially contribute to the innate resistance of biofilms. In this study, we investigated the expression of genes associated with two multidrug resistance (MDR) efflux pumps, MexAB-OprM and MexCD-OprJ, throughout the course of biofilm development. Using fusions to gfp, we were able to analyze spatial and temporal expression of mexA and mexC in the developing biofilm. Remarkably, expression of mexAB-oprM and mexCD-oprJ was not upregulated but rather decreased over time in the developing biofilm. Northern blot analysis confirmed that these pumps were not hyperexpressed in the biofilm. Furthermore, spatial differences in mexAB-oprM and mexCD-oprJ expression were observed, with maximal activity occurring at the biofilm substratum. Using a series of MDR mutants, we assessed the contribution of the MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY efflux pumps to P. aeruginosa biofilm resistance. These analyses led to the surprising discovery that the four characterized efflux pumps do not play a role in the antibiotic-resistant phenotype of P. aeruginosa biofilms.
Collapse
Affiliation(s)
- T R De Kievit
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Godoy P, Ramos-González MI, Ramos JL. Involvement of the TonB system in tolerance to solvents and drugs in Pseudomonas putida DOT-T1E. J Bacteriol 2001; 183:5285-92. [PMID: 11514511 PMCID: PMC95410 DOI: 10.1128/jb.183.18.5285-5292.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida DOT-T1E is able to grow with glucose as the carbon source in liquid medium with 1% (vol/vol) toluene or 17 g of (123 mM) p-hydroxybenzoate (4HBA) per liter. After random mini-Tn5'phoA-Km mutagenesis, we isolated the mutant DOT-T1E-PhoA5, which was more sensitive than the wild type to 4HBA (growth was prevented at 6 g/liter) and toluene (the mutant did not withstand sudden toluene shock). Susceptibility to toluene and 4HBA resulted from the reduced efflux of these compounds from the cell, as revealed by accumulation assays with (14)C-labeled substrates. The mutant was also more susceptible to a number of antibiotics, and its growth in iron-deficient minimal medium was inhibited in the presence of ethylenediamine-di(o-hydroxyphenylacetic acid (EDDHA). Cloning the mutation in the PhoA5 strain and sequencing the region adjacent showed that the mini-Tn5 transposor interrupted the exbD gene, which forms part of the exbBD tonB operon. Complementation by the exbBD and tonB genes cloned in pJB3-Tc restored the wild-type characteristics to the PhoA5 strain.
Collapse
Affiliation(s)
- P Godoy
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, E-18008 Granada, Spain
| | | | | |
Collapse
|
31
|
Rojas A, Duque E, Mosqueda G, Golden G, Hurtado A, Ramos JL, Segura A. Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J Bacteriol 2001; 183:3967-73. [PMID: 11395460 PMCID: PMC95279 DOI: 10.1128/jb.183.13.3967-3973.2001] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Pseudomonas putida DOT-T1E multidrug efflux pumps of the resistance-nodulation-division family make a major contribution to solvent resistance. Two pumps have been identified: TtgABC, expressed constitutively, and TtgDEF, induced by aromatic hydrocarbons. A double mutant lacking both efflux pumps was able to survive a sudden toluene shock if and only if preinduced with small amounts of toluene supplied via the gas phase. In this article we report the identification and characterization in this strain of a third efflux pump, named TtgGHI. The ttgGHI genes form an operon that is expressed constitutively at high levels from a single promoter. In the presence of toluene the operon is expressed at an even higher level from two promoters, the constitutive one and a previously unreported one that is inducible and that partially overlaps the constitutive promoter. By site-directed mutagenesis we constructed a single ttgH mutant which was shown to be unable to survive sudden 0.3% (vol/vol) toluene shocks regardless of the preculture conditions. The mutation was transferred to single and double mutants to construct mutant strains in which two or all three pumps are knocked out. Survival analysis of induced and noninduced cells revealed that the TtgABC and TtgGHI pumps extruded toluene, styrene, m-xylene, ethylbenzene, and propylbenzene, whereas the TtgDEF pump removed only toluene and styrene. The triple mutant was hypersensitive to toluene, as shown by its inability to grow with toluene supplied via the vapor phase.
