1
|
Ghosh R, De M. Liposome-Based Antibacterial Delivery: An Emergent Approach to Combat Bacterial Infections. ACS OMEGA 2023; 8:35442-35451. [PMID: 37810644 PMCID: PMC10551917 DOI: 10.1021/acsomega.3c04893] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
The continued emergence and spread of drug-resistant pathogens and the decline in the approval of new antimicrobial drugs pose a major threat to managing infectious diseases, resulting in high morbidity and mortality. Even though a significant variety of antibiotics can effectively cure many bacterial infectious diseases, microbial infections remain one of the biggest global health problems, which may be due to the traditional drug delivery system's shortcomings which lead to poor therapeutic index, low drug absorption, and numerous other drawbacks. Further, the use of traditional antibiotics to treat infectious diseases has always been accompanied by the emergence of multidrug resistance and adverse side effects. Despite developing numerous new antibiotics, nanomaterials, and various techniques to combat infectious diseases, they have persisted as major global health issues. Improving the current antibiotic delivery systems is a promising approach to solving many life-threatening infections. In this context, nanoliposomal systems have recently attracted much attention. Herein, we attempt to provide a concise summary of recent studies that have used liposomal nanoparticles as delivery systems for antibacterial medicines. The minireview also highlights the enormous potential of liposomal nanoparticles as antibiotic delivery systems. The future of these promising approaches lies in developing more efficient delivery systems by precisely targeting bacterial cells with antibiotics with minimum cytotoxicity and high bacterial combating efficacy.
Collapse
Affiliation(s)
- Rita Ghosh
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
2
|
Chawla R, Rani V, Mishra M. Changing paradigms in the treatment of tuberculosis. Indian J Tuberc 2022; 69:389-403. [PMID: 36460368 DOI: 10.1016/j.ijtb.2021.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/25/2021] [Indexed: 06/17/2023]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is a disease long dealt with, but still remains the second leading cause of death world-wide. The current anti-tubercular chemotherapy primarily targets the microbial pathogenesis, which however, is failing due to the development of drug resistance. Moreover, with fewer new drugs reaching the market, there is a need to focus on alternate treatment approaches that could be used as stand-alone or adjunct therapy and the existing drugs, referred to as Track II chemotherapy. This article is an attempt to review the changing global patterns of tuberculosis and its treatment. Further, newer drug delivery approaches like multi-particulate drug carriers which increase the therapeutic efficacy and bring down the systemic toxicity associated with drugs have also been discussed. There is also a need to use interventions which can be used as Track II therapy. Host-directed therapeutics (HDT) is an emerging area concept in which host cell functions and hence the response to pathogens can be modulated, which can help manage TB. HDT decreases damage induced due to inflammation and necrosis in the lungs and other parts of the body due to the disease. Various immuno-modulatory pathways have been discussed in this review which could be explored further to treat TB. An in-depth understanding of multi-particulate drug carriers and HDT could help in dealing with tuberculosis; however, there is still a long way to go.
Collapse
Affiliation(s)
- Ruchi Chawla
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India.
| | - Varsha Rani
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Mohini Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| |
Collapse
|
3
|
Subramaniam S, Joyce P, Thomas N, Prestidge CA. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv Drug Deliv Rev 2021; 177:113948. [PMID: 34464665 DOI: 10.1016/j.addr.2021.113948] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
Bacteria have developed a wealth of strategies to avoid and resist the action of antibiotics, one of which involves pathogens invading and forming reservoirs within host cells. Due to the poor cell membrane permeability, stability and retention of conventional antibiotics, this renders current treatments largely ineffective, since achieving a therapeutically relevant antibiotic concentration at the site of intracellular infection is not possible. To overcome such challenges, current antibiotics are 'repurposed' via reformulation using micro- or nano-carrier systems that effectively encapsulate and deliver therapeutics across cellular membranes of infected cells. Bioinspired materials that imitate the uptake of biological particulates and release antibiotics in response to natural stimuli are recently explored to improve the targeting and specificity of this 'nanoantibiotic' approach. In this review, the mechanisms of internalization and survival of intracellular bacteria are elucidated, effectively accentuating the current treatment challenges for intracellular infections and the implications for repurposing conventional antibiotics. Key case studies of nanoantibiotics that have drawn inspiration from natural biological particles and cellular uptake pathways to effectively eradicate intracellular pathogens are detailed, clearly highlighting the rational for harnessing bioinspired drug delivery strategies.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Nicky Thomas
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia; The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
4
|
