1
|
Lu Y, Liu Y, Zhou C, Liu Y, Long Y, Lin D, Xiong R, Xiao Q, Huang B, Chen C. Quorum sensing regulates heteroresistance in Pseudomonas aeruginosa. Front Microbiol 2022; 13:1017707. [PMID: 36386621 PMCID: PMC9650436 DOI: 10.3389/fmicb.2022.1017707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/07/2022] [Indexed: 10/29/2023] Open
Abstract
The prevalence and genetic mechanism of antibiotic heteroresistance (HR) have attracted significant research attention recently. However, non-genetic mechanism of HR has not been adequately explored. The present study aimed to evaluate the role of quorum sensing (QS), an important mechanism of behavioral coordination in different subpopulations and consequent heteroresistance. First, the prevalence of HR to 7 antibiotics was investigated in 170 clinical isolates of P. aeruginosa using population analysis profiles. The results showed that P. aeruginosa was significantly heteroresistant to meropenem (MEM), amikacin (AMK), ciprofloxacin (CIP), and ceftazidime (CAZ). The observed HR was correlated with down-regulation of QS associated genes lasI and rhlI. Further, loss-of-function analysis results showed that reduced expression of lasI and rhlI enhanced HR of P. aeruginosa to MEM, AMK, CIP, and CAZ. Conversely, overexpression of these genes or treatment with 3-oxo-C12-HSL/C4-HSL lowered HR of P. aeruginosa to the four antibiotics. Additionally, although downregulation of oprD and upregulation of efflux-associated genes was evident in heteroresistant subpopulations, their expression was not regulated by LasI and RhlI. Moreover, fitness cost measurements disclosed higher growth rates of PAO1ΔlasI and PAO1ΔrhlI in the presence of sub-MIC antibiotic as compared with that of wild-type PAO1. Our data suggest that under temporary antibiotic pressure, downregulation of QS might result in less fitness cost and promote HR of P. aeruginosa.
Collapse
Affiliation(s)
- Yang Lu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuyang Liu
- Department of Laboratory Medicine, Chengdu First People's Hospital, Chengdu, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chenxu Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaqin Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Yifei Long
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongling Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Xiong
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qian Xiao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cha Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Cooper AL, Low AJ, Koziol AG, Thomas MC, Leclair D, Tamber S, Wong A, Blais BW, Carrillo CD. Systematic Evaluation of Whole Genome Sequence-Based Predictions of Salmonella Serotype and Antimicrobial Resistance. Front Microbiol 2020; 11:549. [PMID: 32318038 PMCID: PMC7147080 DOI: 10.3389/fmicb.2020.00549] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/13/2020] [Indexed: 01/21/2023] Open
Abstract
Whole-genome sequencing (WGS) is used increasingly in public-health laboratories for typing and characterizing foodborne pathogens. To evaluate the performance of existing bioinformatic tools for in silico prediction of antimicrobial resistance (AMR) and serotypes of Salmonella enterica, WGS-based genotype predictions were compared with the results of traditional phenotyping assays. A total of 111 S. enterica isolates recovered from a Canadian baseline study on broiler chicken conducted in 2012-2013 were selected based on phenotypic resistance to 15 different antibiotics and isolates were subjected to WGS. Both SeqSero2 and SISTR accurately determined S. enterica serotypes, with full matches to laboratory results for 87.4 and 89.2% of isolates, respectively, and partial matches for the remaining isolates. Antimicrobial resistance genes (ARGs) were identified using several bioinformatics tools including the Comprehensive Antibiotic Resistance Database – Resistance Gene Identifier (CARD-RGI), Center for Genomic Epidemiology (CGE) ResFinder web tool, Short Read Sequence Typing for Bacterial Pathogens (SRST2 v 0.2.0), and k-mer alignment method (KMA v 1.17). All ARG identification tools had ≥ 99% accuracy for predicting resistance to all antibiotics tested except streptomycin (accuracy 94.6%). Evaluation of ARG detection in assembled versus raw-read WGS data found minimal observable differences that were gene- and coverage- dependent. Where initial phenotypic results indicated isolates were sensitive, yet ARGs were detected, repeat AMR testing corrected discrepancies. All tools failed to find resistance-determining genes for one gentamicin- and two streptomycin-resistant isolates. Further investigation found a single nucleotide polymorphism (SNP) in the nuoF coding region of one of the isolates which may be responsible for the observed streptomycin-resistant phenotype. Overall, WGS-based predictions of AMR and serotype were highly concordant with phenotype determination regardless of computational approach used.