Collapse
Affiliation(s)
- A Rojas
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, CSIC, E-18008 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Nakae T, Saito K, Nakajima A. Effect of sulbactam on anti-pseudomonal activity of beta-lactam antibiotics in cells producing various levels of the MexAB-OprM efflux pump and beta-lactamase. Microbiol Immunol 2001; 44:997-1001. [PMID: 11220688 DOI: 10.1111/j.1348-0421.2000.tb02595.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The beta-lactamase inhibitor, sulbactam, was tested for beta-lactamase inhibitory activity in Pseudomonas aeruginosa cells producing various levels of both the MexAB-OprM efflux pump and beta-lactamase. We found that sulbactam lowered the MICs of cefoperazone and piperacillin by inhibiting the beta-lactamase 8-fold in the cell producing a constitutively high level of AmpC-type beta-lactamase and a wild-type level of MexAB-OprM pump compared with that without sulbactam. The MICs of cefoperazone and piperacillin in the cell producing a constitutively high level of both the efflux pump and beta-lactamase under the presence of sulbactam were 8 and 4 times, respectively, lower than that without sulbactam. The MICs of sulbactam in the cell producing a constitutively high and a wild-type level of the efflux pump were 16- and 8-fold higher, respectively, than that in the mutant lacking the efflux pump. We concluded that sulbactam exerts potent beta-lactamase inhibitory activity in the cell producing a high level of efflux pump, in spite of the fact that sulbactam serves as a substrate of the MexAB-OprM pump. Increasing amounts of sulbactam over the weight of beta-lactams further strengthen the effect of beta-lactam antibiotics.
Collapse
Affiliation(s)
- T Nakae
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | | | | |
Collapse
|
33
|
Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001; 65:232-60 ; second page, table of contents. [PMID: 11381101 PMCID: PMC99026 DOI: 10.1128/mmbr.65.2.232-260.2001] [Citation(s) in RCA: 2570] [Impact Index Per Article: 107.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tetracyclines were discovered in the 1940s and exhibited activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, chlamydiae, mycoplasmas, rickettsiae, and protozoan parasites. They are inexpensive antibiotics, which have been used extensively in the prophlylaxis and therapy of human and animal infections and also at subtherapeutic levels in animal feed as growth promoters. The first tetracycline-resistant bacterium, Shigella dysenteriae, was isolated in 1953. Tetracycline resistance now occurs in an increasing number of pathogenic, opportunistic, and commensal bacteria. The presence of tetracycline-resistant pathogens limits the use of these agents in treatment of disease. Tetracycline resistance is often due to the acquisition of new genes, which code for energy-dependent efflux of tetracyclines or for a protein that protects bacterial ribosomes from the action of tetracyclines. Many of these genes are associated with mobile plasmids or transposons and can be distinguished from each other using molecular methods including DNA-DNA hybridization with oligonucleotide probes and DNA sequencing. A limited number of bacteria acquire resistance by mutations, which alter the permeability of the outer membrane porins and/or lipopolysaccharides in the outer membrane, change the regulation of innate efflux systems, or alter the 16S rRNA. New tetracycline derivatives are being examined, although their role in treatment is not clear. Changing the use of tetracyclines in human and animal health as well as in food production is needed if we are to continue to use this class of broad-spectrum antimicrobials through the present century.