Dahanayake MH, Jayasundera ACA. Nano-based drug delivery optimization for tuberculosis treatment: A review. J Microbiol Methods 2020; 181:106127. [PMID: 33359155 DOI: 10.1016/j.mimet.2020.106127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022]
Abstract
Regardless of advanced technology and innovation, infectious diseases continue to be one of the extreme health challenges in modern world. Tuberculosis (TB) is one of the top ten causes of deaths worldwide and the leading cause of death from a single infectious agent. The conventional TB drug therapy requires a long term treatment with frequent and multiple drug dosing with a stiff administration schedule, which results in low patient compliance. This eventually leads to the recurrence of the infection and the emergence of multiple drug resistance. Hence, there is an urgent need to develop more successful and effective strategies to overcome the problems of drug resistance, duration of treatment course and devotion to treatment. Nanotechnology has considerable potential for diagnosis, treatment and prevention of infectious diseases including TB. The main advantages of nanoparticles to be used as drug carriers are their small size, high stability, enhanced delivery of hydrophilic and hydrophobic drugs, intracellular delivery of macromolecules, targeted delivery of drugs to specific cells or tissues, and the feasibility of various drug administration routes. Moreover, these carriers are adapted to facilitate controlled, slow, and persistent drug release from the matrix. Above properties of nanoparticles permit the improvement of drug bioavailability and reduction of dosing frequency and may reduce the toxicity and resolve the problem of low adherence to the prescribed therapy. In this review, various types of nanocarriers have been evaluated as promising drug delivery systems for different administration routes and main research outcomes in this area have been discussed.
Collapse
Affiliation(s)
| | - Anil C A Jayasundera
- Department of Chemistry, Faculty of Science, University of Paradeniya, Sri Lanka
| |
Collapse
|
5
|
Hussain A, Singh S, Das SS, Anjireddy K, Karpagam S, Shakeel F. Nanomedicines as Drug Delivery Carriers of Anti-Tubercular Drugs: From Pathogenesis to Infection Control. Curr Drug Deliv 2019; 16:400-429. [PMID: 30714523 PMCID: PMC6637229 DOI: 10.2174/1567201816666190201144815] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/23/2018] [Accepted: 01/25/2019] [Indexed: 11/22/2022]
Abstract
In spite of advances in tuberculosis (TB) chemotherapy, TB is still airborne deadly disorder as a major issue of health concern worldwide today. Extensive researches have been focused to develop novel drug delivery systems to shorten the lengthy therapy approaches, prevention of relapses, reducing dose-related toxicities and to rectify technologically related drawbacks of anti-tubercular drugs. Moreover, the rapid emergence of drug resistance, poor patient compliance due to negative therapeutic outcomes and intracellular survival of Mycobacterium highlighted to develop carrier with optimum effectiveness of the anti-tubercular drugs. This could be achieved by targeting and concentrating the drug on the infection reservoir of Mycobacterium. In this article, we briefly compiled the general aspects of Mycobacterium pathogenesis, disease treatment along with progressive updates in novel drug delivery carrier system to enhance therapeutic effects of drug and the high level of patient compliance. Recently developed several vaccines might be shortly available as reported by WHO.
Collapse
Affiliation(s)
| | | | | | | | | | - Faiyaz Shakeel
- Address correspondence to this author at the Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Tel: +966-14673139; E-mail:
| |
Collapse
|
6
|
Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: Emerging need for novel drug delivery approaches. Biomed Pharmacother 2018; 107:1218-1229. [DOI: 10.1016/j.biopha.2018.08.101] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/03/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022] Open
|
7
|
Nasiruddin M, Neyaz MK, Das S. Nanotechnology-Based Approach in Tuberculosis Treatment. Tuberc Res Treat 2017; 2017:4920209. [PMID: 28210505 PMCID: PMC5292193 DOI: 10.1155/2017/4920209] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/28/2016] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis, commonly known as TB, is the second most fatal infectious disease after AIDS, caused by bacterium called Mycobacterium tuberculosis. Prolonged treatment, high pill burden, low compliance, and stiff administration schedules are factors that are responsible for emergence of MDR and XDR cases of tuberculosis. Till date, only BCG vaccine is available which is ineffective against adult pulmonary TB, which is the most common form of disease. Various unique antibodies have been developed to overcome drug resistance, reduce the treatment regimen, and elevate the compliance to treatment. Therefore, we need an effective and robust system to subdue technological drawbacks and improve the effectiveness of therapeutic drugs which still remains a major challenge for pharmaceutical technology. Nanoparticle-based ideology has shown convincing treatment and promising outcomes for chronic infectious diseases. Different types of nanocarriers have been evaluated as promising drug delivery systems for various administration routes. Controlled and sustained release of drugs is one of the advantages of nanoparticle-based antituberculosis drugs over free drug. It also reduces the dosage frequency and resolves the difficulty of low poor compliance. This paper reviews various nanotechnology-based therapies which can be used for the treatment of TB.