Collapse
Affiliation(s)
- Ashley L Cooper
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada.,Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Andrew J Low
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Adam G Koziol
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Matthew C Thomas
- Microbial Contaminants, Canadian Food Inspection Agency, Calgary, AB, Canada
| | - Daniel Leclair
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Sandeep Tamber
- Microbiology Research Division, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada
| | - Alex Wong
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Burton W Blais
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada.,Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Catherine D Carrillo
- Research and Development, Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| |
Collapse
|
3
|
Poole RK, Cozens AG, Shepherd M. The CydDC family of transporters. Res Microbiol 2019; 170:407-416. [PMID: 31279084 DOI: 10.1016/j.resmic.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/23/2022]
Abstract
The CydDC family of ABC transporters export the low molecular weight thiols glutathione and cysteine to the periplasm of a variety of bacterial species. The CydDC complex has previously been shown to be important for disulfide folding, motility, respiration, and tolerance to nitric oxide and antibiotics. In addition, CydDC is thus far unique amongst ABC transporters in that it binds a haem cofactor that appears to modulate ATPase activity. CydDC has a diverse impact upon bacterial metabolism, growth, and virulence, and is of interest to those working on membrane transport mechanisms, redox biology, aerobic respiration, and stress sensing/tolerance during infection.
Collapse
Affiliation(s)
- Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Adam G Cozens
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Mark Shepherd
- School of Biosciences, University of Kent, Canterbury, United Kingdom.
| |
Collapse
|
4
|
The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification. Nat Microbiol 2019; 4:504-514. [PMID: 30742072 DOI: 10.1038/s41564-018-0342-0] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
When choosing antibiotics to treat bacterial infections, it is assumed that the susceptibility of the target bacteria to an antibiotic is reflected by laboratory estimates of the minimum inhibitory concentration (MIC) needed to prevent bacterial growth. A caveat of using MIC data for this purpose is heteroresistance, the presence of a resistant subpopulation in a main population of susceptible cells. We investigated the prevalence and mechanisms of heteroresistance in 41 clinical isolates of the pathogens Escherichia coli, Salmonella enterica, Klebsiella pneumoniae and Acinetobacter baumannii against 28 different antibiotics. For the 766 bacteria-antibiotic combinations tested, as much as 27.4% of the total was heteroresistant. Genetic analysis demonstrated that a majority of heteroresistance cases were unstable, with an increased resistance of the subpopulations resulting from spontaneous tandem amplifications, typically including known resistance genes. Using mathematical modelling, we show how heteroresistance in the parameter range estimated in this study can result in the failure of antibiotic treatment of infections with bacteria that are classified as antibiotic susceptible. The high prevalence of heteroresistance with the potential for treatment failure highlights the limitations of MIC as the sole criterion for susceptibility determinations. These results call for the development of facile and rapid protocols to identify heteroresistance in pathogens.
Collapse
|
5
|
Abstract
Extreme antibiotic resistance in bacteria is associated with the expression of powerful inactivating enzymes and other functions encoded in accessory genomic elements. The contribution of core genome processes to high-level resistance in such bacteria has been unclear. In the work reported here, we evaluated the relative importance of core and accessory functions for high-level resistance to the aminoglycoside tobramycin in the nosocomial pathogen Acinetobacter baumannii. Three lines of evidence establish the primacy of core functions in this resistance. First, in a genome scale mutant analysis using transposon sequencing and validation with 594 individual mutants, nearly all mutations reducing tobramycin resistance inactivated core genes, some with stronger phenotypes than those caused by the elimination of aminoglycoside-inactivating enzymes. Second, the core functions mediating resistance were nearly identical in the wild type and a deletion mutant lacking a genome resistance island that encodes the inactivating enzymes. Thus, most or all of the core resistance determinants important in the absence of the enzymes are also important in their presence. Third, reductions in tobramycin resistance caused by different core mutations were additive, and highly sensitive double and triple mutants (with 250-fold reductions in the MIC) that retained accessory resistance genes could be constructed. Core processes that contribute most strongly to intrinsic tobramycin resistance include phospholipid biosynthesis, phosphate regulation, and envelope homeostasis. The inexorable increase in bacterial antibiotic resistance threatens to undermine many of the procedures that transformed medicine in the last century. One strategy to meet the challenge antibiotic resistance poses is the development of drugs that undermine resistance. To identify potential targets for such adjuvants, we identified the functions underlying resistance to an important class of antibiotics for one of the most highly resistant pathogens known.