Collapse
Affiliation(s)
- I Chopra
- Antimicrobial Research Centre and Division of Microbiology, School of Biochemistry & Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
34
|
Epp SF, Köhler T, Plésiat P, Michéa-Hamzehpour M, Frey J, Pechère JC. C-terminal region of Pseudomonas aeruginosa outer membrane porin OprD modulates susceptibility to meropenem. Antimicrob Agents Chemother 2001; 45:1780-7. [PMID: 11353625 PMCID: PMC90545 DOI: 10.1128/aac.45.6.1780-1787.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2000] [Accepted: 03/02/2001] [Indexed: 12/19/2022] Open
Abstract
We investigated the unusual susceptibility to meropenem observed for seven imipenem-resistant clinical isolates of Pseudomonas aeruginosa. These strains were genetically closely related, expressed OprD, as determined by Western blot analyses, and were resistant to imipenem (>5 microg/ml) but susceptible to meropenem (<1 microg/ml). The oprD genes from two isolates were entirely sequenced, and their deduced protein sequences showed 93% identity with that of OprD of strain PAO1. The major alteration consisted of the replacement of a stretch of 12 amino acids, located in putative external loop L7 of OprD, by a divergent sequence of 10 amino acid residues. The oprD gene variants and the wild-type oprD gene were cloned and expressed in a defined oprD mutant. The meropenem MICs for strains carrying the oprD genes from clinical isolates were four times lower than that for the strain carrying the wild-type oprD gene. Imipenem activities, however, were comparable for all strains. Furthermore, meropenem hypersusceptibility was obtained with a hybrid OprD porin that consisted of the PAO1 oprD gene containing loop L7 from a clinical isolate. These results show that the C-terminal portion of OprD, in particular, loop L7, was responsible for the unusual meropenem hypersusceptibility. Competition experiments suggested that the observed OprD modifications in the clinical isolates did not affect antagonism between imipenem and the basic amino acid L-lysine. We further propose that shortening of putative loop L7 of the OprD porin by 2 amino acid residues sufficiently opens the porin channel to allow optimal penetration of meropenem and increase its activity. In contrast, this alteration would not affect susceptibility to a smaller carbapenem molecule, such as imipenem.
Collapse
Affiliation(s)
- S F Epp
- Département de Génétique et Microbiologie, Centre Médical Universitaire, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
35
|
Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001. [PMID: 11381101 DOI: 10.1016/s0022-3093(98)00783-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Tetracyclines were discovered in the 1940s and exhibited activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, chlamydiae, mycoplasmas, rickettsiae, and protozoan parasites. They are inexpensive antibiotics, which have been used extensively in the prophlylaxis and therapy of human and animal infections and also at subtherapeutic levels in animal feed as growth promoters. The first tetracycline-resistant bacterium, Shigella dysenteriae, was isolated in 1953. Tetracycline resistance now occurs in an increasing number of pathogenic, opportunistic, and commensal bacteria. The presence of tetracycline-resistant pathogens limits the use of these agents in treatment of disease. Tetracycline resistance is often due to the acquisition of new genes, which code for energy-dependent efflux of tetracyclines or for a protein that protects bacterial ribosomes from the action of tetracyclines. Many of these genes are associated with mobile plasmids or transposons and can be distinguished from each other using molecular methods including DNA-DNA hybridization with oligonucleotide probes and DNA sequencing. A limited number of bacteria acquire resistance by mutations, which alter the permeability of the outer membrane porins and/or lipopolysaccharides in the outer membrane, change the regulation of innate efflux systems, or alter the 16S rRNA. New tetracycline derivatives are being examined, although their role in treatment is not clear. Changing the use of tetracyclines in human and animal health as well as in food production is needed if we are to continue to use this class of broad-spectrum antimicrobials through the present century.