Collapse
Affiliation(s)
- Mohammad Nasiruddin
- Triesta Sciences, HealthCare Global Enterprises Limited, Bangalore 560 027, India
| | - Md. Kausar Neyaz
- Department of Research and Education, Artemis Hospitals, Sector 51, Gurgaon 122 001, India
| | - Shilpi Das
- Triesta Sciences, HealthCare Global Enterprises Limited, Bangalore 560 027, India
| |
Collapse
|
8
|
Ladavière C, Gref R. Toward an optimized treatment of intracellular bacterial infections: input of nanoparticulate drug delivery systems. Nanomedicine (Lond) 2015; 10:3033-3055. [PMID: 26420270 DOI: 10.2217/nnm.15.128] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intracellular pathogenic bacteria can lead to some of the most life-threatening infections. By evolving a number of ingenious mechanisms, these bacteria have the ability to invade, colonize and survive in the host cells in active or latent forms over prolonged period of time. A variety of nanoparticulate systems have been developed to optimize the delivery of antibiotics. Main advantages of nanoparticulate systems as compared with free drugs are an efficient drug encapsulation, protection from inactivation, targeting infection sites and the possibility to deliver drugs by overcoming cellular barriers. Nevertheless, despite the great progresses in treating intracellular infections using nanoparticulate carriers, some challenges still remain, such as targeting cellular subcompartments with bacteria and delivering synergistic drug combinations. Engineered nanoparticles should allow controlling drug release both inside cells and within the extracellular space before reaching the target cells.
Collapse
Affiliation(s)
- Catherine Ladavière
- UMR CNRS 5223, IMP, Université Lyon 1, INSA de Lyon, 69100 Villeurbanne, France
| | - Ruxandra Gref
- Institute of Molecular Sciences, UMR CNRS 8214, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
9
|
Singh J, Garg T, Rath G, Goyal AK. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis – a critical review. Drug Deliv 2015; 23:1676-98. [DOI: 10.3109/10717544.2015.1074765] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Mustafa S, Pai RS, Singh G, Kusum Devi V. Nanocarrier-based interventions for the management of MDR/XDR-TB. J Drug Target 2015; 23:287-304. [PMID: 25766078 DOI: 10.3109/1061186x.2015.1009076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Emergence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB over the past decade presents an unprecedented public health challenge to which countries of concern are responding far too slowly. Global Tuberculosis Report 2014 marks the 20th anniversary of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance, indicating the highest global level of drug-resistance ever recorded detection of 97 000 patients with MDR-TB resulting in 170 000 deaths in 2013. Treatment of MDR-TB is expensive, complex, prolonged (18-24 months) and associated with a higher incidence of adverse events. In this context, nanocarrier delivery systems (NDSs) efficiently encapsulating considerable amounts of second-line anti tubercular drugs ((s)ATDs), eliciting controlled, sustained and more profound effect to trounce the need to administer (s)ATDs at high and frequent doses, would assist in improving patient compliance and avoid hepatotoxicity and/or nephrotoxicity/ocular toxicity/ototoxicity associated with the prevalent (s)ATDs. Besides, NDSs are also known to inhibit the P-glycoprotein efflux, reduce metabolism by gut cytochrome P-450 enzymes and circumnavigate the hepatic first-pass effect, facilitating absorption of drugs via intestinal lymphatic pathways. This review first provides a holistic account on MDR-TB and discusses the molecular basis of Mycobacterium tuberculosis resistance to anti-tubercular drugs. It also provides an updated bird's eye view on current treatment strategies and laboratory diagnostic test for MDR-TB. Furthermore, a relatively pithy view on patent studies on second-line chemotherapy using NDSs will be discussed.
