1
|
Kolb AW, Ferguson SA, Larsen IV, Brandt CR. Disease parameters following ocular herpes simplex virus type 1 infection are similar in male and female BALB/C mice. PLoS One 2023; 18:e0287194. [PMID: 37319284 PMCID: PMC10270577 DOI: 10.1371/journal.pone.0287194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Sex related differences in the incidence or severity of infection have been described for multiple viruses. With herpes simplex viruses, the best example is HSV-2 genital infection where women have a higher incidence of infection and can have more severe infections than men. HSV-1 causes several types of infections including skin and mucosal ulcers, keratitis, and encephalitis in humans that do not appear to have a strong biological sex component. Given that mouse strains differ in their MHC loci it is important to determine if sex differences occur in multiple strains of mice. Our goal was to answer two questions: Are virus related sex differences present in BALB/C mice and does virulence of the viral strain have an effect? We generated a panel of recombinant HSV-1 viruses with differing virulence phenotypes and characterized multiple clinical correlates of ocular infection in BALB/c mice. We found no sex-specific differences in blepharitis, corneal clouding, neurovirulence, and viral titers in eye washes. Sex differences in neovascularization, weight loss and eyewash titers were observed for some recombinants, but these were not consistent across the phenotypes tested for any recombinant virus. Considering these findings, we conclude that there are no significant sex specific ocular pathologies in the parameters measured, regardless of the virulence phenotype following ocular infection in BALB/c mice, suggesting that the use of both sexes is not necessary for the bulk of ocular infection studies.
Collapse
Affiliation(s)
- Aaron W. Kolb
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Sarah A. Ferguson
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Inna V. Larsen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Curtis R. Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
2
|
Monoclonal Antibodies, Derived from Humans Vaccinated with the RV144 HIV Vaccine Containing the HVEM Binding Domain of Herpes Simplex Virus (HSV) Glycoprotein D, Neutralize HSV Infection, Mediate Antibody-Dependent Cellular Cytotoxicity, and Protect Mice from Ocular Challenge with HSV-1. J Virol 2017; 91:JVI.00411-17. [PMID: 28701403 DOI: 10.1128/jvi.00411-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/29/2017] [Indexed: 01/29/2023] Open
Abstract
The RV144 HIV vaccine trial included a recombinant HIV glycoprotein 120 (gp120) construct fused to a small portion of herpes simplex virus 1 (HSV-1) glycoprotein D (gD) so that the first 40 amino acids of gp120 were replaced by the signal sequence and the first 27 amino acids of the mature form of gD. This region of gD contains most of the binding site for HVEM, an HSV receptor important for virus infection of epithelial cells and lymphocytes. RV144 induced antibodies to HIV that were partially protective against infection, as well as antibodies to HSV. We derived monoclonal antibodies (MAbs) from peripheral blood B cells of recipients of the RV144 HIV vaccine and showed that these antibodies neutralized HSV-1 infection in cells expressing HVEM, but not the other major virus receptor, nectin-1. The MAbs mediated antibody-dependent cellular cytotoxicity (ADCC), and mice that received the MAbs and were then challenged by corneal inoculation with HSV-1 had reduced eye disease, shedding, and latent infection. To our knowledge, this is the first description of MAbs derived from human recipients of a vaccine that specifically target the HVEM binding site of gD. In summary, we found that monoclonal antibodies derived from humans vaccinated with the HVEM binding domain of HSV-1 gD (i) neutralized HSV-1 infection in a cell receptor-specific manner, (ii) mediated ADCC, and (iii) reduced ocular disease in virus-infected mice.IMPORTANCE Herpes simplex virus 1 (HSV-1) causes cold sores and neonatal herpes and is a leading cause of blindness. Despite many trials, no HSV vaccine has been approved. Nectin-1 and HVEM are the two major cellular receptors for HSV. These receptors are expressed at different levels in various tissues, and the role of each receptor in HSV pathogenesis is not well understood. We derived human monoclonal antibodies from persons who received the HIV RV144 vaccine that contained the HVEM binding domain of HSV-1 gD fused to HIV gp120. These antibodies were able to specifically neutralize HSV-1 infection in vitro via HVEM. Furthermore, we showed for the first time that HVEM-specific HSV-1 neutralizing antibodies protect mice from HSV-1 eye disease, indicating the critical role of HVEM in HSV-1 ocular infection.