Collapse
Affiliation(s)
- I Chopra
- Antimicrobial Research Centre and Division of Microbiology, School of Biochemistry & Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
36
|
Evans K, Adewoye L, Poole K. MexR repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa: identification of MexR binding sites in the mexA-mexR intergenic region. J Bacteriol 2001; 183:807-12. [PMID: 11208776 PMCID: PMC94945 DOI: 10.1128/jb.183.3.807-812.2001] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MexR repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa was purified as a C-terminal histidine-tagged protein by metal chelate affinity chromatography. The purified protein was shown to bind ca. 200 bp upstream of mexA, at two sites, each of which contains a repeat of the nucleotide sequence GTTGA in inverse orientation. DNA sequence analysis identified mexA and mexR promoters within the MexR binding regions, consistent with the previously observed negative regulation of mexR and mexAB-oprM expression by MexR. Transcription of mexA from the promoter originating within the MexR binding site II was confirmed and shown to be markedly enhanced in a nalB (i.e., mexR) mutant of P. aeruginosa. A second mexA promoter was also identified, ca. 70 bp upstream of mexAB-oprM, and transcription from this promoter appeared to occur in both the wild type and a nalB mutant. Production of MexAB-OprM in wild-type cells may be due to expression from a constitutively expressed proximal promoter, while MexAB-OprM hyperexpression in nalB mutants is due to the additional expression from a MexR-regulated distal promoter.
Collapse
Affiliation(s)
- K Evans
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | | | | |
Collapse
|
37
|
Li XZ, Poole K. Mutational analysis of the OprM outer membrane component of the MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 2001; 183:12-27. [PMID: 11114896 PMCID: PMC94845 DOI: 10.1128/jb.183.1.12-27.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
OprM is the outer membrane component of the MexA-MexB-OprM efflux system of Pseudomonas aeruginosa. Multiple-sequence alignment of this protein and its homologues identified several regions of high sequence conservation that were targeted for site-directed mutagenesis. Of several deletions which were stably expressed, two, spanning residues G199 to A209 and A278 to N286 of the mature protein, were unable to restore antibiotic resistance in OprM-deficient strains of P. aeruginosa. Still, mutation of several conserved residues within these regions did not adversely affect OprM function. Mutation of the highly conserved N-terminal cysteine residue, site of acylation of this presumed lipoprotein, also did not affect expression or activity of OprM. Similarly, substitution of the OprM lipoprotein signal, including consensus lipoprotein box, with the signal peptide of OprF, the major porin of this organism, failed to impact on expression or activity. Apparently, acylation is not essential for OprM function. A large deletion at the N terminus, from A12 to R98, compromised OprM expression to some extent, although the deletion derivative did retain some activity. Several deletions failed to yield an OprM protein, including one lacking an absolutely conserved LGGGW sequence near the C terminus of the protein. The pattern of permissive and nonpermissive deletions was used to test a topology model for OprM based on the recently published crystal structure of the OprM homologue, TolC (V. Koronakis, A. Sharff, E. Koronakis, B. Luisi, and C. Hughes, Nature 405:914-919, 2000). The data are consistent with OprM monomer existing as a substantially periplasmic protein with four outer membrane-spanning regions.
Collapse
Affiliation(s)
- X Z Li
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
38
|
Putman M, van Veen HW, Konings WN. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 2000; 64:672-93. [PMID: 11104814 PMCID: PMC99009 DOI: 10.1128/mmbr.64.4.672-693.2000] [Citation(s) in RCA: 583] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One of the mechanisms that bacteria utilize to evade the toxic effects of antibiotics is the active extrusion of structurally unrelated drugs from the cell. Both intrinsic and acquired multidrug transporters play an important role in antibiotic resistance of several pathogens, including Neisseria gonorrhoeae, Mycobacterium tuberculosis, Staphylococcus aureus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Vibrio cholerae. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded or of inhibitors which block the multidrug transporter and allow traditional antibiotics to be effective. This review gives an extensive overview of the currently known multidrug transporters in bacteria. Based on energetics and structural characteristics, the bacterial multidrug transporters can be classified into five distinct families. Functional reconstitution in liposomes of purified multidrug transport proteins from four families revealed that these proteins are capable of mediating the export of structurally unrelated drugs independent of accessory proteins or cytoplasmic components. On the basis of (i) mutations that affect the activity or the substrate specificity of multidrug transporters and (ii) the three-dimensional structure of the drug-binding domain of the regulatory protein BmrR, the substrate-binding site for cationic drugs is predicted to consist of a hydrophobic pocket with a buried negatively charged residue that interacts electrostatically with the positively charged substrate. The aromatic and hydrophobic amino acid residues which form the drug-binding pocket impose restrictions on the shape and size of the substrates. Kinetic analysis of drug transport by multidrug transporters provided evidence that these proteins may contain multiple substrate-binding sites.