Collapse
Affiliation(s)
- Sanaul Mustafa
- Department of Pharmaceutics, Al-Ameen College of Pharmacy , Bangalore, Karnataka , India
| | | | | | | |
Collapse
|
11
|
Kaur IP, Singh H. Nanostructured drug delivery for better management of tuberculosis. J Control Release 2014; 184:36-50. [DOI: 10.1016/j.jconrel.2014.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/03/2014] [Accepted: 04/03/2014] [Indexed: 01/27/2023]
|
12
|
Biodegradable nanoparticles for intracellular delivery of antimicrobial agents. J Control Release 2014; 187:101-17. [PMID: 24878179 DOI: 10.1016/j.jconrel.2014.05.034] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/14/2014] [Accepted: 05/17/2014] [Indexed: 12/18/2022]
Abstract
Biodegradable nanoparticles have emerged as a promising strategy for ferrying antimicrobial agents into specific cells due to their unique properties. This review discusses the current progress and challenges of biodegradable nanoparticles for intracellular antimicrobial delivery to understand design principles for the development of ideal nanocarriers. The intracellular delivery performances of biodegradable nanoparticles for diverse antimicrobial agents are first summarized. Second, the cellular internalization and intracellular trafficking, degradation and release kinetics of nanoparticles as well as their relation with intracellular delivery of encapsulated antimicrobial agents are provided. Third, the influences of nanoparticle properties on the cellular internalization and intracellular fate of nanoparticles and their payload antimicrobial agents are discussed. Finally, the challenges and perspectives of nanoparticles for intracellular delivery of antimicrobial agents are addressed. The review will be helpful to the scientists who are interested in searching for more efficient nanosystem strategies for intracellular delivery of antimicrobial agents.
Collapse
|
13
|
Abed N, Couvreur P. Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents 2014; 43:485-96. [PMID: 24721232 DOI: 10.1016/j.ijantimicag.2014.02.009] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
In the field of antibiotherapy, intracellular infections remain difficult to eradicate mainly due to the poor intracellular penetration of most of the commonly used antibiotics. Bacteria have quickly understood that their intracellular localisation allows them to be protected from the host immune system, but also from the action of antimicrobial agents. In addition, in most cases pathogens nestle in professional phagocytic cells, and can even use them as a 'Trojan horse' to induce a secondary site of infection thereby causing persistent or recurrent infections. Thus, new strategies had to be considered in order to counteract these problems. Amongst them, nanocarriers loaded with antibiotics represent a promising approach. Nowadays, it is possible to encapsulate, incorporate or even conjugate biologically active molecules into different families of nanocarriers such as liposomes or nanoparticles in order to deliver antibiotics intracellularly and hence to treat infections. This review gives an overview of the variety of nanocarriers developed to deliver antibiotics directly into infected cells.
Collapse
Affiliation(s)
- Nadia Abed
- Faculté de Pharmacie, Institut Galien UMR CNRS 8612, Université Paris-Sud XI, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Patrick Couvreur
- Faculté de Pharmacie, Institut Galien UMR CNRS 8612, Université Paris-Sud XI, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France.
| |
Collapse
|
14
|
|
15
|
Dube D, Agrawal GP, Vyas SP. Tuberculosis: from molecular pathogenesis to effective drug carrier design. Drug Discov Today 2012; 17:760-73. [DOI: 10.1016/j.drudis.2012.03.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/17/2012] [Accepted: 03/26/2012] [Indexed: 11/25/2022]
|
16
|
Sosnik A, Carcaboso ÁM, Glisoni RJ, Moretton MA, Chiappetta DA. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv Drug Deliv Rev 2010; 62:547-59. [PMID: 19914315 DOI: 10.1016/j.addr.2009.11.023] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 09/14/2009] [Indexed: 10/20/2022]
Abstract
Tuberculosis (TB) is the second most deadly infectious disease. Despite potentially curative pharmacotherapies being available for over 50 years, the length of the treatment and the pill burden can hamper patient lifestyle. Thus, low compliance and adherence to administration schedules remain the main reasons for therapeutic failure and contribute to the development of multi-drug-resistant (MDR) strains. Pediatric patients constitute a high risk population. Most of the first-line drugs are not commercially available in pediatric form. The design of novel antibiotics attempts to overcome drug resistance, to shorten the treatment course and to reduce drug interactions with antiretroviral therapies. On the other hand, the existing anti-TB drugs are still effective. Overcoming technological drawbacks of these therapeutic agents as well as improving the effectiveness of the drug by targeting the infection reservoirs remains the central aims of Pharmaceutical Technology. In this framework, nanotechnologies appear as one of the most promising approaches for the development of more effective and compliant medicines. The present review thoroughly overviews the state-of-the-art in the development of nano-based drug delivery systems for encapsulation and release of anti-TB drugs and discusses the challenges that are faced in the development of a more effective, compliant and also affordable TB pharmacotherapy.