Collapse
|
3
|
Abstract
The need for antiviral drugs is growing rapidly as more viral diseases are recognized. The methods used to discover these drugs have evolved considerably over the past 40 years and the overall process of discovery can be broken down into sub-processes which include lead generation, lead optimization and lead development. Various methods are now employed to ensure these processes are carried out efficiently. For lead generation, screening methodologies have developed to the extent where hundreds of thousands of compounds can be screened against a particular target. An alternative approach is to use the structures of enzyme substrates as a starting point for drug discovery. Much use is now made of X-ray crystallographic data of target–inhibitor complexes for the optimization of lead structures, and methods for preparing libraries of compounds to assist both generation and optimization of leads are welldeveloped. The methods used to predict and improve the pharmacokinetic properties of compounds are also changing rapidly. Finally, novel approaches to antiviral therapy using oligonucleotide-based compounds or modulating the host immune response are also being explored. This review discusses these approaches, provides examples of where their application has been successful and sets them against a historical background.
Collapse
Affiliation(s)
- PS Jones
- Roche Discovery Welwyn, 40 Broadwater Road, Welwyn Garden City, AL7 3AY, UK
| |
Collapse
|
4
|
Broekema NM, Larsen IV, Naruzawa ES, Filutowicz M, Kolb AW, Teixeira LBC, Brandt CR. A Mouse Model of Multi-Drug Resistant Staphylococcus aureus-induced Ocular Disease. ACTA ACUST UNITED AC 2016; 4. [PMID: 27896297 PMCID: PMC5123590 DOI: 10.13188/2334-2838.1000026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Staphylococcus aureus infection of the cornea is a significant threat to vision. The percentage of bacterial isolates resistant to antibiotics is increasing as is the percentage of infections caused by methicillin resistant isolates. There is a critical need for additional therapeutic approaches and their development will require the use of animal models to test efficacy. Two mouse models of S. aureus keratitis have been described but only quantified stromal keratitis (corneal clouding and perforation). We have extended these models using the methicillin resistant S. aureus USA300 LAC strain and show that eyelid inflammation and swelling (blepharitis) and corneal neovascularization can be quantified. This expanded model should prove useful in assessing additional effects of antibacterial therapies and additional pathological mechanisms involved in bacterial ocular infection.
Collapse
Affiliation(s)
| | - Inna V Larsen
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA
| | | | - Marcin Filutowicz
- Amebagone, Inc.; Department of Bacteriology, University of Wisconsin-Madison, Wisconsin, USA
| | - Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA
| | - Leandro B C Teixeira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin, USA
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, USA; McPherson Eye Research Institute - University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
5
|
Both CD8+ and CD4+ T Cells Contribute to Corneal Clouding and Viral Clearance following Vaccinia Virus Infection in C57BL/6 Mice. J Virol 2016; 90:6557-6572. [PMID: 27170749 DOI: 10.1128/jvi.00570-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/26/2016] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Vaccinia virus (VACV) keratitis is a serious complication following smallpox vaccination and can lead to blindness. The pathological mechanisms involved in ocular VACV infection are poorly understood. Previous studies have used rabbits, but the lack of immune reagents and transgenic or knockout animals makes them less suitable for mechanistic studies. We report that infection of C57BL/6 mice with 1 × 10(7) PFU of vaccinia virus strain WR results in blepharitis, corneal neovascularization, and stromal keratitis. The DryVax strain of VACV was completely attenuated. Infection required corneal scarification and replication-competent virus, and the severity of ocular disease was similar in 4- to 6-week-old and 1-year-old mice. Viral titers peaked at approximately 1 × 10(6) PFU on day 5 postinfection, and virus had not cleared by day 13 postinfection. Neutrophils were found in the peripheral cornea on day 1 after infection and then declined, followed by infiltration of both CD4(+) and CD8(+) T cells, which remained peripheral throughout the infection. Blood vessel growth extended 2 to 5 mm into the cornea from the limbus. Infection of CD4(-/-), CD8(-/-), or antibody-depleted mice resulted in similar disease severity and corneal clouding, indicating that both T-cell subsets were involved in the immunopathological response. Depletion of both CD4(+) and CD8(+) T cells resulted in significantly more severe disease and failure to clear the virus. On the basis of our results, the pathology of VACV keratitis is significantly different from that of herpes simplex virus keratitis. Further studies are likely to reveal novel information regarding virulence and immune responses to viral ocular infection. IMPORTANCE Potentially blinding eye infections can occur after vaccination for smallpox. Very little is known about the pathological mechanisms that are involved, and the information that is available was generated using rabbit models. The lack of immunological reagents for rabbits makes such studies difficult. We characterized a mouse model of vaccinia virus ocular disease using C57BL/6 mice and strain WR and show that both CD4(+) and CD8(+) T-cell subsets play a role in the blinding eye disease and in controlling virus replication. On the basis of these results, vaccinia virus keratitis is significantly different from herpes simplex virus keratitis, and further studies using this model should generate novel insights into immunopathological responses to viral ocular infection.