Collapse
Affiliation(s)
- M Putman
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, NL-9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
39
|
Pumbwe L, Piddock LJ. Two efflux systems expressed simultaneously in multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2000; 44:2861-4. [PMID: 10991874 PMCID: PMC90165 DOI: 10.1128/aac.44.10.2861-2864.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simultaneous overexpression of MexAB-OprM and MexEF-OprN was demonstrated for a multiply antibiotic-resistant clinical isolate of Pseudomonas aeruginosa (G49). G49 also had decreased expression of OprF. No mutations in mexR or its upstream promoter region, mexT, oprM, oprF, or sigX were revealed, suggesting regulation by a hitherto undescribed locus.
Collapse
Affiliation(s)
- L Pumbwe
- Antimicrobial Agents Research Group, Division of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | |
Collapse
|
40
|
Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Contribution of the MexX-MexY-oprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2000; 44:2242-6. [PMID: 10952562 PMCID: PMC90052 DOI: 10.1128/aac.44.9.2242-2246.2000] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To test the possibility that MexX-MexY, a new set of efflux system components, is associated with OprM and contributes to intrinsic resistance in Pseudomonas aeruginosa, we constructed a series of isogenic mutants lacking mexXY and/or mexAB and/or oprM from a laboratory strain PAO1, and examined their susceptibilities to ofloxacin, tetracycline, erythromycin, gentamicin, and streptomycin. Loss of either MexXY or OprM from the MexAB-deficient mutant increased susceptibility to all agents tested, whereas loss of MexXY from the MexAB-OprM-deficient mutant caused no change in susceptibility. Introduction of an OprM expression plasmid decreased the susceptibility of the mexAB-oprM-deficient-/mexXY-maintaining mutant, yet caused no change in the susceptibility of a mexAB-oprM- and mexXY-deficient double mutant. Immunoblot analysis using anti-MexX polyclonal rabbit serum generated against synthetic oligopeptides detected expression of MexX in the PAO1 cells grown in medium containing tetracycline, erythromycin, or gentamicin, although expression of MexX was undetectable in the cells incubated in medium without any agent. These results suggest that MexXY induced by these agents is functionally associated with spontaneously expressed OprM and contributes to the intrinsic resistance to these agents.
Collapse
Affiliation(s)
- N Masuda
- Biological Research Laboratories, Sankyo Co., Ltd., Shinagawa-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Poole K. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob Agents Chemother 2000; 44:2233-41. [PMID: 10952561 PMCID: PMC90051 DOI: 10.1128/aac.44.9.2233-2241.2000] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- K Poole
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
42
|
Srikumar R, Paul CJ, Poole K. Influence of mutations in the mexR repressor gene on expression of the MexA-MexB-oprM multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol 2000; 182:1410-4. [PMID: 10671465 PMCID: PMC94430 DOI: 10.1128/jb.182.5.1410-1414.2000] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several nalB-type multidrug-resistant mutants of Pseudomonas aeruginosa overexpressed MexAB-OprM and carried mutations in the local regulatory gene, mexR. Others, dubbed nalC types, carried mutations elsewhere and overexpressed MexAB-OprM less extensively than the nalB strains. Available evidence showed that MexR acted solely as repressor. Disruption of the mexR gene at various places suggested that the 5' end of mexR may be a part of the mexAB-oprM promoter.