Collapse
|
17
|
Drulis-Kawa Z, Dorotkiewicz-Jach A. Liposomes as delivery systems for antibiotics. Int J Pharm 2010; 387:187-98. [DOI: 10.1016/j.ijpharm.2009.11.033] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 11/25/2009] [Accepted: 11/27/2009] [Indexed: 11/25/2022]
|
18
|
Lira MCB, Siqueira-Moura MP, Rolim-Santos HML, Galetti FCS, Simioni AR, Santos NP, Tabosa Do Egito ES, Silva CL, Tedesco AC, Santos-Magalhães NS. In vitrouptake and antimycobacterial activity of liposomal usnic acid formulation. J Liposome Res 2009; 19:49-58. [PMID: 19515007 DOI: 10.1080/08982100802564628] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The cellular uptake and antimycobacterial activity of usnic acid (UA) and usnic acid-loaded liposomes (UA-LIPOs) were assessed on J774 macrophages. The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of UA and UA-LIPO against Mycobacterium tuberculosis were determined. Concentrations required to inhibit 50% of cell proliferation (IC(50)) were 22.5 (+/-0.60) and 12.5 (+/-0.26) microg/ml, for UA and UA-LIPO, respectively. The MICs of UA and UA-LIPO were 6.5 and 5.8 microg/mL, respectively. The MBC of UA-LIPO was twice as low (16 microg/mL) as that of UA (32 microg/mL). An improvement in the intracellular uptake of UA-LIPO was found (21.6 x 10(4) +/- 28.3 x 10(2) c.p.s), in comparison with UA (9.5 x 10(4) +/- 11.4 x 10(2) c.p.s). In addition, UA-LIPO remains much longer inside macrophages (30 hours). All data obtained from the encapsulation of usnic acid into liposomes as a drug delivery system (DDS) indicate a strong interaction between UA-liposomes and J774 macrophages, thereby facilitating UA penetration into cells. Considering such a process as ruling the Mycobacterium-transfection by magrophages, we could state that associating UA with this DDS leads to an improvement in its antimycobacterial activity.
Collapse
Affiliation(s)
- Mariane C B Lira
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo-Asami, Recife-PE, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Literature Alerts. J Microencapsul 2009. [DOI: 10.3109/02652049709033838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Briones E, Colino CI, Lanao JM. Delivery systems to increase the selectivity of antibiotics in phagocytic cells. J Control Release 2007; 125:210-27. [PMID: 18077047 DOI: 10.1016/j.jconrel.2007.10.027] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 10/29/2007] [Indexed: 11/25/2022]
Abstract
Many infectious diseases are caused by facultative organisms that are able to survive in phagocytic cells. The intracellular location of these microorganisms protects them from the host defence systems and from some antibiotics with poor penetration into phagocytic cells. One strategy used to improve the penetration of antibiotics into phagocytic cells is the use of carrier systems that deliver these drugs directly to the target cell. Delivery systems such as liposomes, micro/nanoparticles, lipid systems, conjugates, and biological carriers such as erythrocyte ghosts may contribute to increasing the therapeutic efficacy of antibiotics and antifungal agents in the treatment of infections caused by intracellular microorganisms. The main objective of this review is to analyze recent advances and current perspectives in the use of antibiotic delivery systems in the treatment of intracellular infections such as mycobacterial infections, brucellosis, salmonellosis, listeriosis, fungal infections, visceral leishmaniasis, and HIV.
Collapse
Affiliation(s)
- Elsa Briones
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain
| | | | | |
Collapse
|
21
|
Drulis-Kawa Z, Gubernator J, Dorotkiewicz-Jach A, Doroszkiewicz W, Kozubek A. A comparison of the in vitro antimicrobial activity of liposomes containing meropenem and gentamicin. Cell Mol Biol Lett 2007; 11:360-75. [PMID: 16847556 PMCID: PMC6472838 DOI: 10.2478/s11658-006-0030-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 05/19/2006] [Indexed: 11/20/2022] Open
Abstract
The antimicrobial activity of eight cationic, two neutral and three anionic liposome compositions containing meropenem and gentamicin was tested in vitro in broth and serum medium. The cationic formulations showed better antibacterial efficacy against both Gram-positive and Gram-negative bacteria than the anionic and neutral ones, regardless of the encapsulated drug. The most effective formulations were the cationic PC/DOPE/DOTAP 3:4:3 and PC/Chol/DOTAP 3:4:3, as the MICs with meropenem were 2 to 4 times lower than those of the free drug.