Collapse
|
6
|
Bhave S, Elford H, McVoy MA. Ribonucleotide reductase inhibitors hydroxyurea, didox, and trimidox inhibit human cytomegalovirus replication in vitro and synergize with ganciclovir. Antiviral Res 2013; 100:151-8. [PMID: 23933116 DOI: 10.1016/j.antiviral.2013.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/15/2013] [Accepted: 07/24/2013] [Indexed: 01/12/2023]
Abstract
Ganciclovir (GCV) is a deoxyguanosine analog that is effective in inhibiting human cytomegalovirus (HCMV) replication. In infected cells GCV is converted to GCV-triphosphate which competes with dGTP for incorporation into the growing DNA strand by the viral DNA polymerase. Incorporated GCV promotes chain termination as it is an inefficient substrate for elongation. Because viral DNA synthesis also relies on cellular ribonucleotide reductase (RR) to synthesize deoxynucleotides, RR inhibitors are predicted to inhibit HCMV replication. Moreover, as dGTP competes with GCV-triphosphate for incorporation, RR inhibitors may also synergize with GCV by reducing intracellular dGTP levels and there by promoting increased GCV-triphosphate utilization by DNA polymerase. To investigate potential of RR inhibitors as anti-HCMV agents both alone and in combination with GCV, HCMV-inhibitory activities of three RR inhibitors, hydroxyurea, didox, and trimidox, were determined. In both spread inhibition and yield reduction assays RR inhibitors had modest anti-HCMV activity with 50% inhibitory concentrations ranging from 36±1.7 to 221±52μM. However, all three showed significant synergy with GCV at concentrations below their 50% inhibitory and 50% toxic concentrations. These results suggest that combining GCV with relatively low doses of RR inhibitors could significantly potentiate the anti-HCMV activity of GCV in vivo and could improve clinical response to therapy.
Collapse
Affiliation(s)
- Sukhada Bhave
- Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | |
Collapse
|
7
|
In vivo anti-herpes simplex virus activity of a sulfated derivative of Agaricus brasiliensis mycelial polysaccharide. Antimicrob Agents Chemother 2013; 57:2541-9. [PMID: 23507287 DOI: 10.1128/aac.02250-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agaricus brasiliensis (syn. A. subrufescens), a basidiomycete fungus native to the Atlantic forest in Brazil, contains cell walls rich in glucomannan polysaccharides. The β-(1 → 2)-gluco-β-(1 → 3)-mannan was isolated from A. brasiliensis mycelium, chemically modified by sulfation, and named MI-S. MI-S has multiple mechanisms of action, including inhibition of herpes simplex virus (HSV) attachment, entry, and cell-to-cell spread (F. T. G. S. Cardozo, C. M. Camelini, A. Mascarello, M. J. Rossi, R. J. Nunes, C. R. Barardi, M. M. de Mendonça, and C. M. O. Simões, Antiviral Res. 92:108-114, 2011). The antiherpetic efficacy of MI-S was assessed in murine ocular, cutaneous, and genital infection models of HSV. Groups of 10 mice were infected with HSV-1 (strain KOS) or HSV-2 (strain 333). MI-S was given either topically or by oral gavage under various pre- and posttreatment regimens, and the severity of disease and viral titers in ocular and vaginal samples were determined. No toxicity was observed in the uninfected groups treated with MI-S. The topical and oral treatments with MI-S were not effective in reducing ocular disease. Topical application of MI-S on skin lesions was also not effective, but cutaneously infected mice treated orally with MI-S had significantly reduced disease scores (P < 0.05) after day 9, suggesting that healing was accelerated. Vaginal administration of MI-S 20 min before viral challenge reduced the mean disease scores on days 5 to 9 (P < 0.05), viral titers on day 1 (P < 0.05), and mortality (P < 0.0001) in comparison to the control groups (untreated and vehicle treated). These results show that MI-S may be useful as an oral agent to reduce the severity of HSV cutaneous and mucosal lesions and, more importantly, as a microbicide to block sexual transmission of HSV-2 genital infections.