Collapse
Affiliation(s)
- R Srikumar
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
43
|
Evans K, Poole K. The MexA-MexB-OprM multidrug efflux system of Pseudomonas aeruginosa is growth-phase regulated. FEMS Microbiol Lett 1999; 173:35-9. [PMID: 10220878 DOI: 10.1111/j.1574-6968.1999.tb13481.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Intrinsic antibiotic resistance in Pseudomonas aeruginosa is attributed to low outer membrane permeability and drug efflux mediated by the products of mexAmexBoprM efflux operon. Using a mexA-phoA fusion, expression of the efflux genes was assessed as a function of growth in a variety of strains. The efflux operon was growth-phase regulated in both wild-type and nalB strains, being minimally expressed in lag phase and increasing in log to late log phase. MexR, the only known regulator of MexAMexBOprM and target of mutation in nalB strains, was not involved in the growth-phase regulation. The las cascade regulates genes based on increased cell-density, but a deletion in lasR had no effect on mexAmexBoprM expression. Putative recognition sequences for AlgT/U and RpoN were identified upstream of mexA, but algT/U and rpoN null mutants also had no effect on mexAmexBoprM expression.
Collapse
Affiliation(s)
- K Evans
- Department of Microbiology and Immunology, Queen's University, Kingston, Ont., Canada
| | | |
Collapse
|
44
|
Masuda N, Gotoh N, Ishii C, Sakagawa E, Ohya S, Nishino T. Interplay between chromosomal beta-lactamase and the MexAB-OprM efflux system in intrinsic resistance to beta-lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1999; 43:400-2. [PMID: 9925544 PMCID: PMC89089 DOI: 10.1128/aac.43.2.400] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the role of chromosomal beta-lactamase and the MexAB-OprM efflux system in intrinsic resistance to beta-lactams in Pseudomonas aeruginosa. Determination of the susceptibilities of a series of isogenic mutants with impaired production of the beta-lactamase and the efflux system to 16 beta-lactams including penicillins, cephems, oxacephems, carbapenems, and a monobactam demonstrated that the intrinsic resistance of P. aeruginosa to most of the beta-lactams is due to the interplay of both factors.
Collapse
Affiliation(s)
- N Masuda
- Biological Research Laboratories, Sankyo Co., Ltd., Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Evans K, Passador L, Srikumar R, Tsang E, Nezezon J, Poole K. Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J Bacteriol 1998; 180:5443-7. [PMID: 9765578 PMCID: PMC107595 DOI: 10.1128/jb.180.20.5443-5447.1998] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa nalB mutants which hyperexpress the MexAB-OprM multidrug efflux system produce reduced levels of several extracellular virulence factors known to be regulated by quorum sensing. Such mutants also produce less acylated homoserine lactone autoinducer PAI-1, consistent with an observed reduction in lasI expression. These data suggest that PAI-1 is a substrate for MexAB-OprM, and its resulting exclusion from cells hyperexpressing MexAB-OprM limits PAI-1-dependent activation of lasI and the virulence genes.