Collapse
Affiliation(s)
- Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, Wrocław, Poland.
| | | | | | | | | |
Collapse
|
22
|
De Logu A, Saddi M, Onnis V, Sanna C, Congiu C, Borgna R, Cocco MT. In vitro antimycobacterial activity of newly synthesised S-alkylisothiosemicarbazone derivatives and synergistic interactions in combination with rifamycins against Mycobacterium avium. Int J Antimicrob Agents 2005; 26:28-32. [PMID: 15955675 DOI: 10.1016/j.ijantimicag.2005.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2004] [Accepted: 03/10/2005] [Indexed: 11/17/2022]
Abstract
The antimycobacterial activities of two new S-alkylisothiosemicarbazone derivatives (1i and 1f) against 32 Mycobacterium avium isolates were investigated. The minimum inhibitory concentrations (MICs) were significantly lower than those of rifampicin and other reference drugs. The two derivatives also showed excellent intracellular activity against M. avium residing in the macrophage-like J774 cells. Interestingly, the combination of subinhibitory concentrations of 1i and rifabutin or rifampicin induced a potent synergistic effect, as determined by the fractional inhibitory concentration indexes (FICIs) ranging between 0.103 and 0.412. Such synergistic effect resulted in a 81-fold and 139-fold reduction of the MICs of rifabutin and rifampicin, respectively. Enhancement of intracellular activity of rifabutin by the S-alkylisothiosemicarbazone derivative 1i was also observed. Results indicate that S-alkylisothiosemicarbazones can be useful in the therapy and prophylaxis of M. avium infections and can represent a template for the development of novel antimycobacterial drugs. Furthermore, as a consequence of their ability to enhance the activity of rifamycins, a reduction of drug interactions following the co-administration of protease inhibitors could be achieved by lower doses of rifampicin and rifabutin.
Collapse
Affiliation(s)
- Alessandro De Logu
- Division of Medical Microbiology, Department of Biomedical Sciences and Technologies, University of Cagliari, Viale Sant'Ignazio 38, 09123 Cagliari, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Encapsulation of certain antibiotics in liposomes can enhance their effect against microorganisms invading cultured cells and in animal models. We describe the incorporation of amikacin, streptomycin, ciprofloxacin, sparfloxacin, and clarithromycin in a variety of liposomes. We delineate the methods used for the evaluation of their efficacy against Mycobacterium avium-intracellulare complex (MAC) infections in macrophages and in the beige mouse model of MAC disease. We also describe the efficacy of pH-sensitive liposomes incorporating sparfloxacin or azithromycin. We summarize studies with other antibiotics, including rifampicin, rifabutin, ethambutol, isoniazid, clofazimine, and enrofloxacin, and their use against MAC, as well as other infection models, including Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Isam I Salem
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | | |
Collapse
|
24
|
Kitahara T, Koyama N, Matsuda J, Hirakata Y, Kamihira S, Kohno S, Nakashima M, Sasaki H. Evaluation of newly developed oxygen meters with multi-channels and disposable oxygen electrode sensors for antimicrobial susceptibility testing. Biol Pharm Bull 2003; 26:1229-34. [PMID: 12951463 DOI: 10.1248/bpb.26.1229] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the applicability of new oxygen meters with multi-channels and disposable oxygen electrode sensors (DOX-96) on the antimicrobial susceptibility testing of clinical bacterial isolates. The oxygen amount in the wells of 96-well plates was converted into current through electrodes. Bacterial inoculation decreased the oxygen amount in the wells because viable bacteria consume the oxygen. On the other hand, a failure of bacteria to consume oxygen was observed in the presence of potent antimicrobial agents, representing a serious arrest of bacterial metabolism usually leading to stasis or death. Based on these results, the minimum inhibitory concentration was determined by DOX-96 (MICdox). The MICdox showed good agreement with MIC measured by the standard broth microdilution method (98.2%). DOX-96 was also useful for turbid samples such as Mueller-Hinton broth containing 0.1% lipid emulsion. The MICdox in turbid samples showed good agreement with those in clear samples (100.0%). These results indicate that the newly developed DOX-96 is very useful in antimicrobial susceptibility testing even in turbid clinical samples such as colloidal products and turbid biological components.