Collapse
|
8
|
Jose GG, Larsen IV, Gauger J, Carballo E, Stern R, Brummel R, Brandt CR. A cationic peptide, TAT-Cd°, inhibits herpes simplex virus type 1 ocular infection in vivo. Invest Ophthalmol Vis Sci 2013; 54:1070-9. [PMID: 23341013 DOI: 10.1167/iovs.12-10250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To test the in vivo activity of a peptide derived from the protein transducing domain of the human immunodeficiency virus (HIV) Tat protein, TAT-Cd°, in a murine herpes simplex type 1 (HSV-1) keratitis model. METHODS the efficacy of TAT-CD° was assessed in a postinfection treatment model with different concentrations (1 mg/mL, 0.1 mg/mL, 0.01 mg/mL) of the peptide in one of four delivery vehicles: artificial tears, PBS, methylcellulose, and aquaphor cream. Treatment began within 4 or 24 hours postinfection. Viral titers in the tear film were determined by plaque assay. RESULTS TAT-Cd° reduced the severity of keratitis in all of the delivery vehicles tested when treatment started, 4 hours postinfection. Peptide in the tears or PBS delivery vehicle had the most significant reduction in disease severity and delayed the onset of vascularization and stromal keratitis. The percentage of mice presenting with disease was also significantly reduced and viral titers were reduced by 1 log at 24 hours postinfection in mice treated with 1 mg/mL TAT-Cd°, suggesting that inhibiting replication early is sufficient to achieve clinical effects. Lower concentrations were not effective and delaying treatment by 24 hours was also not effective. CONCLUSIONS This study shows that TAT-Cd° is an effective antiviral against HSV-1 strain KOS when applied shortly postinfection and that aqueous-based formulations are more suitable.
Collapse
Affiliation(s)
- Gilbert G Jose
- Microbiology Doctoral Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Skevaki CL, Galani IE, Pararas MV, Giannopoulou KP, Tsakris A. Treatment of viral conjunctivitis with antiviral drugs. Drugs 2011; 71:331-47. [PMID: 21319870 DOI: 10.2165/11585330-000000000-00000] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Viral conjunctivitis is one of the most common disorders observed in ophthalmic emergency departments, yet no established treatment exists. Lately, antiviral medications have been introduced into clinical practice; however, a systematic review focusing on their use and effectiveness in the treatment of viral conjunctivitis has not been previously reported. We systemically reviewed the literature to identify studies where antiviral drugs were used to treat viral conjunctivitis. Currently, aciclovir, trifluridine and valaciclovir are commonly used as antiviral agents to treat herpesvirus infections. Cidofovir has been used successfully to treat some cases of adenoviral conjunctivitis, although toxicity has also been reported. The use of other medications, such as idoxuridine, has been minimized in clinical practice due to their high toxicity. Interestingly, most of the antiviral drugs developed are used to treat herpesvirus infections, while less progress has been made in the field of adenoviral infections. For other viral causes of conjunctivitis, no effective remedy is currently available, and treatment focuses on the relief of symptoms. Caution should be exercised when coadministering other pharmacological agents, such as corticosteroids, because of emerging adverse effects.
Collapse
Affiliation(s)
- Chrysanthi L Skevaki
- Department of Microbiology, School of Medicine, University of Athens, Athens, Greece.
| | | | | | | | | |
Collapse
|
10
|
Larsen IV, Brandt CR. A cationic TAT peptide inhibits Herpes simplex virus type 1 infection of human corneal epithelial cells. J Ocul Pharmacol Ther 2010; 26:541-7. [PMID: 21029018 DOI: 10.1089/jop.2010.0076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UNLABELLED Abstract Purpose: To determine if a peptide, TAT-Cd(0), inhibits Herpes simplex virus type 1 infection of human corneal epithelial cells. METHODS TAT-Cd(0) and a control peptide, E(50,51)TAT-Cd(0), were added at various times throughout infection with the lacz-expressing hrR3 virus, and viral replication was measured by β-galactosidase activity. Toxicity was assessed using a dye reduction assay. RESULTS The CC(50) value for TAT-Cd(0) was ∼100 μM. In assays with peptide present at all times, TAT-Cd(0) was 150-fold more active than E(50,51)TAT-Cd(0) (EC(50) 0.2 vs. 30.0 μM). The EC(50) values of TAT-Cd(0) for entry inhibition, cell protection, virus inactivation, and inhibition of attachment were 0.1, 0.4, 9.5, and 3.0 μM, respectively. TAT-Cd(0) was less effective when added 1 h postinfection (EC(50) = 30.0 μM). CONCLUSIONS TAT-Cd(0) is an effective inhibitor of Herpes simplex virus type 1 infection in human corneal epithelial cells and affects multiple steps before, or very early, in infection. The peptide has potential as an antiviral and further studies are warranted.