Collapse
Affiliation(s)
- K Evans
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Zhao Q, Li XZ, Mistry A, Srikumar R, Zhang L, Lomovskaya O, Poole K. Influence of the TonB energy-coupling protein on efflux-mediated multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998; 42:2225-31. [PMID: 9736539 PMCID: PMC105788 DOI: 10.1128/aac.42.9.2225] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TonB couples the energized state of the cytoplasmic membrane to the operation of outer membrane receptors responsible for Fe(III) siderophore uptake across the outer membrane of gram-negative bacteria. A tonB mutant of Pseudomonas aeruginosa deficient in iron siderophore uptake was shown in the present study to be hypersusceptible to a wide variety of antibiotics, reminiscent of the phenotype of mutants defective in the mexAB-oprM antibiotic efflux operon. This was not related to influences of a tonB mutation on the iron status of the cell, and indeed, intrinsic antibiotic susceptibility and mexAB-oprM expression were unaffected by iron levels in the growth medium. The presence of tonB on a multicopy plasmid increased the level of resistance of a MexAB-OprM+ strain but not that of a MexAB-OprM- strain to a variety of antimicrobial agents. mexAB-oprM expression was not, however, altered in a tonB deletion mutant, indicating that any influence of TonB on MexAB-OprM-mediated multidrug resistance was at the level of pump activity. Consistent with this, drug accumulation assays revealed that the tonB deletion mutant exhibited decreased levels of drug efflux. Still, the multidrug resistance of a nalB strain was not wholly abrogated by a tonB mutation, indicating that it is likely not an essential component of the efflux apparatus. Similarly, elimination of tonB from an nfxB strain only partially compromised MexCD-OprJ-mediated multidrug resistance. Intriguingly, the drug susceptibility of a mexAB-oprM deletion strain was increased following deletion of tonB, suggesting that TonB may also influence antibiotic resistance mediated by determinants other than MexAB-OprM (and MexCD-OprJ). Thus, TonB plays an important role in both intrinsic and acquired antibiotic resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Q Zhao
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Gotoh N, Tsujimoto H, Nomura A, Okamoto K, Tsuda M, Nishino T. Functional replacement of OprJ by OprM in the MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa. FEMS Microbiol Lett 1998; 165:21-7. [PMID: 9711836 DOI: 10.1111/j.1574-6968.1998.tb13122.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
For characterization of the MexCD-OprJ efflux system of Pseudomonas aeruginosa involved in resistance to fluoroquinolones and the fourth-generation cephems, we constructed mexC, mexD or oprJ mutants from the nfxB-type PAO strains by insertion mutagenesis. The gene products in the resultant mutants were examined by immunoblot assay using murine and rabbit antibodies developed against purified protein and synthetic oligopeptides. Susceptibility of the mexC (MexC- MexD- OprJ-) and mexD (MexC+ MexD- OprJ-) mutants to fluoroquinolone and the fourth-generation cephems was comparable to that of the wild-type strain PAO1. However, the oprJ mutant (MexC+ MexD+ OprJ-) was still less susceptible than PAO1, since a MexCD-OprM chimera system, which generated from a functional assist of the constitutively expressed OprM, can function in the efflux of the antimicrobial agents in the oprJ mutant. In fact, transformation of the oprJ mutant with an OprM-expression plasmid decreased the former's susceptibility to the levels exhibited by the nfxB mutant without affecting the substrate specificity of MexCD-OprJ.
Collapse
Affiliation(s)
- N Gotoh
- Department of Microbiology, Kyoto Pharmaceutical University, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Gotoh N, Tsujimoto H, Tsuda M, Okamoto K, Nomura A, Wada T, Nakahashi M, Nishino T. Characterization of the MexC-MexD-OprJ multidrug efflux system in DeltamexA-mexB-oprM mutants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998; 42:1938-43. [PMID: 9687387 PMCID: PMC105713 DOI: 10.1128/aac.42.8.1938] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the multidrug efflux system MexC-MexD-OprJ in nfxB mutants of Pseudomonas aeruginosa contributes to resistance to fluoroquinolones and the "fourth-generation" cephems (cefpirome and cefozopran), but not to most beta-lactams, including the ordinary cephems (ceftazidime and cefoperazone). nfxB mutants also express a second multidrug efflux system, MexA-MexB-OprM, due to incomplete transcriptional repression of this operon by the mexR gene product. To characterize the contribution of the MexC-MexD-OprJ system to drug resistance in P. aeruginosa, a site-specific deletion method was employed to remove the mexA-mexB-oprM region from the chromosome of wild-type and nfxB strains of P. aeruginosa. Characterization of mutants lacking the mexA-mexB-oprM region clearly indicated that the MexC-MexD-OprJ efflux system is involved in resistance to the ordinary cephems as well as fluoroquinolones and the fourth-generation cephems but not to carbenicillin and aztreonam. Rabbit polyclonal antisera and murine monoclonal antibody against the components of the MexA-MexB-OprM system were prepared and used to demonstrate the reduced production of this efflux system in the nfxB mutants. Consistent with this, transcription of the mexA-mexB-oprM operon decreased in an nfxB mutant. This reduction appears to explain the hypersusceptibility of the nfxB mutant to beta-lactams, including ordinary cephems.