Collapse
Affiliation(s)
- Takashi Kitahara
- Department of Hospital Pharmacy, Nagasaki University School of Medicine.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Salem II, Düzgünes N. Efficacies of cyclodextrin-complexed and liposome-encapsulated clarithromycin against Mycobacterium avium complex infection in human macrophages. Int J Pharm 2003; 250:403-14. [PMID: 12527166 DOI: 10.1016/s0378-5173(02)00552-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cyclodextrins and liposomes have been used in recent years as drug delivery vehicles, improving the bioavailability and therapeutic efficacy of many poorly water-soluble drugs. In this study, we used two approaches to enhance the availability of the poorly water-soluble antibiotic, clarithromycin, by inclusion complex formation and by liposome-encapsulation. We examined the efficacies of these formulations against Mycobacterium avium complex (MAC) in human peripheral blood monocyte-derived macrophages. The water solubility of clarithromycin was enhanced by about 700-fold by complexation with cyclodextrin. The use of a rapid radiometric (BACTEC) method for the detection of MAC growth and susceptibility showed identical MICs against MAC for both the free and complexed drug. The anti-MAC efficacy of the cyclodextrin complex of clarithromycin in macrophages was slightly lower than the free drug, probably due to the high stability of the inclusion complex. At higher drug concentrations, Liposome-encapsulated clarithromycin was slightly more effective against intracellular MAC growth than the free drug.
Collapse
Affiliation(s)
- Isam Ismail Salem
- Department of Microbiology, University of the Pacific, 2155 Webster Street, San Francisco, CA 94115, USA.
| | | |
Collapse
|
26
|
Elmas M, Yazar E, Baş AL, Traş B, Bayezit M, Yapar K. Comparative pharmacokinetics of enrofloxacin and tissue concentrations of parent drug and ciprofloxacin after intramuscular administrations of free and liposome-encapsulated enrofloxacin in rabbits. JOURNAL OF VETERINARY MEDICINE. B, INFECTIOUS DISEASES AND VETERINARY PUBLIC HEALTH 2002; 49:507-12. [PMID: 12485362 DOI: 10.1046/j.1439-0450.2002.00603.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pharmacokinetic properties and tissue concentrations of enrofloxacin and ciprofloxacin were compared after intramuscular (i.m.) administrations of free and liposome-encapsulated enrofloxacin at the dose of 5 mg/kg body weight (bw). Twelve healthy adult New Zealand white rabbits were used in the experiment. Blood samples were obtained at 10, 20, 40, 60 and 90 min and 2, 4, 6, 8 and 12 h and tissue samples were collected 24 h after injection. Concentrations of drugs in serum were determined by high-performance liquid chromatography. Pharmacokinetics were best described by a two-compartment open model. Results indicated that absorption rate was slow, peak concentration was higher (P < 0.05), and the time to peak concentration (tmax congruent with 1.5 h) was significantly longer (P < 0.05) for liposome-encapsulated enrofloxacin (LEE) when compared with free enrofloxacin. Values of elimination half-life (t1/2beta = 12.9 h) and mean residence time (MRT = 17.6 h) of liposome-encapsulated enrofloxacin were longer (P < 0.05) and total clearance (Cl = 0.43 l/h/kg) was lower than those of free form. Moreover, the distribution volume at steady-state (Vd(ss) = 14.4 l/kg) of enrofloxacin administered encapsulated into liposomes was significantly higher (P < 0.05) than that of free enrofloxacin (FE). The tissue levels of enrofloxacin and ciprofloxacin after LEE injection were not different (P > 0.05) from FE. In conclusion, the result of present study suggest that LEE may be a beneficial and valuable formulation in the treatment of infectious diseases caused by sensitive pathogens in animals, providing sustained drug release from injection side and prolonged therapeutic serum concentrations after i.m. administration.
Collapse
Affiliation(s)
- M Elmas
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey.