Collapse
Affiliation(s)
- Inna V Larsen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
11
|
Multiple peptides homologous to herpes simplex virus type 1 glycoprotein B inhibit viral infection. Antimicrob Agents Chemother 2008; 53:987-96. [PMID: 19104014 DOI: 10.1128/aac.00793-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 773-residue ectodomain of the herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) has been resistant to the use of mutagenic strategies because the majority of the induced mutations result in defective proteins. As an alternative strategy for the identification of functionally important regions and novel inhibitors of infection, we prepared a library of overlapping peptides homologous to the ectodomain of gB and screened for the ability of the peptides to block infection. Seven of 138 15-mer peptides inhibited infection by more than 50% at a concentration of 100 microM. Three peptides (gB94, gB122, and gB131) with 50% effective concentrations (EC(50)s) below 20 microM were selected for further studies. The gB131 peptide (residues 681 to 695 in HSV-1 gB [gB-1]) was a specific entry inhibitor (EC(50), approximately 12 microM). The gB122 peptide (residues 636 to 650 in gB-1) blocked viral entry (EC(50), approximately 18 microM), protected cells from infection (EC(50), approximately 72 microM), and inactivated virions in solution (EC(50), approximately 138 microM). We were unable to discern the step or steps inhibited by the gB94 peptide, which is homologous to residues 496 to 510 in gB-1. Substitution of a tyrosine in the gB122 peptide (Y640 in full-length gB-1) reduced the antiviral activity eightfold, suggesting that this residue is critical for inhibition. This peptide-based strategy could lead to the identification of functionally important regions of gB or other membrane proteins and identify novel inhibitors of HSV-1 entry.
Collapse
|
12
|
Akkarawongsa R, Potocky TB, English EP, Gellman SH, Brandt CR. Inhibition of herpes simplex virus type 1 infection by cationic beta-peptides. Antimicrob Agents Chemother 2008; 52:2120-9. [PMID: 18391029 PMCID: PMC2415802 DOI: 10.1128/aac.01424-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 12/17/2007] [Accepted: 03/28/2008] [Indexed: 11/20/2022] Open
Abstract
Previously, it was shown that cationic alpha-peptides derived from the human immunodeficiency virus TAT protein transduction domain blocked herpes simplex virus type 1 (HSV-1) entry. We now show that cationic oligomers of beta-amino acids ("beta-peptides") inhibit HSV-1 infection. Among three cationic beta-peptides tested, the most effective inhibition was observed for the one with a strong propensity to adopt a helical conformation in which cationic and hydrophobic residues are segregated from one another ("globally amphiphilic helix"). The antiviral effect was not cell type specific. Inhibition of virus infection by the beta-peptides occurred at the postattachment penetration step, with a 50% effective concentration of 3 muM for the most-effective beta-peptide. The beta-peptides did not inactivate virions in solution, nor did they induce resistance to infection when cells were pretreated with the beta-peptides. The beta-peptides showed little if any toxicity toward Vero cells. These results raise the possibility that cationic beta-peptides may be useful antiviral agents for HSV-1 and demonstrate the potential of beta-peptides as novel antiviral drugs.