Collapse
|
6
|
Aussel L, Pierrel F, Loiseau L, Lombard M, Fontecave M, Barras F. Biosynthesis and physiology of coenzyme Q in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1004-11. [PMID: 24480387 DOI: 10.1016/j.bbabio.2014.01.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 11/24/2022]
Abstract
Ubiquinone, also called coenzyme Q, is a lipid subject to oxido-reduction cycles. It functions in the respiratory electron transport chain and plays a pivotal role in energy generating processes. In this review, we focus on the biosynthetic pathway and physiological role of ubiquinone in bacteria. We present the studies which, within a period of five decades, led to the identification and characterization of the genes named ubi and involved in ubiquinone production in Escherichia coli. When available, the structures of the corresponding enzymes are shown and their biological function is detailed. The phenotypes observed in mutants deficient in ubiquinone biosynthesis are presented, either in model bacteria or in pathogens. A particular attention is given to the role of ubiquinone in respiration, modulation of two-component activity and bacterial virulence. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Laurent Aussel
- Laboratoire de Chimie Bactérienne, UMR 7283 Aix-Marseille Université - CNRS, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier 13009 Marseille, France
| | - Fabien Pierrel
- Laboratoire de Chimie et Biologie des Métaux, UMR 5249 CEA - Université Grenoble I - CNRS, 17 Rue des Martyrs, 38054 Grenoble Cedex France
| | - Laurent Loiseau
- Laboratoire de Chimie Bactérienne, UMR 7283 Aix-Marseille Université - CNRS, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier 13009 Marseille, France
| | - Murielle Lombard
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC, Collège de France, 11 Place Marcellin Berthelot, 75231 Paris Cedex 05 France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, UPMC, Collège de France, 11 Place Marcellin Berthelot, 75231 Paris Cedex 05 France
| | - Frédéric Barras
- Laboratoire de Chimie Bactérienne, UMR 7283 Aix-Marseille Université - CNRS, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier 13009 Marseille, France.
| |
Collapse
|
7
|
Plastoquinone-9 biosynthesis in cyanobacteria differs from that in plants and involves a novel 4-hydroxybenzoate solanesyltransferase. Biochem J 2012; 442:621-9. [PMID: 22166075 DOI: 10.1042/bj20111796] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PQ-9 (plastoquinone-9) has a central role in energy transformation processes in cyanobacteria by mediating electron transfer in both the photosynthetic as well as the respiratory electron transport chain. The present study provides evidence that the PQ-9 biosynthetic pathway in cyanobacteria differs substantially from that in plants. We identified 4-hydroxybenzoate as being the aromatic precursor for PQ-9 in Synechocystis sp. PCC6803, and in the present paper we report on the role of the membrane-bound 4-hydroxybenzoate solanesyltransferase, Slr0926, in PQ-9 biosynthesis and on the properties of the enzyme. The catalytic activity of Slr0926 was demonstrated by in vivo labelling experiments in Synechocystis sp., complementation studies in an Escherichia coli mutant with a defect in ubiquinone biosynthesis, and in vitro assays using the recombinant as well as the native enzyme. Although Slr0926 was highly specific for the prenyl acceptor substrate 4-hydroxybenzoate, it displayed a broad specificity with regard to the prenyl donor substrate and used not only solanesyl diphosphate, but also a number of shorter-chain prenyl diphosphates. In combination with in silico data, our results indicate that Slr0926 evolved from bacterial 4-hydroxybenzoate prenyltransferases catalysing prenylation in the course of ubiquinone biosynthesis.
Collapse
|
8
|
Bush K, Miller GH. Bacterial enzymatic resistance: beta-lactamases and aminoglycoside-modifying enzymes. Curr Opin Microbiol 1998; 1:509-15. [PMID: 10066532 DOI: 10.1016/s1369-5274(98)80082-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Numerous novel beta-lactamases and aminoglycoside-modifying enzymes with altered substrate profiles continue to be identified. Plasmid-mediated transmission of many of these enzymes readily occurs due to inclusion of the encoding genes in mobile gene cassettes. Recent crystallographic determinations of the structures of metallo-beta-lactamases and aminoglycoside-modifying enzymes provide the opportunity for the rational design of inhibitors.
Collapse
Affiliation(s)
- K Bush
- RW Johnson Pharmaceutical Research Institute, 1000 Route 202, Raritan NJ 08869, USA.
| | | |
Collapse
|