| | | | | | | | | | | |
Collapse
|
27
|
Baş LA, Simşek A, Corlu M, Yazar E, Elmas M, Değim ZG. Determination of Intracellular Concentrations of Free and Two Types of Liposome-Encapsulated Enrofloxacin in Anatolian Shepherd Dog Monocytes. ACTA ACUST UNITED AC 2002; 49:289-93. [PMID: 12241030 DOI: 10.1046/j.1439-0450.2002.00568.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, it was evaluated the accumulation of free and two types of liposome-encapsulated enrofloxacin (LEE) at the doses of 0.25, 0.5 and 1 microg/ml, which were clinically relevant concentrations into monocytes of healthy Anatolian shepherd dogs. Enrofloxacin was encapsulated with two different types of liposome in multilamellar large vesicles (MLV). Type A MLV composed of 15 mg egg phosphatidylcholine and 35 mg cholesterol, Type B MLV composed of phosphatidylcholine (PC), cholesterol and enrofloxacin, in a molar ratio of 1 : 1 : 1. The mean sizes of Type A and Type B liposome were found to be 7.65 and 4.27 microm, respectively. However, the mean encapsulation rate determined of Type A (13 +/- 2%) was found lower than Type B liposome (44 +/- 3%). The amounts of intracellular enrofloxacin concentrations were determined by high performance liquid chromatography. Type B LEE accumulated significantly higher level into monocytes when compared to free drug or Type A liposome. This study showed that Type B LEE markedly concentrated within monocytes and may improve the antibacterial efficacy of the antibiotic.
Collapse
Affiliation(s)
- L A Baş
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selçuk, Konya, Turkey.
| | | | | | | | | | | |
Collapse
|
28
|
Bakker-Woudenberg IA, ten Kate MT, Guo L, Working P, Mouton JW. Improved efficacy of ciprofloxacin administered in polyethylene glycol-coated liposomes for treatment of Klebsiella pneumoniae pneumonia in rats. Antimicrob Agents Chemother 2001; 45:1487-92. [PMID: 11302815 PMCID: PMC90493 DOI: 10.1128/aac.45.5.1487-1492.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Animal and clinical data show that high ratios of the area under the concentration-time curve and the peak concentration in blood to the MIC of fluoroquinolones for a given pathogen are associated with a favorable outcome. The present study investigated whether improvement of the therapeutic potential of ciprofloxacin could be achieved by encapsulation in polyethylene glycol (PEG)-coated long-circulating sustained-release liposomes. In a rat model of unilateral Klebsiella pneumoniae pneumonia (MIC = 0.1 microg/ml), antibiotic was administered at 12- or 24-h intervals at twofold-increasing doses. A treatment period of 3 days was started 24 h after inoculation of the left lung, when the bacterial count had increased 1,000-fold and some rats had positive blood cultures. The infection was fatal within 5 days in untreated rats. Administration of ciprofloxacin in the liposomal form resulted in delayed ciprofloxacin clearance and increased and prolonged ciprofloxacin concentrations in blood and tissues. The ED(50) (dosage that results in 50% survival) of liposomal ciprofloxacin was 3.3 mg/kg of body weight/day given once daily, and that of free ciprofloxacin was 18.9 mg/kg/day once daily or 5.1 mg/kg/day twice daily. The ED(90) of liposomal ciprofloxacin was 15.0 mg/kg/day once daily compared with 36.0 mg/kg/day twice daily for free ciprofloxacin; 90% survival could not be achieved with free ciprofloxacin given once daily. In summary, the therapeutic efficacy of liposomal ciprofloxacin was superior to that of ciprofloxacin in the free form. PEG-coated liposomal ciprofloxacin was well tolerated in relatively high doses, permitting once daily administration with relatively low ciprofloxacin clearance and without compromising therapeutic efficacy.
Collapse
Affiliation(s)
- I A Bakker-Woudenberg
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center Rotterdam, 3000 DR Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
29
|
Pinto-Alphandary H, Andremont A, Couvreur P. Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents 2000; 13:155-68. [PMID: 10724019 DOI: 10.1016/s0924-8579(99)00121-1] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review examines current technologies for increasing the bioavailability of antibiotics by means of liposomes or nanoparticles. The main focus is on liposomes. These carriers were preferentially developed because their composition is compatible with biological constituents. Biodegradable polymers in the form of colloidal particles have also been used and show promise for future applications in antimicrobial chemotherapy. The in vivo behaviour of both types of carriers and consequently their therapeutic potential, are determined by their route of administration. Conventional carrier strategies permit the mononuclear phagocyte system to be targeted by intravenous injection of antibiotics. Stealthy strategies avoid major uptake by these cells and extend the systemic presence of these carriers. The purpose of this review is to provide background information in antibiotic targeting gathered from papers published over the last twenty years. It seems clear that such drug carriers (liposomes, nanoparticles) allow increased drug concentration at infected sites but reduce drug toxicity.
Collapse
Affiliation(s)
- H Pinto-Alphandary
- UMR CNRS 8612 Faculté de Pharmacie, Université Paris XI, Châtenay-Malabry, France.
| | | | | |
Collapse
|
30
|
Literature Alerts. J Microencapsul 1997. [DOI: 10.3109/02652049709006819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|