Collapse
Affiliation(s)
- Radeekorn Akkarawongsa
- Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
13
|
Akkarawongsa R, Cullinan AE, Zinkel A, Clarin J, Brandt CR. Corneal Toxicity of Cell-Penetrating Peptides That InhibitHerpes simplexVirus Entry. J Ocul Pharmacol Ther 2006; 22:279-89. [PMID: 16910869 DOI: 10.1089/jop.2006.22.279] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cell-penetrating peptides (CPPs) inhibit Herpes simplex virus entry at low micromolar concentrations and may be useful either as prophylactic or therapeutic agents for herpetic keratitis. The aim of this study was to assess the in vitro and in vivo toxicity of three CPPs-EB, TAT-C, and HOM (penetratin)-for the cornea. Incubation of primary (HK320) or immortalized (THK320) human keratocytes with the EB peptide (up to 100 microM), bHOMd (up to 200 microM), or TAT-C (up to 400 microM) resulted in no evidence of toxicity using a formazan dye-reduction assay. Similar results were obtained with a human trabecular meshwork cell line (TM-1), primary human foreskin fibroblasts (DP-9), Vero, and HeLa cells with EB and TATC. The bHOMd peptide showed some toxicity in Vero and HeLa cells, with CC50 values of 70 and 93 microM, respectively. The EB peptide did not inhibit macromolecular synthesis in Vero cells at concentrations below 150 microM, although cell proliferation was blocked at concentrations of EB above 50 microM. In vivo toxicity was assessed by applying peptides in Dulbecco's modified Eagle's medium to the cornea 4 times daily for 7 d. At concentrations 1000 times the IC50 values, the EB and bHOM peptides showed no toxicity, whereas TAT-C caused some mild eyelid swelling. Some slight epithelial cell sloughing was seen with the bKLA peptide in vivo. These results suggest that these CPPs-and EB in particular-have a favorable toxicity profile, and that further development is warranted.
Collapse
Affiliation(s)
- Radeekorn Akkarawongsa
- Program in Cell and Molecular Biology, Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | |
Collapse
|
14
|
Loregian A, Palù G. Disruption of protein-protein interactions: towards new targets for chemotherapy. J Cell Physiol 2005; 204:750-62. [PMID: 15880642 DOI: 10.1002/jcp.20356] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein-protein interactions play a key role in various mechanisms of cellular growth and differentiation, and in the replication of pathogen organisms in host cells. Thus, inhibition of these interactions is a promising novel approach for rational drug design against a wide number of cellular and microbial targets. In the past few years, attempts to inhibit protein-protein interactions using antibodies, peptides, and synthetic or natural small molecules have met with varying degrees of success, and these will be the focus of this review.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Italy.
| | | |
Collapse
|
15
|
Brandt CR. The role of viral and host genes in corneal infection with herpes simplex virus type 1. Exp Eye Res 2005; 80:607-21. [PMID: 15862167 DOI: 10.1016/j.exer.2004.09.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 09/28/2004] [Indexed: 11/26/2022]
Abstract
Herpes simplex virus infection of the eye is the leading cause of blindness due to infection in the US despite the availability of several antiviral drugs. Studies with animal models have shown that three factors, innate host resistance, the host adaptive immune response, and the strain of virus interact to determine whether an infection is asymptomatic or proceeds to the development of blinding keratitis (HSK). Of these, the role of adaptive immunity has received the most attention. This work has clearly shown that stromal keratitis is an immunopathological disease, most likely due to the induction of a delayed type hypersensitivity response. Substantially less is known about the role of specific host genes in resistance to HSK. The fact that different strains of virus display different disease phenotypes indicates that viral 'virulence' genes are critical. Of the 80 plus HSV genes, few have been formally tested for their role in HSV keratitis. Most studies of virulence genes to date have focused on a single gene or protein and large changes in disease phenotypes are usually measured. Large changes in the ability to cause disease are likely to reduce the fitness of the virus, thus such studies, although useful, do not mimic the natural situation. Viral gene products are known to interact with each other, and with host proteins and these interactions are critical in determining the outcome of infection. In reality, the 'constellation' of genes encoded by each particular strain is critical, and how this constellation of genes works together and with host proteins determines the outcome of an infection. The goal of this review is to discuss the current state of knowledge regarding the role of host and viral genes in HSV keratitis. The roles of specific genes that have been shown to influence keratitis are discussed. Recent data showing that different viral genes cooperate to influence disease severity and confirming that the constellation of genes within a particular strain determines the disease phenotype are also discussed, as are the methods used to test the role of viral genes in virulence. It will become apparent that there is a paucity of information regarding the function of many viral genes in keratitis. Improving our knowledge of the role of viral genes is critical for devising more effective treatments for this disease.