Collapse
Affiliation(s)
- N Gotoh
- Department of Microbiology, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhao Q, Li XZ, Srikumar R, Poole K. Contribution of outer membrane efflux protein OprM to antibiotic resistance in Pseudomonas aeruginosa independent of MexAB. Antimicrob Agents Chemother 1998; 42:1682-8. [PMID: 9661004 PMCID: PMC105666 DOI: 10.1128/aac.42.7.1682] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/1998] [Accepted: 05/06/1998] [Indexed: 02/08/2023] Open
Abstract
A Pseudomonas aeruginosa strain carrying an insertion of an omega Hg interposon in the mexB gene (mexB::omega Hg; strain K879) produced markedly reduced but still detectable levels of OprM, the product of the third gene of the mexAB-oprM multidrug efflux operon. By using a lacZ transcriptional fusion vector, promoter activity likely responsible for OprM expression in the mexB::omega Hg mutant was identified upstream of oprM. Introduction of the oprM gene, but not the mexAB genes, into a P. aeruginosa multidrug-susceptible delta mexAB-oprM mutant increased resistance to quinolones, cephalosporins, erythromycin, and tetracycline. A delta mexAB-oprM strain carrying the oprM gene accumulated markedly less antibiotic than the deletion strain without oprM. Antibiotic accumulation by the MexAB- OprM+ strain was markedly enhanced upon treatment of cells with the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP), indicating that MexAB-independent OprM function likely involves an efflux process. Moreover, pretreatment of cells with CCCP prior to the accumulation assay abrogated any differences in accumulation levels between the MexAB- OprM+ and MexAB- OprM- strains, indicating that reduced drug accumulation by the OprM+ strain (in the absence of CCCP) cannot be due to OprM-mediated reduction in outer membrane permeability. It appears, therefore, the OprM can be expressed and function in a drug efflux capacity independent of MexAB.
Collapse
Affiliation(s)
- Q Zhao
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
50
|
Li XZ, Zhang L, Poole K. Role of the multidrug efflux systems of Pseudomonas aeruginosa in organic solvent tolerance. J Bacteriol 1998; 180:2987-91. [PMID: 9603892 PMCID: PMC107269 DOI: 10.1128/jb.180.11.2987-2991.1998] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multidrug efflux pumps with a broad substrate specificity make a major contribution to intrinsic and acquired multiple antibiotic resistance in Pseudomonas aeruginosa. Using genetically defined efflux pump mutants, we investigated the involvement of the three known efflux systems, MexA-MexB-OprM, MexC-MexD-OprJ, and MexE-MexF-OprN, in organic solvent tolerance in this organism. Our results showed that all three systems are capable of providing some level of tolerance to organic solvents such as n-hexane and p-xylene. Expression of MexAB-OprM was correlated with the highest levels of tolerance, and indeed, this efflux system was a major contributor to the intrinsic solvent tolerance of P. aeruginosa. Intrinsic organic solvent tolerance was compromised by a protonophore, indicating that it is substantially energy dependent. These data suggest that the efflux of organic solvents is a factor in the tolerance of P. aeruginosa to these compounds and that the multidrug efflux systems of this organism can accommodate organic solvents, as well as antibiotics.
Collapse
Affiliation(s)
- X Z Li
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|