Collapse
Affiliation(s)
- Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, 6630 MSC, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
16
|
Cooperman BS, Gao Y, Tan C, Kashlan OB, Kaur J. Peptide inhibitors of mammalian ribonucleotide reductase. ACTA ACUST UNITED AC 2005; 45:112-25. [PMID: 16054677 DOI: 10.1016/j.advenzreg.2005.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian ribonucleotide reductase (mRR) is a chemotherapeutic target. In common with other class Ia RRs, the enzyme is composed of two subunits (mR1 and mR2), with mR1 containing both the active site and allosteric effector sites and mR2 containing a stable tyrosyl radical that is essential for enzymatic activity. mRR is inhibited by Ac-FTLDADF (denoted P7), corresponding to the C-terminus of mR2, which competes with mR2 for binding to mR1. The enzyme has two physiologically important active forms, mR12mR22 and mR16(mR22)j (j=1-3), with high ATP concentrations favoring the latter. Here, we report on our progress in using structural and functional studies in conjunction with library screening to identify derivatives of tri-, tetra- and hexapeptides, and cyclic heptapeptides, having equal or significantly higher activities than P7 toward inhibition of one or both active forms. These identifications were made by screening candidate peptides both for their abilities to bind to mR1 competitively with P7 and to inhibit ribonucleotide reductase activity. A significant feature of both P7 and the newly identified derivatives is that they are stronger inhibitors of mR12mR22 than of mR16(mR22)j. For the tetrapeptides, this is due in part to their preferential binding to mR1 monomer. The possible application of these peptide derivatives in cancer chemotherapy, exploiting their preferential inhibition of mR12mR22, is considered.
Collapse
Affiliation(s)
- Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Class I ribonucleotide reductases (RRs), which are well-recognized targets for cancer chemotherapeutic and antiviral agents, are composed of two different subunits, R1 and R2, and are inhibited by oligopeptides corresponding to the C-terminus of R2, which compete with R2 for binding to R1. These peptides specifically inhibit the RRs from which they are derived, and closely homologous RRs, but do not inhibit less homologous RRs. Here we review results obtained for oligopeptide inhibition of RRs from several sources, including related x-ray, NMR, and modeling results. The most extensive studies have been performed on herpes simplex virus-RR (HSV-RR) and mammalian-RR (mRR). A common model fits the data obtained for both enzymes, in which the C-terminal residue of the oligopeptide (Leu for HSV-RR, Phe for mRR) binds with high specificity to a narrow and deep hydrophobic subsite, and two or more hydrophobic groups at the N-terminal portion of the peptide bind to a broad and shallow second hydrophobic subsite. The studies have led to the development of highly potent and specific inhibitors of HSV-RR and promising inhibitors of mRR, and indicate possible directions for the development of inhibitors of bacterial and fungal RRs.
Collapse
Affiliation(s)
- Barry S Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
| |
Collapse
|
18
|
Abstract
Several exceptional peptides have been identified that can cross plasma membranes and deliver various covalently linked moieties into cells. We report the surprising observation that each of four structurally distinct transiting peptides tested displayed antiviral activity and inhibited herpes simplex virus entry into cells. All four peptides inhibited infection at concentrations in the low micromolar range. Some of the peptides selectively and reversibly blocked entry without inactivating virions in a persistent manner. For other peptides, the effects on virus entry were not readily distinguishable from virus inactivation. High concentrations of nearly all peptides lead to irreversible inactivation of virions. By various criteria, the peptides differed in their ability to inactivate virions and in the temperature dependence of inactivation. Testing of peptides with modifications known to disrupt transport revealed that, in some instances, transport activity did not correlate with antiviral activity. These results identify inhibition of viral entry as another common property of membrane-transiting peptides in addition to their ability to cross membranes and transport materials into cells. These or related peptides may be useful as agents to prevent infection and to study the process of viral entry.
Collapse
Affiliation(s)
- Hermann Bultmann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
19
|
Loregian A, Marsden HS, Palù G. Protein-protein interactions as targets for antiviral chemotherapy. Rev Med Virol 2002; 12:239-62. [PMID: 12125015 DOI: 10.1002/rmv.356] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most cellular and viral processes depend on the coordinated formation of protein-protein interactions. With a better understanding of the molecular biology and biochemistry of human viruses it has become possible to screen for and detect inhibitors with activity against specific viral functions and to develop new approaches for the treatment of viral infections. A novel strategy to inhibit viral replication is based on the disruption of viral protein-protein complexes by peptides that mimic either face of the interaction between subunits. Peptides and peptide mimetics capable of dissociating protein-protein interactions have such exquisite specificity that they hold great promise as the next generation of therapeutic agents. This review is focused on recent developments using peptides and small molecules to inhibit protein-protein interactions between cellular and/or viral proteins with comments on the practicalities of transforming chemical leads into derivatives with the characteristics desired of medicinal compounds.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy
| | | | | |
Collapse
|
20
|
Piraino F, Brandt CR. Isolation and partial characterization of an antiviral, RC-183, from the edible mushroom Rozites caperata. Antiviral Res 1999; 43:67-78. [PMID: 10517309 DOI: 10.1016/s0166-3542(99)00035-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A protein of 10,425 Da was purified from the edible mushroom Rozites caperata and shown to inhibit herpes simplex virus types 1 and 2 replication with an IC50 value of < or = 5 microM. The protein designated RC-183 also significantly reduced the severity of HSV-1 induced ocular disease in a murine model of keratitis, indicating in vivo efficacy. HSV mutants lacking ribonucleotide reductase and thymidine kinase were also inhibited, suggesting the mechanism does not involve these viral enzymes. Antiviral activity was also seen against varicella zoster virus, influenza A virus, and respiratory syncytial virus, but not against adenovirus type VI, coxsackie viruses A9 and B5, or human immunodeficiency virus. Characterization of RC-183 by mass spectroscopy, sequencing, and other methods suggests it is composed of a peptide (12 or 13 mer) coupled to ubiquitin via an isopeptide bond between the c-terminal glycine of ubiquitin and the epsilon amino group of a lysine residue in the peptide. The peptide sequence did not match any known sequence. Thus, RC-183 is a novel antiviral that may have clinical utility or serve as a lead compound for further development. Determining the mechanism of action may lead to identification of novel steps in viral replication.
Collapse
Affiliation(s)
- F Piraino
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, Madison 53706-1532, USA
| | | |
Collapse
|
21
|
Duan J, Liuzzi M, Paris W, Lambert M, Lawetz C, Moss N, Jaramillo J, Gauthier J, Déziel R, Cordingley MG. Antiviral activity of a selective ribonucleotide reductase inhibitor against acyclovir-resistant herpes simplex virus type 1 in vivo. Antimicrob Agents Chemother 1998; 42:1629-35. [PMID: 9660995 PMCID: PMC105657 DOI: 10.1128/aac.42.7.1629] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The present study reports the activity of BILD 1633 SE against acyclovir (ACV)-resistant herpes simplex virus (HSV) infections in athymic nude (nu/nu) mice. BILD 1633 SE is a novel peptidomimetic inhibitor of HSV ribonucleotide reductase (RR). In vitro, it is more potent than ACV against several strains of wild-type as well as ACV-resistant HSV mutants. Its in vivo activity was tested against cutaneous viral infections in athymic nude mice infected with the ACV-resistant isolates HSV type 1 (HSV-1) dlsptk and PAAr5, which contain mutations in the viral thymidine kinase gene and the polymerase gene, respectively. Following cutaneous infection of athymic nude mice, both HSV-1 dlsptk and PAAr5 induced significant, reproducible, and persistent cutaneous lesions that lasted for more than 2 weeks. A 10-day treatment regimen with ACV given topically four times a day as a 5% cream or orally at up to 5 mg/ml in drinking water was partially effective against HSV-1 PAAr5 infection with a reduction of the area under the concentration-time curve (AUC) of 34 to 48%. The effects of ACV against HSV-1 dlsptk infection were not significant when it was administered topically and were only marginal when it was given in drinking water. Treatment under identical conditions with 5% topical BILD 1633 SE significantly reduced the cutaneous lesions caused by both HSV-1 dlsptk and PAAr5 infections. The effect of BILD 1633 SE against HSV-1 PAAr5 infections was more prominent and was inoculum and dose dependent, with AUC reductions of 96 and 67% against infections with 10(6) and 10(7) PFU per inoculation site, respectively. BILD 1633 SE also significantly decreased the lesions caused by HSV-1 dlsptk infection (28 to 51% AUC reduction). Combination therapy with topical BILD 1633 SE (5%) and ACV in drinking water (5 mg/ml) produced an antiviral effect against HSV-1 dlsptk and PAAr5 infections that was more than the sum of the effects of both drugs. This is the first report that a selective HSV RR subunit association inhibitor can be effective against ACV-resistant HSV infections in vivo.
Collapse
Affiliation(s)
- J Duan
- Bio-Méga Research Division, Boehringer Ingelheim (Canada) Ltd., Laval, Québec, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|